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Intermolecular-interaction potentials depend on the vibrational coordinates of the molecules in-

volved. We study the effect of this v dependence (as we will call it for brevity) on the symmetry of
line shapes of rotovibrational collision-induced-absorption (RVCIA) spectra of collisional com-

plexes such as H2-He or H2-H2. If the v dependence is ignored, individual line shapes I (e) of CIA
spectra satisfy the widely used "detailed balance" relationship I ( —co)=e " "' I (co), where co

designates the frequency shift relative to the molecular transition frequency, and T the temperature.
However, if one accounts for the v dependence, the symmetry of a computed profile is modified

significantly, the more so the higher the temperature and the higher the vibrational overtones one
considers. These differing symmetries are described in quantitative terms that are of interest in

modeling or analyzing RVCIA spectra. This paper may be considered the second, concluding part
of our theoretical study of the influence of the u dependence on RVCIA spectra; the previous part

[Phys. Rev. A 36, 4700 (1987)] deals with the influence of the v dependence on the integrated inten-

sities (spectral moments) of RVCIA spectra.

I. INTRODUCTION

Nonpolar, tenuous gases such as hydrogen and helium
do not absorb electromagnetic radiation in the visible or
infrared region of the spectrum. However, at sufficiently
high gas densities, collisionally interacting pairs of nonpo-
lar molecules, such as H2-H2 or H2-He, absorb noticeably
in these spectral regions as Welsh and his associates have
shown. ' The absorption is caused by a dipole moment in-
duced by intermolecular interactions. ' Three mecha-
nisms contribute to the induced dipole: the polarization
of the collisional partner X (which, for example, may be a
He atotn or a H2 molecule) in the quadrupole field of
another molecule (H2); electron exchange in the super-
molecule Hz-X at near range; and dispersion interaction.
The induction processes are well understood ' and have
been studied theoretically and by ab initio calculations of
supermolecules such as H2-X.

Once the induced dipole tnoment @=is(R; rH, rx,2'

QH, Qx) is known as a function of the Hz-X separation2'

R, the vibrational coordinates rH of H2 and rr of X (if X"2
is a molecule), the collision-induced-absorption (CIA)
spectra can be computed quite rigorously. ' ' If state-
of-the-art induced dipole moments are input that are ob-
tained from highly correlated wave functions, a very
close agreement of measured CIA spectra with ab initio
computations is observed. ' ' ' ' Not only do the
shapes of the calculated and measured spectral profiles
agree. All recent measurements of CIA spectra of H2-H2

and H2-He have been calibrated in units of absolute in-

tensities and measured and computed spectra have been
shown to agree on an absolute intensity scale with root-
mean-square deviations of just a few percent.

We note that various kinds of CIA spectra are known. '

Besides the translational spectra of the supermolecule
H2-1 which leave the rotovibrational states of the partici-
pating collisional partners unchanged, purely rotational
CIA spectra have been observed which leave the vibra-
tional states of H2 and X unchanged. Vibrational transi-
tions in either Hz or X (if X is a molecule) may occur
which lead to rotovibrational (RV) CIA spectra. These
may be in the fundamental band (v =0, v'=1), or in
overtone or "hot" bands (v') 1, v)0). Simultaneous
transitions in both partners may also occur at sums and
difFerences of the RU frequencies of the molecules in-
volved. Several of these CIA spectra of H2-X pairs are of
considerable significance in astrophysics, especially in
more or less neutral and dense environments, such as the
atmospheres of the outer planets, " ' late stars,
certain white dwarfs, ' and the hypothetical "popula-
tion III" stars. ' The computation of such spectra
from first principles can be done with precision and is
therefore a valuable, indeed a necessary supplement to
the data required for the study of such atmospheres, be-
cause laboratory data are usually subject to some techni-
cal limitation of temperature or absorption path length.

The rototranslational (RT) CIA spectra in the far in-
frared of H2-Hz and H2-He pairs have been accurately
obtained from first principles. ' ' ' Since such computa-
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tions are involved and cannot readily be repeated else-
where, the results of the exact quantum calculations have
been approximated by simple analytical functions that
can be computed in seconds on small computers. These
represent the spectra over a wide range of temperatures
and frequencies closely. ' ' However, in our attempts to
extend such work to the RVCIA spectra in the near in-
frared, somewhat unexpectedly we encountered serious
problems to be described next.

The CIA spectra arise from dipole transitions between
accessible states of the supermolecule H2-X. The compu-
tation of the translational wave function requires the
knowledge of the Hz-X interaction potential. It is well

known that the interaction potential depends not only on
the separation R of the pair (and the orientations Q„

2

and Q» of the partners), but also on the vibrational coor-
dinates rH and r» (if X is a molecule). In other words,

2

the translational wave function of the final state must be
computed from an interaction potential that differs from
that of the initial state of the complex, especially if RV
transitions are considered. While the vibrational aver-
ages of the interaction potential V(R, QH, Q», r„,r»)2' ' 2'

for various vibrational states may not seem to differ
drastically, they differ enough at near range, R -cr where
cr is the collision diameter, to render the first spectral mo-
ment of the fundamental hydrogen band about 20%
greater at temperatures from 200 to 300 K, and even
more at higher temperatures, relative to the values ob-
tained if the same potential is assumed for the initial and
final states of the pair. "' For the the overtone bands
much greater corrections are observed ' ' and the line
shapes computed with and without accounting for the
variation of the interaction potential with the vibrational
states differ strikingly, especially at high temperatures.
We mention, though, that the zeroth moments remain
unaffected.

Perhaps more surprising, we found the existing model-
ing functions commonly employed in such work' '

to be not accurate, indeed in several instances quite inac-
curate for the modeling of the RVCIA spectra. We shall
show that this problem is also related to the fact that in-
teraction potentials depend on the vibrational states of
the molecules involved. This v dependence (as we will
call it for brevity) renders the individual line profiles [for
example, those of the usually prominent, "forbidden"
Sa, (J) lines of H2] inconsistent with a profile satisfying a
form of the detailed balance condition widely employed.
The symmetry of the line profiles of RVCIA spectra is
the subject of this paper, which may be considered an ex-
tension and refinement of previous work' concerning the
theory of CIA spectra.

II. THEORY

In the low-density limit, for example, when intercol-
lisional interference and other many-body effects are
neglected, the spectral distribution is determined solely
by the dynamics of a pair of molecules. In this first and
widely used approximation, ' ' the intermolecular po-
tential has been assumed to be independent of the inter-
nal motion of the molecules: the potential depends only
on the intermolecular separation, so that the translational

motion is fully decoupled from the internal motion of the
molecules. In this case, the collision-induced spectral
density may be described as a convolution of a transla-
tional spectrum with a "stick spectrum" whose lines are
placed in correspondence with the RV transitions. The
translational spectrum is computed by solving numerical-
ly the radial Schrodinger equation with the isotropic in-
termolecular potential that is a function of the inter-
molecular separation only ' ' and satisfies a detailed
balance condition [Eq. (19) below].

To a better approximation, the intermolecular poten-
tial can be considered to be dependent on the vibrational
and translational variables (but not on the rotational
ones). Moreover, in systems involving H2, the vibrational
variables may be considered as changing with time much
faster than the translational ones, so that the motion of
the latter can be determined by an isotropic potential that
is the vibrational average of the potential associated with
the appropriate vibrational state. The resulting transla-
tional spectrum does not possess, however, the same
properties as the one in which the coupling between
translations and vibrations is neglected. In fact, as we
shall show, this new line shape cannot be expected to
satisfy the "detailed balance condition, "Eq. (19), below.

Under the circumstances, the symmetry of RV line
profiles and the model line shapes representing them is
reconsidered. In this paper we suggest a method to con-
struct analytical profiles of the proper symmetry to
represent RV spectra of systems such as H2-H2 and H2-
He. It will be seen that the modifications we suggest with
respect to previously proposed models are particularly
important at high temperatures and for overtone and hot
bands (v'& 1, v =0, and U'& v &0, respectively) in gen-
eral.

We define the spectral density g (co) as'

g(co)= g P,
~

(s
~ p ~

s')
~

'5(co co„) . — (1)
$, $

In this expression, s and s indicate the initial and final
states of the supermolecule, P, is the probability of occu-
pation of the state s, p is the dipole moment induced by
intermolecular interactions, 6 is the angular frequency,
cu„,= (E, E, ) lfi, and E,—is the energy of state

~

s ). The
absorption coefficient a(co) of a collisional pair is ex-
pressed in terms of the spectral density, according to

4~ nL
2 2

a(B)=p„p» ~(1 —e "" " )Vg(B) . (2)

Equation (2) describes the enhancement spectra of the
mixture of hydrogen and rare-gas pairs. The pH and pz2

designate the density, in amagats, of hydrogen and the
rare gas, respectively. We note that the factor pHp»
must be replaced by —,'pH if absorption in pure hydrogen

is considered. V designates the volume and n L is
Loschmidt's number.

Since we will regard the molecules as rotating freely, it
is convenient to expand the spherical components of the
induced dipole moment p in terms of angular functions,

g C(XL1;pMv)Y~„(QH )YLM(Q),
p, M
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' 1/2
(4n )

3 g C(AL1;pMv)

g C(A, !A2A;p, )u~)

state
~

s) of the supermolecule can be written as the
product of a state representing the free rotation of the
molecules,

~
r, m„), and one describing both vibrational

and translational variables,
~
4), according to

PI P2 /s)= /r, m„) /cb) . (8)

p&, ——g A "(R,rH, rz)4I'„!,
(c)

(5)

with coefficients A '" that have been defined previously in
a slightly different notation, according to

A "(R,rH )=AiL(R&rH ),
A'"(R, rH rz)= A„(A&A L2;R, r Hrx),

depending on whether Eq. (3) or (4) is considered.
As a consequence of the assumed independence of the

intermolecular potential on the rotational variables, any
I

x Y, „«„)
Yi „(Qx}YLsr(Q}, (4)

depending on whether X is an atom or diatomic molecule.
The superscript (c) designates the set of expansion pa-
rameters IA, ,L ) if X is an atom [Eq. (3)] and I A, &, kz, L, A I

if X is a diatomic molecule [Eq. (4)]. The C (; ) are
Clebsch-Gordan coefficients and the F&„are spherical
harmonics. The direction of the intermolecular axis in a
laboratory fixed frame is called Q. In terms of Eqs. (3)
and (4), the spherical components (with v=0, +1) of the
induced dipole component p can be written as

That is, we disregard any coupling between rotational
states on the one hand and vibrational and translational
on the other. In Eq. (8), m„designates a set of quantum
numbers which distinguishes among all states with the
saine rotational energy E, . Upon making use of Eq. (8) in

Eq. (1), the sum over r, m„, r', m„' can be computed and we

get

Vg (cu) = Q a„'„'F'"(co co„„)—.
(c), r, r'

In other words, the spectral function is written as a sum
over various line profiles centered at the rotational transi-
tion frequencies co„„. For each set of expansion parame-
ters (c), the quantities a„'„' satisfy the selection rules ap-
propriate for the (c) component, and are chosen such
that

(1O)

where P„ is the population probability of the rotational
state

~

r ). We thus get

Vf g(co)den= g f F "(co)de .
—00

( )
—QG

The line-profile functions F "(co) may be written as

F"(co)= g VP~ g ~
($

~

A "(R,rH r~)YLM(Q)
~

P')
~

5(co rv~p )—.
4m

~ 2L+1 ' "2 (12)

Next, we assume that the states
~
P) and

~

P') are of the
form

(13)

x 5(~—~,~), (15)

where co=co—co„ is the frequency shift relative to the
line center co„, , and

(14)

with
~

v ) and
~

v ) designating the initial and final vibra-
tional states of the pair,

~

r)„and
~

r'), the translational
eigenstates of the Hamiltonians ( u

~

H
~

v ) and
(v'

~

H
~

v') whose eigenvalues are the energies E, and

E, , respectively. The Hamiltonian H is the total Hamil-
tonian of the pair minus the rotational and vibrational ki-
netic energies of the molecules.

If a transition from the initial state U to the final state
u' takes place, we get, froin Eq. (12),

F„'„"(co}=P„QV P,
2L +1

x g ~
„(r~8„',"(R)YL~(Q)

~

7'),
~

M

8„';,!=(u
~

A'"(R, r„r~)
~

u'&

is the vibrational transition matrix element of the in-
duced dipole. P„and P, designate the population proba-
bilities of the initial vibrational and translational states,

~

v ) and
~
r), respectively. Equation (15) is formally the

same as one derived previously, ' but the radial part of
the translational wave function of initial and final states is
now computed with the vibrational average of the in-
teraction potential,

V, (R)=(u
~

Vo(R, r„r~)
~

u),
and similarly for U'. The interaction potentials for initial
and final states thus differ if U&U'. Using numerical
methods, the spectral line profiles, Eq. (15), of the funda-
mental band have previously been computed for H2-He
pairs' with the use of the ab initio potential of Meyer
et al. The spectra calculated with and without ac-
counting for the dependence on the vibrational coordi-
nates rH were found to differ significantly. The measure-

2

ments at temperatures from 18 to -300 K could be
shown to be modeled much more closely by the profile
obtained with accounting for the U dependence.
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Since the computations of quantum profiles according
to Eq. (15) are somewhat complex, it is common practice
to substitute for an exact quantum profile F(tu) a simple,
analytical profile, I (tu;r)r~ .

) with adjustable parame-
ters ~;, which may approximate exact profiles closely,
provided the N parameters are chosen so that N spectral
moments of F and I are matched,

f F(tu)tu"dru= f I (tu)cu"dtu (18)I', —(X)

for 0 & n & N —1. The resulting representation was
shown to be surprisingly accurate for a wide selection of
RTCIA spectra, ' ' but an extension to RVCIA spectra
was unworkable after the momentum expressions input
were chosen to account for the v dependence. " Only
with the assumption V„(R)—= V„(R) could a spectrum
thus be modeled which, however, was a poor approxima-
tion of measurements and of exact computations if v&u'.
The reason for this somewhat unexpected observation is
related to the significantly diferent symmetry of the
profiles F(cu) and I (to) observed in the vibrational bands
which we will discuss next.

As far as we know, functions I (co) that have been con-
sidered in the past as a model line shape ' have all been
chosen to satisfy a detailed balance condition,

e RcolkTf (— (19)

where co designates the frequency shift relative to the
transition frequency. (We ignore here the classical
profiles which are symmetric and thus not suitable to
model hydrogen systems at low temperatures. ) It is
noteworthy that the exact line profiles F„„(tu) do not
satisfy such a symmetry relation, Eq. (19), unless u =v'
(as is the case in the RT band). In fact, because
5( —tu —a&,~ ) =5(tu —co~, ), replacing cu by —cu is
equivalent to exchanging r and T' in Eq. (15), except in
the 5 function. P~ equals exp( firn/kT)P„—but the
square modulus of the matrix elements remains the same
only if the initial and final vibrational states are the same
(or if the translational motion does not depend on the vi-
brational state). The fact is that F(co) satisfies the de-
tailed balance condition for inversion of the absolute fre-
quency co, not of the frequency shift co. The inversion of
the frequency shift t0 in Eq. (15) by contrast, simply
means that we are going from ~=co„.+co to 9=co„,—co.
The inversion of the frequency 6, on the contrary, is ac-
tually equivalent to inverting both co and co„,'—~u=co„, —cu. In fact, starting from Eq. (15), it can
readily be shown that

(20)
U U

which differs substantially from Eq. (19) if v&v'. The
profile F,„on the right-hand side of Eq. (20) is associated
with the vibrational transition v~v, while the F, , to
the left designates the profile associated with the inverse

I

M~() ——f ~B~ d R,
2

transition, v'~v. The RVCIA spectra should be
modeled with the help of profiles which satisfy Eq. (20),
not Eq. (19). These can be constructed from the familiar
models I as we will show next.

III. RV MODEL PROFILES

Spectral profiles K„' (tu) =F„"(tu ) /P, suitable for
modeling RVCIA spectra should be consistent with Eq.
(20). The present known, successful model profiles ' I
satisfy Eq. (19) but not Eq. (20). In order to benefit from
the wealth of information obtained for the existing suc-
cessful models and, at the same time, satisfy Eq. (20), we

shall briefly consider how suitable model functions K can
be constructed from the familiar I so that Eq. (20) is
satisfied.

We define the functions X(co) and Y(cu) such that

X(c)( ) e A~lkTX—(c)( )

Y(c)( )
eccl—kTY(c)( )

(21)

(22)

and construct an RV model profile from these, according
to

K"'(tu) =X"(cu)+ Y"(cu) .

This is always possible. It is sufficient to choose

X(c)( )
) [K( )(c~)+efirulkTK(c)( ~)]

Y(c)( )
) [K(c)( ) eAcplkTK(c)( ~)]

With the help of Eq. (20), we write these as

X(c)(~) )[K(c)(~)+K(c)(~)]

Y"(tu) = —,
) [K„(„"(co)—K„'„)(co)] .

(23)

(24)

(25)

(26)

(27)

(2&)

The X and Y can thus be expressed in terms of the
profiles of the up and the associated down (u'~v) transi-
tions. The spectral moments of X and Yean thus be writ-
ten as a simple combination of the moments of the up and
down transitions. These can be computed from induction
operator and interaction potential. " Furthermore, the
function X, Eq. (21), satisfies the condition, Eq. (19), and
is conveniently represented by one of the familiar models,
I. A simple choice for Y"(cu) could be ((u/b, )I"(co)
where 6 is a constant to be specified below, and I ' is
another model function which satisfies Eq. (19). In other
words, according to Eq. (23), the RV profiles K can be
represented by two familiar model functions, I and I ',
whose parameters may be defined from the computable
spectral moments of K„and K,.,

The parameters ~, ~z of the function I, and
of I", can be determined by matching the spec-

tral moments of the model functions and those of the
X'",Y'" given by Eqs. (26) and (27); the moments of X
and Y are called Mz'„' and M~„', respectively. We give
here the first three moments of X which are readily ob-
tained from Eq. (26) and Refs. 42 and 32(a),

~+I, I+1 dR+ — B V —V dR,
2p

(29)
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f, Iv, I III L(L+1) I 2 L(L+1) I L (L+1) z gu+gv 3

V'+, V', g V+,V, (E)+ (E)
1 f BBIgv v gv 'u'

2BBII v u gu' u'
d3R 2 fBBIIgu gu

p 2 2 p 2

~+1 ~2
II I (M)+ (M)

p R R 2R

+—f (B') + B' ( V —V )
" " d'R+ —fBB'( V' —V') ' " d'R

p 2 p
(30)

(c) ] (c) (c)M»„———,(M,„'.„+M, '„.„), (31)

and similarly, with the plus sign replaced by a minus, for
M&'„'. Once the Mx'„' and Mz'„' are obtained, the functions
X'"(co), Y"(cv) and thus K,' (cv) and F(„"(cv) can be
modeled with the help of familiar profiles I, I" that de-
pend on three parameters. Existing model profiles are
usually normalized so that their zeroth moment equals
unity. In this case,

X(cv) = I (cv)M»() . (32)

The remaining two parameters of I, ~, and ~2, are deter-
mined by solving the equations

00 Mx 1I (cv;7(72)co dcv=
—00 Mxo

' (33)

00 Mx2
I ( Cd; 7 I 72 )Cv d Cv =

—00 Mxo
(34)

As mentioned above, Y(cv) may be modeled with the help
of a function

Y(Cv) =—I"(C0;7',72)M„() .

In this case, we get

The moments Mz„) of Yare obtained from similar expres-
sions simply by changing the signs of all g„, g„' ', and
g„' ' that appear in Eqs. (28)—(30), so that we need not re-
peat the expressions here. We note that the reduced mass
was designated )M, B is short for B,'„'(R), and V, and V,
are the vibrational averages, Eq. (17), of the isotropic in-
teraction potential of initial and final states, respectively.
Superscripted Roman nurnericals I, II, etc. mean first,
second, etc. derivatives with respect to R. The radial dis-
tribution function g =g(R) depends on the interaction
potentials V„,V„. and is thus subscripted like the poten-
tials; the low-density limit of the distribution function
will be sufficient for our purposes. The functions g' ' and
g' ' are the same as Gg and GM of Ref. 42. The notation

ff (R )d R means 4m f f(R )R dR as usual.

For each profile K„'„"(cv), the spectral moments M„", .„,
with n =0, 1,2, can be calculated from a quantum or
semiclassical formalism as described elsewhere; "' see
also Refs. 42 and 43. From Eqs. (26) and (27) it is obvi-
ous that these are related to the Mx„according to

I co;7 ~72 co dco=6 (36)

I (Cv;7)72)Cd dCv=
—00 Myo

My~
I ( cv; 7)72 )cv d cv =

Myo

(37)

(38)

IV. NUMERICAL COMPUTATIONS

For the H2-He systems, an accurate ab initio interac-
tion potential exists that specifies the variation with the
vibrational coordinate rH . That potential has been used

2

to compute exact quantum profiles in close agreement
with existing rneasurernents of the RVCIA spectra of the
fundamental band (v =0, v'=1). ' Such spectra can be
computed from theory if each line profile is calculated
directly from the quantum formalism at both positive and
negative frequency shifts [i.e., without computing the
profile at negative shifts from Eq. (19) as was done for the
RTCIA spectra in order to save computer time]. Alter-
natively, the "red" wings of the profiles can be obtained
from the "blue" wings with the help of Eq. (20). Such
computational results will be briefly called "exact"
profiles.

For the fundamental band (v =0~v'=1), we have
computed over a range of temperatures from 18 to 7000
K the lowest three spectral moments M,',".„and M, ",.„of
the exact profiles K,',"(co). For this purpose, we used the
sum formulas given else~here that account for the U

dependence of the interaction potential. The lowest three

which determine 7& Tp and A. The functions X and Y,
and thus K, Eq. (23), are fixed in this way from the gen-
eralized moment relations, Eqs. (28)—(30), once the mod-
els I and I" are chosen. K satisfies Eq. (20) as RV
profiles should. The only question remaining at this
point is which of the known functions I and I" to select
for an optimal representation of the exact profile, Eq.
(15). Such studies are under way and may currently be
summarized by stating that for the RVCIA profiles, the
Birnbaum-Cohen (BC) and Ko models ' ' seem to work
quite well for multipolar induction and overlap induc-
tion, respectively. We note that the left-hand sides of
Eqs. (33)—(38) are simple algebraic functions of the pa-
rameters r, and v.

,
' if BC or Ko models are chosen for the

I and I";see Refs. 30 and 31 for the details.
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moments are shown in Figs. 1 —4 for two representative
induction components: A.L =01 (isotropic overlap induc-
tion term) and 23 (quadrupolar induction term); the an-
isotropic overlap term (21) and the hexadecapolar induc-
tion term (45) are very similar to the 01 and 23 com-
ponents, respectively, and are not shown. The solid line
represents the exact quantum calculations as described in
Ref. 43 but modified to account for the v dependence of
the potential. "The dash-dot line shows the results ob-
tained with the assumption V,:—V„. (with v =0), which
neglects the v dependence. Figures 1 and 2 show the mo-
ments for the "up" transitions, v =0~v'=1, while Figs.
3 and 4 give the moments associated with the inverse
transitions, v'~v, as needed for this purpose; see Eq.
(31).

The zeroth moments are not affected by the v depen-
dence, but the others, especially the first moments, differ
substantially, the more so the higher the temperature. As
might be expected, the overlap components are more
strongly affected than the multipolar induction terms
which are more long range than the former. We note
that these moments Mp", .„,obtained directly from induc-
tion operators and potential, agree to within 1% with the
moments obtained by integrating the exact lines shapes,
multiplied by co", over frequency.

Since classical line shapes have vanishing odd mo-
ments, and since the v dependence is significant mainly
for the first moments but leaves the second moments

Myl Zp ~p 1+, 2+ —
~

rI
I

&2
I

(40)

nearly unaffected, this v dependence apparently is of
quantum nature. However, contrary to the more familiar
quantum corrections, this one is increasing with
temperature.

The first moments of the inverse transition, Figs. 3 and
4, show a steep falloff and even a change of sign (not
shown) at high temperature. That fact is related to fac-
tors such as ( V, —V, ) that occur in certain terms of the
sum formulas, and poses no problems for the purpose at
hand.

We have also modeled the AL =01 and 23 line profiles
using the formalism suggested above. For this example,
we represent the function X by the Kp shape for
A,L =01 in Fig. 5 and the BC shape for A.L =23 in Fig.
6. We take function Y in the form of Eq. (35), with I"
given by a BC function,

7I — 72 7 I 72
Y(rv) = exp rv I ac(ro )M ra, (39)

TI 7 p

where ra ——t)'t/(2kT), k is the Boltzman factor, and T is
the temperature. The parameters ~', and ~z are obtained
by solving Eqs. (37) and (38), which in the case of a BC
shape reduce to

10 10

10 10

O

O
Q)

10 10

10 10

10
10 100 1000

Temperature (K)
10000
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10

I I I I I I I I I I I I I I j I I I I I I I

100 1000 10000
Temperature (K)

FIG. 1. Spectral moments M,„'.„ofthe isotropic component
(AL =01) are shown as a function of temperature for the funda-
mental band (U =O~U'=1) (solid line). The zeroth moment
(n =0, at the bottom) is given in units of 10 ergs, the first
moment (n =1, center) in units of 10 ' ergss ', and the
second moment (n =2, at the top) in units of 10 ' ergss
Also shown are the values of the moments computed neglecting
the v dependence {dash-dot line).

FIG. 2. Spectral moments M„.„of the quadrupole-induced
component {A,L =23) are shown as a function of temperature
for the fundamental band (u =0~v'=1) (solid line). The
zeroth moment (n =0, at the bottom) is given in units of 10
ergs, the first moment (n = 1, center) in units of 10 ' ergs s
and the second moment (n =2, at the top) in units of 10
ergss '. Also shown are the values of the moments computed
neglecting the U dependence (dash-dot line).
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It is useful to introduce

X=
M~o &p

'

4My2

Myp

3M,',
Myp

1/2
6M') 9+
&oMso ro

With these, for —x —y & 0, we have

—x —y
27p

1 3x +y
2&o

(42)

(43)

while for —x +y & 0, we get

—x +y
2'

1 3x —y

o

(44)

(45)

~Y2 3 3~o ~o 3 ~o+, , 3+ —,2, 2+, 2+
MYO rI I r2 I

'rl
I r2 I

( rl) ('Tp) (r2) (r2)

(41)

Relationships for the computation of the parameters
~&, v2 to model the functions I and X have been commun-
icated previously. ' The models thus obtained are re-
ferred to as the "v-dependent models. "These are plotted
in Figs. 5 and 6 using the dotted line. For the AL =01
component, this v-dependent model is nearly indistin-
guishable from the exact profile (solid line), and for the
A.L =23 component a close approximation, especially
near the line center, is observed.

Figures 5 and 6 also compare the v-dependent models
with the previously used "v-independent" BC or Ko
shapes that satisfy Eq. (19). While the former are in

agreement with the exact profiles at all frequencies, the
latter di6'er strikingly for both the isotropic overlap com-
ponent [which is the main contribution to the Q &

(J)
branch] and the quadrupole-induced component [which
generate much of the S&(J) line intensities]. Similar plots
at much lower temperature (T &100 K) reveal lesser
differences (not shown}. At higher temperature (T ~ 600
K} the equations which determine the parameters for a
v-independent modeling have no solutions if the v-

dependent spectral moments are input. "' If, on the oth-
er hand, model profiles are chosen which satisfy Eq. (19),
or if classical modeling is attempted neglecting all v-

dependences, the results do not approximate very well
the exact profiles of RVCIA spectra at high temperatures
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FIG. 3. Spectral moments M„,'.„ofthe isotropic component
(A,L =01) are shown as a function of temperature for the in-

verse transitions (v = 1~v'=0) (solid line). The zeroth mo-

ment (n =0, at the bottom) is given in units of 10 ergs, the
first moment (n =1, center) in units of 10 ergss ', and the
second moment (n =2, at the top) in units of 10 ergss . At
the higher temperatures, the first moment falls oft' steeply and
changes sign (truncated in the figure). Also shown are the
values of the moments computed neglecting the v dependence
(dash-dot line).

FIG. 4. Spectral moments M,„'.„of the quadrupole-induced
component (AL =23) are shown as a function of temperature
for the inverse transition ( v = 1~v =0) (solid line). The zeroth
moment (n =0, at the bottom) is given in units of 10 ' ergs,
the first moment (n =1, center) in units of 10 "ergss ', and
the second moment (n =2, at the top) in units of 10 ergs s
At the higher temperatures, the first moment falls off steeply
and changes sign (truncated in the figure). Also shown are the
values of the moments computed neglecting the v dependence
(dash-dot line).
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Fol (ruo) Acuolk—T
(AL)

(kL)Foi ( —~o)
(46)

for an mo for which F has decayed to one-half of its peak
value. This quantity equals unity for all profiles that
satisfy Eq. (19). For the A,L =01 and 23 components in
the fundamental band, however, this quantity is always
greater than unity and rises rapidly with temperature, as
Fig. 7 shows. In other words, at the half intensity point
the condition, Eq. (19), is violated by 10% and 22% at
low temperatures for the quadrupole- and overlap-
induced components, respectively. (The EL=45 and 21
differ by similar amounts. ) At the higher temperatures,
much more substantial violations amounting to 50% or
more are observed which can hardly be ignored.

(not shown). Spectra at the higher temperatures are of
interest for the atmospheres of cool stars and analytical
profiles employed for studies related to stellar atmo-
spheres should satisfy Eq. (20).

In conclusion, we raise the question: how badly is the
detailed balance condition, Eq. (19), violated in the fun-
damental band of H2-He pairs? Figure 7 provides an
answer. For the A,L =01 (overlap) and 23 (quadrupolar)
components, from exact-line-shape computations we
determine the quantity
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FIG. 6. Spectral profile of H, -He complexes, arising from

quadrupolar induction in the fundamental band of hydrogen at
298 K. Shown are the exact profiles (solid line), the v-dependent
model representing the exact profile (dotted line), and the famil-
iar BC profile which satisfies Eq. (19) instead of Eq. (20) (dashed
line). For comparison, we also show the BC profile obtained
from U-independent moment calculations (dash-dot line).

V. CONCLUSION

In general terms as well as by the example of the fun-
damental band of H2-He pairs, we have demonstrated
that commonly used model profiles exhibit a symmetry

which is not consistent with that of RVCIA profiles. We
observe a close representation of the exact quantum
profiles of RVCIA spectra if model functions of the prop-
er symmetry are constructed according to simple pro-
cedures given. The modifications of symmetry described
are of a special significance at high temperatures (stellar
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FIG. 5. Spectral profile of H2-He complexes, arising from
isotropic overlap induction in the fundamental band of hydro-
gen at 298 K. Shown are the exact profile (solid line), the U-

dependent model representing the exact profile (dotted line,
nearly indistinguishable from the exact profile), and the familiar
Eo profile which satisfies Eq. (19) instead of Eq. (20) (dashed
line). For comparison, we show the Eo profile obtained from U-

independent moment calculations (dash-dot line).
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FIG. 7. The parameter Q [Eq. (46)] as a function of tempera-
ture which shows the degree of validity of the commonly used
detailed balance equation, Eq. (19), for the fundamental band of
Hz-He. If Eq. (19) were valid, Q should equal unit at all temper-
atures. The test is made at a frequency mo where the intensity of
the "blue" wing has fallen off to one-half of the peak intensity.
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atmospheres) in all vibrational CIA bands, especially for
the overtone and hot bands. For H2-H2 pairs, indeed for
almost any complex involving at least one molecule, simi-
lar results are to be expected, but due to the lack of an in-
teraction potential for hydrogen pairs that accurately ac-
counts for the vibrational dependences, no such computa-
tions are shown at this time. The results of this work are
significant for the modeling of planetary and stellar atmo-
spheres containing molecular hydrogen, and for the anal-
yses of RVCIA spectra in general.
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