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Interference efFects in electron-ion recombination. II. Resonance and direct channels
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The Feshbach formalism is employed in a study of the effects of interference between direct radia-
tive recombination and dielectronic recombination. A general result is obtained, valid for an arbi-
trary number of interacting resonances and an arbitrary number of coupled continua. The results of
explicit model calculations, based on the pole approximation, are described, and comparison is
made with earlier, related work.

INTRODUCTION M "=(@ttRDQ%'g) . (2)

A recent flurry of theoretical activity has resulted in an
improved understanding of the relationship between
dielectronic recombination (DR} and direct radiative
recombination (RR). It has been pointed out that, in gen-
eral, a coupling exists between the probabilities for the
decay of doubly excited ionic states d into Auger (d ~i)
and radiation (d ~f ) channels. This coupling is a conse-
quence of the existence of a direct path from initial to
final states; i.e., via the RR channel (i~f). Several
methods have been employed to illustrate these connec-
tions, ' and a unified theory of DR and RR has been
suggested. Calculations of fluorescence yields modified
by interference with the RR channel have been per-
formed for the doubly excited 212l' states of He-like and
Li-like ions. It has been known for some time that simi-
lar corrections exist for the photoionization probability.

In this paper (second of a series), we derive the com-
bined probability amplitude for DR and RR, denotedM, using the projection-operator formalism of Fesh-
bach, as adapted for DR calculations by Gau and
Hahn. The results of explicit model calculations, based
on these formulas and in the pole approximation, will
also be presented. This is a continuation of work report-
ed in Ref. 10 (paper I) on interacting resonance effects in
DR. In the present work (paper II), underlined quantities
reflect an essential coupling between the RR and DR
channels.

FORMALISM

In the notation of paper I, the transition between exact
initial states qtp spanned by the operator P (one electron
free, N electrons bound, and no real photons), and asymp-
totic final states 4z spanned by the operator R (N+1
electrons bound and one emitted photon), can be mediat-
ed directly by the electron-photon dipole-coupling opera-
tor D. The RR process proceeds via this mechanism.
The RR probability amplitude is

M = (4tt RDPqtp ),
while, from Eq. (8) (paper I), the probability amplitude
for DR is

Here 4'& is an exact intermediate state vector, in a space
spanned by the operator Q (N+1 electrons in a doubly
excited quasibound state and no real photons). The prob-
ability amplitude for the combined RR and DR process
(labeled RDR) is

MRDR MRR+ MDR (3)

Equations (1)—(3) are perfectly general. However, %p
and %'& remain to be determined. As mentioned earlier,
underlined quantities reflect a coupling between the RR
and DR channels.

Ignoring all powers of RDP beyond the first in Eq. (1),
and all powers of RDP including the first in Eq. (2), one
arrives at the weak continuum electron-photon coupling
limit for M . In this limit, %z and 4& approach %z
and 4'&, respectively, where both %'z and 41& appear in
paper I. For example, when resonances are noninteract-
ing these functions are given by Eqs. (5) (paper I}and (7)
(paper I) as

%p =%p ——4p+gpPVQ%'g,

kg =%'g Gg QVP+p, ——

(4)

Gg = (E QHoQ QDRgtt RDQ —QVPgpPVQ)

If resonances interact, then both %z and 4& are altered.
In this case 4g is given by Eq. (15) (paper I).

In order to progress beyond the weak-coupling
(RDP~O) limit, we return to the Schrodinger equation
for the problem, in the form of Eq. (3) (paper I). Upon
addition of terms proportional to RDP and PDR, this
equation becomes

where V is the electron-electron interaction, Gg is the Q
space propagator, 4p is an asymptotic (one free electron
at large distances) eigenstate of PHoP, and the unper-
turbed P- and R-space propagators are

g =(E PHoP)—
g~ =(E RHoR)—
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PHoP%'p+PVQ+g+PDR %~ E——+p,

Q VP% p +QHo Q% g +QDR 0 g =E0 g

RDP+p+RDQ4g+RHoR %q E——%~,

(9)

which leads immediately to an expression for %z, the ex-
act final state, in terms of %~ and 4&, viz. ,

4~ ——(E RH—oR) '(RDP+p+RDQ%g)

gq (——E R—HoR R—DPg pPDR )

=(1 g—„RDPgpPDR) 'g~ .

Now, using Eq. (14), Eq. (12}becomes

(E —QHoQ)qlg ——QDRg~ RDQ+g

+QVP(@p+gpPVQ% z), (19)

=g~ (RDPqIp+RDQ+g } . (10)

V —= V+DRg~ RD, (13)

In the following we solve the linked Eqs. (11) and (12)
for the P- and Q-space wave functions %p and 0&. First
we obtain a formal solution, in terms of P-space opera-
tors. Matrix elements of these operator expressions are
then employed to produce an explicit solution.

Substituting Eq. (10) back into Eq. (9) yields a pair of
coupled equations for %p and 4&,

(E PHoP—}+p
——PDRg~ RDP +p

+P( V+DRgltRD)Q%'g

=PDRgR RDP%'p+PVQqIg,

(E —QHoQ) Pg —QDRgx RDQ%'g

+Q ( V +DRg g RD)P%'p

=QDRgqRDQ+g+QVP+p, (12)

where

I eq —=eq.—y (n-').~Gqp&P I
vPep,

P

(20)

where the Q-space propagator G&& is defined as

Ggp
—= (E —&PI QHoQ IP& —&PI QDRgRRDQ

I P&

&PI QvP-g, PvQ IP&)- . (21)

Note that G&~ & P I G& I P &, where G& was defined in
Eq. (6). The Q-space operator 0 ' is the inverse of an
operator 0 with elements

a,p
——5 p

—(1—5 p)Gg A p. (22)

In Eq. (22), 5
& is the Kronecker 5 and the operator A is

given by

which has a form identical to Eq. (6) (paper I), except
that g~ replaces gz, V is substituted for V, and 4z ap-
pears instead of 4z.

As per the development leading up to Eq. (15) (paper
I), the general (formal) solution of Eq. (19), when reso-
nances are allowed to interact, and for a Q-space state la-
beled by a, is

A =QDRgq RDQ + Q VPg p PVQ . (23)

FORMAL SOLUTION

%p ——4p+gpPVQ+g, (14)

with gz, the P-space propagator modified by RDP cou-
pling, given by

From Eq. (11), %p may be written formally in terms of
%'g as

From the form of Eqs. (22) and (23) it is clear that Q
mixes Q-space states via interaction with the P and/or R
space. In this context, recall that the Q-space states are
assumed to already diagonalize the Q-space Hamiltonian
QHoQ.

The Q-space propagator G&~ [Eq. (21)] can be rear-
ranged to read, in a more symmetrical form,

Ggp=(E —&P I QHoQ IP& —&P I
QDRgRRDQ I P&

gp (E PHoP P——DRg—~ PDP)—
=(1 gpPDRgRRD—P) 'gp . (15)

In Eq. (14), @p denotes an asymptotic (one free electron
at large distances)'P-space state, modified by RDP cou-
pling, and related to Nz by

—&P I QvPg, PvQ
I P&

—&P I
QDRg„RDPgpPVQ

I P&

—&P I
QVPgpPDRg~RDQ

I
P&)

EXPLICIT SOLUTION

(24)

4p ——(1 gpPDRg„RDP) —'4p . (16)

4z ——(1 gRRDPgpPDR) 4—g (17)

The R-space propagator modified by RDP coupling [ana-
log of Eq. (15)] is

An analogous expression connects 4z, the asymptotic
(one photon at large distances) R-space state modified by
RDP coupling, and 4z, the asymptotic R-space
unmodified by RDP coupling; i.e., &i

I
0 p=% p =g (co ) J(4 pi+gpj&j I

vQ Pg)
J

(25}

in terms of the still unknown function 4p~. =&j I 4p
[given by Eq. (16)] and the as yet unknown vector 4&
[solution of Eq. (12)], where the P-space operator co has

Returning to Eq. (11),we now discretize the continuum
electron momentum. Then, instead of Eq. (14), one has
for the (ith element of the) vector %p
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the elements

co; =8;,.—(1—5, )gp, A,
;~

.

The operator k is given by

A, =PDRgRRDP

and

gp, =(E——(i
I
PHoP

I
i &

—(i
I
PDRgR PDR

I
i & }

(26)

(27)

(28)

where the Q-space propagator is now [a generalization of
Eq. (21)]

Ggp= E &—pl QHOQ I p& —&pl QDRgRRDQ
I
p&

—XX &Pl QvP I i&(~ ');,gp, &J IPvQ IP&

(36)

and the Q-space mixing operator 0, corrected for RDP
coupling and coupling between P-space states, has the
elements

Note that, in general, g p&(i I gp I
i &. In Eqs. (25) and

(26), i labels both the target state (there may be more than
one) and the discretized momentum of the continuum
electron.

From the form of Eqs. (26) and (27), it is clear that co

mixes P-space states via interaction with the R space.
We emphasize that the P-space states are assumed to al-
ready diagonalize the P-space Hamiltonian PHOP.

We can now easily solve Eq. (16) and obtain for the
asymptotic P-space wave function modified by RDP cou-
pling

—1 —1
@Pi y (~ ) jgpfgP' +'PJ

J
(29)

where gp; = (i
I gp I

i &, 4p, = (i
I 4p, and both gp and

4p are free of RDP coupling; gp was defined in Eq. (7),
while 4p was defined following Eq. (5). A similar expres-
sion exists for @iaaf

——(f I
4„,the solution of Eq. (17),

—14Rf =g (V )fhgRhgRh @Rh
—1

h

where g„„=( h
I g„ I

h &, 4„h = ( h
I 4a, gii was defined

in Eq. (8}, and 4„was defined preceding Eq. (17). Note
that Eq. (30) implies a discretization of the emitted pho-
ton momentum. The R-space propagator g„& is defined
as

Q ii
——8 ii

—(1 8 ii)G—g A ii .

In Eq. (37), the operator A is given by

(37)

A=QDRg„RDQ+Q Q QVP
I
i &(co ');.gp (g I

PVQ .

x Ggii(P I
QYPco '4p (39)

with 4p given by Eq. (29).
The probability amplitude for RDR, corrected for in-

teracting resonances, interacting continua, and RDP cou-
pling, is given by Eqs. (1)—(3), with ~lip taken from Eq.
(39) and +& from Eq. (35); i.e., in this most general case,
M " is the sum of the probability amplitudes for RR
and DR, given individually by

M "= (4„RDPco '4p&

+yyyy„&C„RDPI &( -'),,g„
i j a P

(38)

From Eqs. (25) and (35), the general solution for %p is
now

q'p =X(~ '};, +pj+gpf&J IPvQXQ l~&(Q ').~
J a P

gith (E —(h
I
RH——OR

I
h &

—(h
I
RDPgpPDR

I
h & )

The elements of the matrix y are

vfh 8fh (1 8fh )gRfP~h

where

p=RDPgpPDR .

Now Eq. (19) becomes

(E—QHO Q)%'(i ——QDRga RDQ%'g

+Q Q QVP
I
i &(co ');,.

x (@,+g, (j I
PVQ%' ),

with solution

%'g ——g (Q ') pG(ip( QVPco '4p,

(31)

(32)

(33)

(34}

(35)

x&j IPvQ I~&

X (0 ) pGgp(P I
QVPcl7 4p &

(40)

M =g g (4~RDQ
I
a&(Q ') ~G(,)i

a P

x&plQvP -'e, &, (41)

where 0 is an operator [Eq. (37)] which mixes the Q-
space states among themselves via interaction with the P
and/or R spaces, and co [Eq. (26)] mixes the P-space
states among themselves via interaction with the R space.
Again, we point out that the Q-space states and the P
space states are assumed to already diagonalize the Q and
P space Hamiltonians QHOQ and PHOP, respectively.
The propagators gp and gz, both modified by RDP cou-
pling, will be discussed further in the following section.

If only one resonance participates in the RDR process,
then Q=Q '=5, where 5 is the Kronecker 5. However,
even if just one P-space target state participates, then
still, in general, co&5, since the continuum electron
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momentum has been discretized. It is only if one makes
the approximation that just a single continuum electron
momentum participates, as well as a single target state,
that co=co '=5. We remind the reader that if RDP =0,
then co =5, also as in paper I.

DISCUSSION

We begin by pointing out some of the more important
features of the formulas derived in the preceding section.
Transition rates for autoionization, stabilizing radiative
decay, radiative recombination, and photoionization are
defined. Then the pole approximation is introduced, and
several explicit examples are considered. Finally, the re-
sults of a model calculation are described.

If RDP =0, then from Eq. (18) (paper I), the full-width
I „,(a) of an isolated resonance state labeled by a may be
defined as

I (i)=2m(i
~

DR5(E RH—R)RD
~

i)
=2m g f dk (i [D [ f )5(E ef)—(f )D [i)

f
=gk Df

f
=g ARR(i~f),

f
rp, (f)=2~(f ~

DP5(e PHOP—)PD
~ f )

=2ng fdk;(f ~D ~i)5(E —e)(i ~D ~f)

(47)

The imaginary part of gp is proportional to I R&, the total
RR transition rate correct to second order in RDP, while
the imaginary part of g„ is proportional to I p&, the total
direct photoionization transition rate, with an identical
limitation. That is, for a P-space state labeled by i, and
an R-space state labeled by f,

I „,(a) =21m(a
~ G&

'
~

a)
= —21m((a

(
DRg„RD

(
a)+(a

(
VPgpPV

(
a) )

—=g k;DJ;

=g Ap, (f~i), (48}
=1 „(a)+I,(a), (42)

I „(a)=g A„(a~f),
f

(43)

where I „and I, are the total radiative and autoioniza-
tion transition rates, respectively, defined as

where k, =[2(E—e;)]'~ and k =(E —ef) are the elec-
tron and photon wave vectors, respectively, with c; and

cf denoting the initial- and final-state ion energies.
A detailed balance relationship connects the state-to-

state transition rates ARR and Ap&', viz. ,

I,(a}=g A, (a~i),
k; A RR(i ~f)=kr A pt( f +i) . — (49)

A„(a f)=kr ) (f ~D ~a) )
=k D f,

i)=k, [(i
~

V ~a) ]'=kv'. ,

(44)

with the state-to-state radiative and autoionization
widths being given by

Similarly, the total transition rates are connected by

g k; I RR( i) =g k 1,(f ) .
f

(50)

For later convenience, we now define the generalized
transition rates I RR(i,j) and 1 p&(f,g) as

Physical rates are obtained from Eq. (42) by taking the
on-shell limit; i.e., E~E; =Ef, where E; and Ef are the
total initial- and final-state energies. However, if
RDP&0, then from Eq. (24) the full width of the reso-
nance, modified by RDP coupling, becomes

RR(/, J):—p k),D,fDf
f

I p,(f,g) =g k, DJ;D,
(51)

I „,(a)= —21m((a
~
DRgaRD

~
a)+(a

~
VPgpPV

~

a) )

—2 1m( (a
~
DRg„RDPg PV

~

a)
+(a

~
VPgpPDRg„RD

~
a)), (45)

See Eqs. (53), (62), and (64) for a definition of the radia-
tive and autoionization widths modified by RDP cou-
pling, I „and I „respectively.

Now, due to the RDP coupling, both gp and gz have
finite imaginary parts; viz. , from Eqs. (7), (8}, (15), and
(18),

gp ——[ E PHOP PDR (Reg—„)RDP—

+i vrPDR 5(E RHOR )RDP]—
(46)

gz ——[ E RHOR RDP(Reg —
p )PDR—

+i mRDP5(E PHOP)PDR]—

and the "normalized" transition rates according to

Wa&(i, i) =k; I RR(i),

Wpt(f, f)=krI pt(f),

WRR( i,J }=k, rRR( i,j),
Wp, (f,g):k I p,(f,g) . —

(52)

The stabilizing radiative and autoionization rates
modified by RDP coupling, I, and I „may now be
defined. However, it is first necessary to rewrite Eq. (45),
so that the asymptotic initial and final states modified by
RDP coupling (4 p and Nzf ) appear explicitly. This
amounts to a unitary transformation on the basis states
4 p and 4zf, contained in the P and R spaces. We ~ill
denote these "diagonalized" state spaces as P and R; i.e.,
P projects onto the 4p and R projects onto the 4gf Us-
ing Eqs. (15}—(18), Eq. (45) becomes
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I, ,(a) = —2 Im( (a
~
DR~a RD

~

a ) —( a
~

VPgpPDR~a RDPgpPV
~

a ) }

—2 Im((a
(

VP~PPV
)
a ) —(a

)
DRgaRDP~PPDRga RD

(
a ) }

—2Im((a
(

VPgpPDR~aRD
(
a) —(a

)
DRgaRDPgpPDR~aRDPgpPV

(
a) )

—2 Im( ( a
(
DRg„RD~PPPV

(
a ) —( a

)
VPgPPDRgR RDP~P PDRga RD

(
a ) }

=-I „(a)+I,(a) . (53)

The stabilizing radiative width modified by RDP coupling
I „ is given by the first and third lines of Eq. (53) (where
the R-space states appear explicitly}; the autoionization
width modified by RDP coupling I, is given by the
second and fourth lines of Eq. (53) (where the P-space
states appear). In the following section we evaluate these
functions in the pole approximation.

We conclude this discussion by noting that evaluation
of Eqs. (40) and (41) for M" "is complicated by the fact
that matrix elements of the electron self-energy operator
DRg&RD have a formally infinite real part. The removal
of this unphysical singularity will require careful treat-
rnent, with techniques borrowed from quantum electro-
dynamics;" e.g., subtraction of a mass counter term and
the effective introduction of a cutoff in photon momenta
due to virtual pair creation. Therefore the actual evalua-
tion of M" " for a specific case must either be deferred
until the QED issues have been resolved, or invoke the
"pole approximation, " as per the work of Refs. 3-6 and
12. In the pole approximation, we set to zero the real
part of the P- and R-space propagators gp, gp, gz, and

gz ~

POLE APPROXIMATION

In the following, we mean by the "pole approximation"
that the real parts of all P- and R-space propagators are
set equal to zero. Also, as in the preceding section, the
continuum electron momentum is understood to have
been discretized.

We begin by considering the matrix elements of the P-
and R-space propagators modified by RDP coupling gp
and g„. From Eqs. (7), (8), (15), and (18), and using a
Lippmann-Schwinger equation, we can write

&i
I gP I J &=g„5;,+gPi QDfgRf QDfk&k I gP I J&

k
(54)

&f IgR Ig & gRf5fg+gRf QDfgPi QDih&i Ig~ lg& .
I h

Then, using Eqs. (51) and (52), and in the pole approxi-
mation,

J = ( ik—;/2)5, , —( —,) W„„(i,i)(i
~ gP ~ J

——,'g(1 5i„}—W„„(i,k}(k )gP ) j), (55}
k

with solution

&i ~gP ~
j&=(—ik /2)(~ )"/[1+W«(j,j)/4], (56)

gg ——gg +gg RDPg pPDRg

gp =gp +gpPDRg„RDPgp

to write

&f I gR Ig& gRf 5fg+&Djt&i IgP I J &D,, gRg
I

&i
I gpIJ& gpi 5ij+XD f&f I gR lg)Dgj gpj

f

(60)

(61)

so that the matrix elements of gz may be obtained from
those of gp, or vice versa.

Now, for the autoionization width modified by RDP
coupling, one finds from Eq. (53), in the pole approxima-
tion, that

where co was given in Eq. (26). In the pole approxima-
tion, co becomes

co,j=5,"+(—,')(1 5,j)W—„R(i,j)/[1+ W„R(i, i)/4] . (57)

An analogous expression exists for (f ~ ga ~ g ); viz. ,

(f ~gii ~g)=( —ikr/2)(y ')fsl[1+W»(f f)I4],
(58)

with y being given by Eq. (32). In the pole approxima-
tion, one has that

vfg —5fg+(g)(1 —5fs)W»(f g)I[1+W»(g, g)/4]

(59)

Alternately, one may make use of relationships between

gp and gg,

I,(a)= —2 Im((a
~

VP~pPV
~

a) —(a
~
DRgji RDP~pPDRgR RD

~
a) )

= g g V M. (co ');k; g(a) ');i, Mi, Vi,
I J k

~ —,
' g g kyD~f QDfjMj(co '}J;ki g (co ');i, Mi, g kyDi, gDgo (62)

[the fourth term in Eq. (53) is zero in the pole approximation], where

M, —= 1/[1+ W«(i, i)/4] . (63)
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Similarly, for the stabilizing radiative width, one has from Eq. (53) that

I „(a)= —2Im((a
~
D~RzRD

~

a) —(a
~

VPg~PDR~&RDPg PPV
~
a) )

= QQD~gNg(v ')gIkr g(v ')IpNp, D~~

+-'ggk; V«QDgNg(v ')gIkr g(v )/~N~ gkJD~~ VJ-.
J

(the third term is zero in the pole approximation), where

NI:—1/[1+ Wpi( f f)/4] .

(64)

(65)

For certain kinds of problems it may be that the P space is effectively much smaller than the R space, or vice versa.
In the first instance, it would be expedient to rewrite Eq. (64) in terms of co instead of y. That is, using Eqs. (45), (51),
and (53), Eq. (64) may be written as

I'„(a)= g krD~I+ ,' g k; V«—gkrD~~Q k)D/J VJ- ——,
' g krD-/g Dpk;M(g(ci) ');1 g krDJsDs-

——,
' gk, V«gk'„D~~ggDI, (~ '),„M„k,QD„sk'„gkiDgiVla

+ —,', gk D IQD~k;M;g(cg '};.gD k QDskkkMkg(co ')kI+k Dg, D~
I h

+~ gk; V«gk'rD~/QDIJk&MJ(a) ')Jk gkrDks QDsikiMI g(co ')I- QDp„pkr QDq„k„V„-.
m h n

(66)

Similarly, Eq. (62) may be rewritten in terms of y instead
of co.

FIRST WORKED EXAMPLE

We proceed to evaluate the full RDR probability am-
plitude M, as given by Eqs. (3), (40), and (41), for a
single P-space state, a single Q-space state (0=5},and in
the pole approximation. In addition, we assume for sim-
plicity that only a single continuum electron momentum
participates. We point out that, in this simple case, sums
over i reduce to a single term (co=5). The various terms
appearing jn M can now be evaluated as follows.

From Eq. (29), the initial state modified by RDP cou-
pling is

in Eq. (13) and appearing in Eqs. (13), (40), and (41), be-
come

(a~ V~i)=(a~ V+DRg„RD ~i)

= V; —g(ikr l2)D /D~
f

= V, i Fa„—(i, a)/2

(72)

The total decay width in the Q-space state a is, from Eqs.
(69) and (71),

I «,(a)=I „(a)+I,(a)

=I A, ( a~i) +I „(a)+,'[1„(a)—W„R(i,i)
p ——4p; ——4z;M

The P- and R-space propagators are

(67)
k, I ~„(i,—a) ]IM,

(i
~ g~ ~i) =( ik;/2)M— , ,

(68)
(f ~g~ ~g)=( ik /2jf5I —(k;l4)M;k DI;—D; ].

M "=D~M, (ik, /2)DpV, Gg —V ™ (74)

M and M "can now be written down immediately as

From Eq. (62), one has for the autoionization width that
M =Df Gg V M- (75}

I,(a)=[A, (a i)+( ,')k, I ~„(a—,i) ]M,

where

(69)
where the Q-space propagator is

G&-=[E e+(i/2—)I „,(a)] (76)
I ~ (a i):—gkrD ID~

f
For the radiative width, from Eq. (66),

(70)
and the shifted eigenvalue c is, in the pole approxima-
tion, from Eqs. (23) and (70),

I „(a)= I „(a)+k;I z, (a, i) (M, —1)/WRR(i, i)

+ ,' A, (a-i }WR—„(i,i)M; (71)

e =e —(k, /2)V«M, +k D,IDI
f

—( —,')[k; A, (a~i)]'~ M;I z„(i,a) . (77)

Matrix elements of the interaction operator V, defined The RDR probability for this example is then
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P (i a)=g(2m. )
' f dk f dk,

~

M +M ~'5(E —E, )5(E —Ef)
f
y k2

~

MRR+MDR
~

2

f
=k, M;

~ G& ~ g k
~
D&[E —s +(i/2)[A, (a i)+I „(a)]I+D&( ik—; l2)V; V;M, +Df V,

~

f

This expression can be rearranged to read

P" (i ~a)=M; G& ~
( [ WRR(i, i)(E E—} +2I R„(i,a)[k; A, (a~i)]'~ (E —e }+A, (a~i)I „(a)J

+ —,'I „(a)[W (i,i)I „(a) k—, I „„(i,a)]) .

(78)

(79)

Note that, in Eq. (79), e appears and not E . Equation (79) is the final form of the RDR probability, as determined in
the pole approximation, for the case of a single Q-space state, a single P-space state (and a single continuum electron
momentum), but an arbitrary number of R-space states.

If, in addition to these restrictions on the Q and P spaces, we stipulate that the R space contains just one state (la-
beled by f ), then the last line of Eq. (79) reduces to zero, and Eq. (79) becomes

P (i~a)=M,
~ G&

~ [ WRR(i, i)(E —E ) +2[k;ARR(i~f )A„(a~f }A,(a~i)]'~ (E —E~)

+A, (a~i)A, (a~f )) . (80)

Now Eq. (80) agrees exactly with the result quoted in Eq.
(5a) of Ref. 4, which was based on a model calculation,
with one initial, one intermediate, and one final state.
Similarly, the autoionization and stabilizing radiative
probabilities modified by RDP coupling [Eqs. (62) and

(66), respectively] reduce in this limit to the results quot-
ed in Eqs. (12a) and (12b) of Ref. 3 and Eqs. (81) and (82)
of Ref. 12. The asymptotic P- and R-space states
modified by RDP coupling, Eqs. (29) and (30), also appear
in Eq. (5a) of Ref. 3.

A real RDR process well described (in the pole approx-
imation) by Eq. (80) is

ls +k, ( l, = 1 )~2pns ~ 1sn 's +y,
(81)

ls +k, ( l, = 1)~ 1sn 's +y

for n )2, provided that n values are small enough, so that
resonances are truly isolated, and if n =n '. If n &n ',
then Eq. (79) must be employed. It seems worth reem-
phasizing that even though the 2pns intermediate states
in Eq. (81) carry single particle labels, the states are as-
sumed to be configuration-interaction (CI) states which
diagonalize QHOQ. Similar remarks apply to the lsn's
final states which are assumed to diagonalize RHOR, and
to the 1s+k, /, initial states which are assumed to diago-
nalize PH0P.

The total RDR probability for the process of Eq. (81),
when resonances do not interact and do not overlap, is
obtained then as

pRDR(. ) y pRDR( ~

)

where P (i ~a) is given by Eq. (80) if R contains just
one state, and by Eq. (79) otherwise. This is a generaliza-
tion to the RDR process of the so-called isolated reso-
nance approximation (IRA), familiar from pure DR cal-
culations [see Eq. (12), paper I].

+QDf Gg V~;M;
~

(83)

SECOND WORKED EXAMPLE

If resonances are interacting, then the analog of Eq.
(79) for P " can be obtained from Eqs. (3), (40), and
(41}. For this purpose, matrix elements of the Q-space
mixing operator Q, from Eq. (22), are required. In the
pole approximation, and for a single P-space state and a
single continuum electron momentum (co=5), these ma-
trix elements are

Q p
——5 p+ (1 5p)(i I2—)Gt2~

X g krD fDfp+k V MV p (84)'
. f

which becomes, for the process of Eq. (81),

Q p 5p+(1 5p)(ik, ——l—2)Gg V, M, V p,

where

V, = V, —(i/2)[ARR(i~f ) A„(a~f )]'

(85)

(86)

with a similar expression holding for V;&.
The probability amplitudes for RR and DR are now

In the special case where resonances are overlapping
while being at the same time strictly noninteracting, then
instead of Eqs. (79) or (80) one has that

p" "(i)=k M gk
f

+( ik, l2)D—lM, g V,,Gg
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MRR D

&& 1+( —ik;/2) g g V,.p(Q ')p Gg V;M;
P a

Q„„.=5„„.+(1—5„„.)(i /2)G&„VoMon n'

(93)

M =+QDfp(Q ')p Gg V;M;,
P a

(87)

(88)

—(iMoVol2)( Waco/n )'

yg & —3/2g
~

2

n'
(90)

where the quantities appearing in Eq. (90) are defined ac-
cording to

where the Q-space propagator 6& appears in Eq. (76).
The RDR probability, for the ith initial state, is therefore

P "(i)= g(2m) J dkr Jdk; ~M
"

f
+M "

i
5(E —e; )5(E—ef )

(89)
f

with M"" given by Eq. (87) and M given by Eq. (88).
We now model this example by defining the unper-

turbed stabilizing radiative, autoionization, and first-
order normalized radiative recombination transition
rates, such that (a) A,o—:A „(2pns ~ 1sn 's)5„„; (b)

A, o/n = A, (2pns ~ ls +k, l, ); and (c) Wrt„oln—=k;Aaa(ls+k, l, ~lsns); where A„o, A, o, and Waao
are all constants which characterize the model. When
8 RRp =0, the model leads to the values of the DR proba-
bility displayed in Fig. 1 of paper I. We referred to the
method of paper I as the multiple interacting resonance
approximation (MIRA). It did not include the eff'ects of
the RR channel.

Now from Eq. (89), and for the arbitrary modeling con-
stants A,o, A, p, and WRRp, the RDR Probability be-

comes, for the single initial state i,

PttDa(;) —M~ g ~

(W /n3)'~~+ A'~2V g

Results of calculations based on this model are
displayed in Figs. 1 —2, for 2&n &7. In generating this
data we interacted states with n between 2 and 11. As in

paper I, we assigned the values A, p
——0.2 ' and

A,p
——2.0X10 a.u. , for Z =1. In order to illustrate the

dependence on O'RRp, we examined the very wide range,
0& 8'RRp &40 a.u. However, for the values of A, p and

A,p chosen, a physical choice for WRRp would be —10
a.u. See the Appendix for a discussion of the connection
between A„A„,and WRR.

We also used this model to simulate RDR for He+'
and Li+ ground-state targets. In Fig. 3 we plot, P
versus E, for 2&n &5, when A, p

——0.2, A„p ——1&10
8'RRp ——3X10 a.u. , and Z =1. These are physically
reasonable parameter choices for the He+' ion. For com-
parison, a plot at 8'RRp ——0 also appears. In Fig. 4 we

plot again PR "versus E for He+', but confine our atten-
tion to details of the 2p2s resonance. Four plots appear
in this figure: one describing the isolated resonance ap-
proximation (IRA), one describing the MIRA (paper I),
one describing the RDR process without interacting reso-
nances, and one describing the full RDR process includ-
ing interacting resonances. Since this was a model calcu-
lation, we did not undertake a diagonalization of the
QHoQ and RHoR Hamiltonians in the 2pns and lsn's
bases.

To illustrate the Z dependence, in Fig. 5 we plot cases
analogous to those displayed in Fig. 4, but for the Li+
ion. Parameter values were taken to be A, p

——0.2,
A„p=5)& 10 8 RRp=6&( 10 a.u. , and Z =2.

From the figures it seems clear that the RR process
produces significant alternations in the DR spectrum
only at very low n and very low Z, for this b,n&0 excita-

0,10

0.08—

Mp=1 1+( I/4) g Waao/tl
n=1

RDR
O.OB—

= 1 /( 1 +0.30Waao )

Vo—:A o (i/2)(Waco A o)

g„=g (Q 1)„„Gg„n'. .
n'

(91)

0.04—

0.02—

I
S

I
I

Gg„——[ E —s„+(Mo /2n ')( A.o A o WRao )

+(iMo/2)(A„o+ A, o/n )] (92)

where c„—= —Z /2n is the unshifted energy of the cap-
tured electron in the Q state labeled by n. For simplicity,
the energy of the excited (struck) electron in the Q state is
set equal to zero. This only serves to shift the zero of to-
tal energy E. From Eq. (85), matrix elements of the Q-
space mixing operator are

0.00 I I I I I I I

—0.18—0.14 —0.12 —0.10 —0.08 —0.06 —0.04 —0.02 0.00

E (a.u.)

FIG. 1. I'" " vs E for the model described in example 2,
where Z = 1 A p=0 2 A„p=2 OX 10 Wggp =0 ( )

~gyp =2 X 10 ( ———j, and Wggp =2X 10 (. . . ). Res-
onances 2pns, with 2 (n (7, appear.
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FIG. 2. Same as Fig. 1, but for gRp ——.r W =0.2(
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wever, thehis re ion of parameter space, howe

tions introduce yd b interacting resonances are a
'

imum for low n.

ls+k, (1,=1,3}~2pnd ~lsn'd+y,
ls +k, (l, =1,3)~ lsn'd +y

(94)

for n & 3. Here our description inc u1 des the effects of in-

min

THIRD WORKED EXAMPLE

e our eneral results also apply to cases in-
volving more than one P-space partia wav
i.e., the process

p" " s E for the 2p2s resonance oof the model de-FIG. 4. P "' ",
A 02, A„=1X10-'in example 2, where Z =

),
RDR without interacting resonances
and IRA ( —- ——).

en the P-s ace states of l, =1 an l =3,-p
tion with the R-space, as we as in

th th Pthe -s ace states via in era
d (41) ar till lid, b t
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ions (3), (40},an

rs 0 and co appearing in
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at in s ite of singe par iction to the fact t a, in p'
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PHoP
Matrix elements of the P-space mixing operator co, in

the pole approximation, appear in Eq. (57). The asymp-
totic P-space states perturbed by RDP coupling 4z are

related to the unperturbed states 4p in the pole approxi-
mation by Eq. (29).

Altogether, then one has for the total RDR probability,
in this general case, but in the pole approximation,

P = g k, /k' g QDfj (co ')~k(cu ')k, M, .

i f j k

+XX rf X rf rf X ~Dfj(~ )jk( }kl( ikkMk)via(+ )upG{?pvpm( )nllf(~ )lliMi]
a p j k I m n

+g g g QDf~(Q ') pG{?~Vpj(co ')Jk(co )k;M;
a p j k

(95)

where G& and Q p are given by Eqs. (36) and (37). Note
that Eq. (95) has a sufficiently general form that a solu-
tion may be constructed which includes a full discretiza-
tion of the continuum electron momentum. In Eq. (95),
for the example being considered, a and P range from 2
to ~, while i,j, . . . , n take on the values 1 and 2. The
results of explicit calculations for real systems, based on
Eq. (95), will be described at a later date.

SUMMARY

We have described here a comprehensive formalism for
the calculation of the combined radiative recombination
(RR) and dielectronic recombination (DR) probability
amplitude, for the case of a continuum electron interact-
ing with an isolated ion. The combined recombination
process was labeled RDR. Feshbach notation was em-
ployed throughout. This is a continuation of studies of
interfering resonance effects in DR begun in paper I. '

The formalism explicitly includes the effects of in-
teracting continuum channels, as well as interacting reso-
nances. To this extent, it represents a complete solution
of the single electron, single ion recombination problem.
However, important QED questions such as electron
self-energy and other relativistic effects are not addressed.
In this sense, the solution is still incomplete.

General results, in the form of matrix elements of func-
tions of operators, are contained in Eqs. (3), (40), and (41).
An explicit reduction of these general expressions is ob-
tained in the pole approximation, and appears as a for-
mula for the RDR probability (P ), in Eq. (95).
Values of P" for the relatively simple case of a single
continuum channel are derived and given, in the pole ap-
proximation, in Eqs. (87}—(89). A model calculation is
described, the results of which may be found in Figs.
1 —5.

Examination of the structure of the RDR equations,
and the results of our model calculations, suggest that in-
terference between the RR and DR channels leads to im-
portant changes in the RDR probability only for low-
lying intermediate states, and only for small Z values, for
An&0 excitations. On the other hand, interfering reso-
nance effects are expected to be important only for rela-
tively high-lying resonance states. The situation is quite
different for An =0 excitations. See the Appendix for
further discussion.

Part of the approach described herein properly falls
under the heading of configuration-interaction (CI}
theory. However, as emphasized throughout this paper,
and in paper I, the CI we invoke mixes resonance states
solely via interaction with the initial- (continuum elec-
tron) and/or final- (emitted photon) state spaces. Similar-
ly, the initial states are mixed only through interaction
with the Anal-state space. Thus the Ci we describe is akin
to that introduced by Pano. The apparent equivalence
of our approach to that of multichannel quantum-defect
theory' has been discussed in paper I.

APPENDIX

We summarize here essential information concerning
the relationship between A„A„, and 8'z~. In an LS
averaged approximation, and for the reaction of Eq. (81},
one has for the stabilizing radiative probability

A„(2p ls+y)=(4a /3)(r2& i, ) (s2 —si, ) (Al)

as obtained from Eq. (44}, where a is the fine structure
constant, &2p ] is the dipole matrix element, and e2p and
c.&, are the energies of the electron before and after the
transition. All quantities are in a.u.

The autoionization probability, in the Bethe approxi-
mation, is

, (2pns ls +k, l }=(4k, /3

x
/

(ns fr '[k, l, ) [

=(4k, /3rD)(r~~ „)Z

X (0.5k, —e„, ) ( rk, i, „,)

from Eq. (44), where Z is the target charge and, at the
second step, we have made use of an exact relationship
between matrix elements of Coulomb functions. ' In Eq.
(A2), and in the following, the continuum wave functions
possess plane-wave normalization.

The normalized state-to-state radiative recombination
probability, correct to second order in RDP, is

Waa(k, l, ~ns+y)=(4k, a /3)(rk, i, „,) (0.5k, —e„, )

(A3)
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from Eqs. (47) and (52).
One then has the following approximate relationship

between the normalized state-to-state radiative recom-
bination, stabilizing radiative, and autoionization proba-
bilities,

P'« —(4rt6Z'/3)(e, —e„)'(0.5k,' —e„, ) '( A, /A„) .

(A4)

Now, from Eq. (A4), if we take A, =0.2/n, A, =10
Z =1, n =2, and k, =1, then WR& =3/ 10;i.e., in this

case 8 R„»A„, so that presumably WzR has a relatively
large effect on the RDR probability. However, since A,
scales as Z [see Eq. (Al)], whereas W«scales only as
Z [see Eq. (A3)), then at Z =6, A„and W«are of com-
parable size, and the relative effect of 8'Rz on P" " di-
minishes. For an identical choice of parameters, except
that now n =3, then WRR =10 at Z =1. Hence, as n

increases, the effect of Wzz on P may also be expect-
ed to decrease. %e emphasize that this discussion per-
tains to so-called En&0 transitions. By contrast, for
b, n =0 transitions, A„scales as Z, so that as Z increases
the effect of W&R on P" may be expected to increase.
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