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We study the inelastic scattering, accompanied by the transfer of L photons, of fast electrons by
hydrogen and helium atoms in the presence of a laser field. A detailed analysis is made of the exci-
tation of the n =2 and n =3 states of atomic hydrogen, and of the 1 'S-2 'S and 1 'S-2 'P transi-
tions in helium. It is shown that the "dressing" effect due to the dipole distortion of the target by
the laser field produces important modifications of the cross sections at small momentum transfers
for S-S and S-D transitions. However, this dressing effect is reduced in the case of S-P transitions.
Our results exhibit qualitative differences from the case of laser-assisted elastic collisions; this is

mainly due to the possibility of intermediate resonances in the laser-atom interaction during the col-
lision event.

I. INTRODUCTION

One of the most delicate aspects of the study of laser-
assisted collisions consists in providing an adequate
description of the target states in the presence of the laser
field. This problem is particularly acute when strong
fields are considered, or when the laser frequency is near-
ly resonant with an atomic transition. In three recent pa-
pers' a treatment of laser-assisted electron-atom col-
lisions has been proposed, which is based on first-order
time-dependent perturbation theory in the laser-atom in-
teraction, while the laser-projectile interaction is treated
nonperturbatively. This allows consideration of strong
laser fields, provided that the electric field strengths 8o
remain small with respect to the atomic unit of field
strength, namely, Co « 5 X 10 V cm '. The method also
applies to all laser frequencies; however, in those cases
where the laser photon energy is close to the energy of an
atomic transition, limitations are imposed on the laser in-
tensity. The method has already been applied to analyze
laser-assisted elastic electron-hydrogen' and electron-
helium' collisions.

In the present article we want to provide a generaliza-
tion of our previous results to the case of laser-assisted
excitation collisions. Such excitation processes have al-
ready been investigated by several authors, mainly in
the perturbative (weak-field) limit. As in the elastic case,
a comparison between the perturbative approach and the

I

present nonperturbative treatment will be made. In what
follows, the incident electron energy will be assumed to
be high so that all calculations can be performed in the
first Born approximation and exchange effects can be
safely neglected.

II. THEORY

A. General method

Following our previous work, we assume the laser field
to be monochromatic, linearly polarized, and spatially
homogeneous. Working in the Coulomb gauge we have
for the electric field and the vector potential
C(t ) =4 iosnttoand A(t ) = Aocoscot with Ao=c@o/to
The wave function of the incident "unbound" electron
embedded in that field is then given by the Volkov wave

X&(ro, t)=(2sr) exp[i(k ro —k aosincot Ekt/fi) j, —

where ro is the projectile coordinate, k denotes the elec-
tron wave vector, Ek ——tri k /2m is its kinetic energy, and
ao=eCo/mco . On the other hand, the "dressed" wave
functions of the atomic target in the laser field are ob-
tained, by using first-order time-dependent perturbation
theory, as

cd„„
N„(X,t)=exp( iw„t/R)exp( ia R) P——„(X)—sincot g ' ' P„.( )Xi costot g— ' g„.(X)fi(to„„—co ) „ fi(co„„—co )

(2)

where X denotes the ensemble of target coordinates, f„ is
a target state of energy m„ in the absence of the external
field, and co„„ is the Bohr frequency co„„=(w„—w„)/
A. Furthermore, we have defined a=e A/Sic and

M„„=M„'„=Co.(t)'t„~ eR
~
l(t„),

where R=gz, r is the sum of all target coordinates, Z
being the atomic number of the atom. In Eq. (2) the sum-
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mation includes an integration over the continuum states.
The S-matrix element for inelastic scattering from the

ground state to a final state of energy mf, in the direct
channel, in the presence of the laser field and in first Born
approximation is then given in atomic units by

Z

V~(ro, X)= ——+ g
Po j =) P)o

is the direct interaction potential, with ro, =
l ro —r

After integration on the time variable we have

(5)

Sf o ——i 1 (Xk (ro, t)Cf(X, t )
l
~~(ro»)—oo f

Sf o =(2m') t g 5(Ek —Ek +cof o Lc—o)ff 0' . (6)
L = —oo

where

XXq (ro, t)40(X, t)), (4) Here ff 0 is the first-Born approximation to the inelastic
scattering amplitude with the transfer of L photons,
which can be written as

CO ~ I

ff O' =JL(4'tzo)ff o(4) iJL(4'tzo) g f ',0(4)+ g ff, (4)'f- '
CO„O —CO

JL(4 ao) coMf „ a)M„O

CO„—CO CO„—CO

(7)

In this formula 6=k, —kf is the momentum transfer, JI
is an ordinary Bessel function of order L, and JL is its
first derivative. Moreover, ff 0(4), f„.'0(4), and

ff '„(4) are the first Born amplitudes corresponding to
the scattering events 0~f, O~n', and n'~f in the ab-
sence of the laser field.

The first term on the right-hand side of Eq. (7), which
we will call "electronic, " corresponds to the interaction
of the laser field with the incident electron only. The fol-
lowing ones, called "atomic, " are due to dressing efFects.
It should be noted that the sums over intermediate states
appearing in that expression can be divided in two classes
because of the selection rules arising from the matrix ele-
ments M„.„. Indeed, the first sum in each large
parentheses only involves intermediate states with angu-
lar momentum 1'=1+1,where we denote by 1 the angular
momentum of the final state. On the other hand, the
second sum in each large parentheses only involves inter-
mediate p states.

The first Born differential cross sections corresponding
to the various multiphoton processes are given by

B],L
a&t, z

k Iff,o'

It is worth stressing that in contrast to the case of elas-
tic collisions, the atomic transition energies co„ f corre-
sponding to transitions involving the final state can be of
the same order of magnitude as the photon energy, when
considering standard lasers operating in the ir-vuv range.
Consequently, the closure approximation proposed in
Refs. 1 —3 for elastic collisions has to be adequately
modified in the case of inelastic collision processes in the
presence of a laser'field.

B. Atomic hydrogen target

Let us now focus our attention on laser-assisted
electron-atomic hydrogen excitation. These processes are

M„„= g e'M~„, .
q=o, +1

Since it is convenient in the calculations to take the
quantization axis along the momentum transfer 4, the
spherical components of the polarization vector e (the
unit vector along Co) are now given by

'[kf cos(8r —8)—k;cos8&], (10a)

r, , =e,= —4 '[sin8 (kfcos8 —k;)—kfcos8 sin8],

(lob)

where L9 and L9~ denote, respectively, the scattering angle
and the angle between the polarization vector c and the
incident momentum k;.

In the case where the intermediate states n' are hydro-
gen bound states, which we shall now denote by their
three quantum numbers n'I'm', the quantities Mqi

are readily evaluated by using the expression of the hy-
drogen bound state wave functions in terms of conAuent
hypergeometric functions. We obtain

I

of particular interest since an exact calculation of the first
Born scattering amplitude given by Eq. (7) can be per-
formed. This constitutes an important advantage in the
context of inelastic collisions where, in contrast to the
elastic case, the simple closure approximation is inade-
quate. Moreover, the availability of such exact first-Born
atomic hydrogen results will allow us to check the validi-

ty of further approximations which must be made when
treating the case of complex atoms.

The main problem in evaluating Eq. (7) consists in ob-
taining general expressions for the matrix elements
f„'„(4)and M„„,both in the case of bound-bound and
bound-free transitions. Let us first consider the case of
the matrix elements M„„.; these can be expressed in
terms of their spherical components
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q 1
2'+'+ [(21+1)(2!'+1)]'

nlm, n'!'m' 0 I+2,I'+2 (21+1)l(21 + 1)!
(n + I )!(n '+ I')!

(n —I —1)!(n'—I' —1)!

1 1' 1 1 I' I

0 0 0 q m' —m

I

' (I+1 n—} 2
' —I' —I (I'+1 n')„— 2

" (I+I'+IM+I2'+3)!
X (21+2) p! n ~0 (2!'+2)„.IM'! n' I'll+I+I'+!'+4

where we have defined a = 1 In + 1/n '.
Let us now consider intermediate states belonging to the continuous part of the spectrum. Denoting these states by

p'I'm' and using a continuum wave function normalized with respect to the energy, one can easily obtain (0 &p' & oa )

2 I + I'+ 2
1m"™P~™ 0 I

n I+2 (21+ 1 )!(2I'+1 )!
(21+1)(21'+1)(n + I )!

(n —I —1)!

1/2

I' 1 I' I 1
X g (p 2$2+ 1 )I/2( 1

—2 P')—
0 0 0 q m' —m

n —I —I (I+1 n)
x (21+2)„IM! n

(I+I'+I +3)!
i+i'+ @+4

1 —lP
n

~ J

X2F& 1'+ 1 —i Ip', 1+1'+p+4,21'+2,' 1/n ip'— (12)

Note that because of the selection rule I'= I+1, the last hypergeometric function can always be transformed into a poly-
nomial of finite degree.

The field-free first-Born scattering amplitudes f„'„.(lL) are readily evaluated in the following way. Using the Bethe
formula, we have

f„'„.(I)=—2b, (n
~

e ' —1
~

n') .

For an intermediate bound state with quantum numbers n', 1',m' we find that

(13)

(nlm
~

e ' —1
~

n'I' m)

=( —1)
2'+' + [(21+ 1)(21'+1)]'

n I+2n' I'+2 (21+ 1 )!(21'+1 )!

(n + I )!(n'+I')!
(n —I —1)!(n' I' 1)!— —

' 1/2

I+ I' I ' I A, I ' I
0 0 0 0 m' m 2&+ &1-(/+3I2)

i (2K+1)

I

n —I —~ n' —I' —I ( I + 1 n)„(I'+—1 n'}„—
(21+2)„(21'+2)„I2!p'! n n' I2I'+I'+'+'+~+

p+p'+1+1'+A, +3 p+p'+ 1+1'+A, +4 ~ 3
X 2F]

2 2
, A, +—,—b Ia

(14)

Finally, in the case of an intermediate state lying in the continuous spectrum we obtain
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(nlm
~

e ' —1
~

p'I'm')

2'+'+' [(21+1)(21'+1)]'"=( —1)
n '+ (21 + 1)!(21'+1)!

l

(p 2&2+1)1/2(1 —mP') —1n
s=p

(n +I)!
(n —I —1)!

1/2

I+I A, I' l A, l' I''2+"
O O O O m' —m

A, =
(

I —I'i

~ —~ —
& (I+1 n—)

x
(21 +2)„p! n 2h

(g+ )~
u —x —1

X g ' PI+I' —0+@+2)
o o!(l(,—0 )!(2b,)

1—+ip' —ih
n

—(I+ I' —o+p+2)

XzF~ I+1+i/p', I+I' —a+p+2, 21'+2,' 1!n+ip' i 5—
—( I + I' —cr+ p+ 2)

+( —1) " ' —+ip'+id,
n

~ j

XzF~ I+1+i/p', I+I' cr+p—+2, 21'+2,' 1/n+ip'+i6 (15)

where we have used a well-known representation of the
Bessel functions of half-integer order in terms of inverse
powers of the argument. Note that since continuum
wave functions only appear as intermediate states, we
have omitted in Eqs. (12) and (15) the Coulomb phase of
these wave functions.

C. Helium target

In contrast with the case of atomic hydrogen, an exact
evaluation of Eq. (7) is not possible since no general, ac-
curate wave functions are known for all excited states of
helium. On the other hand, although the closure approx-
imation could be used to evaluate the terms containing
denominators of the type co„p—co on the right-hand side
of Eq. (7), we know that this method would fail for the

I

remaining terms. However, we will now show that the
problem can be circumvented at the price of a slightly
less accurate treatment than in the case of atomic hydro-
gen. Indeed, one can expect in general that only the few
intermediate states with lower energy contribute
significantly, provided the laser frequency remains small
enough. As will be shown below this can actually be
proved for a hydrogen target, and it is quite reasonable to
assume that the same situation remains true for helium.
This suggests the possibility of approximating the "ex-
act" first-Born scattering amplitude given by Eq. (7) by
including exactly only those intermediate states which
contribute significantly to the sum, while using the clo-
sure approximation to account for the other states. This
yields the following approximation of the scattering am-
plitude:

f BI L J (Q,a )fBt(Q)

2 ih, .r& ih r2 ih r&

z [Co Vz(ff(r, , rz)
~

e '+e ' —2
~

go(r&, rz))+2iMfo 2i@o (Pf—(r„rz)
~

r&e
'

~
go(r„rz))]

COf COp

X JL(4 ao), , +
CO f—CO CO p

—CO

JI (b, ao)—L
h, ap —2 2 —2 2

CO f —CO CO p
—CO

iJ,'(a ao)yM—f, fBIo(a)
COm f COI

2 2 —2 2
COm f —CO CO f —CO

. JL(~ ao)
+iL g Mf f 'o(6)

h -ap 2 2 —2 2
COm f —CO CO f —CO

(16)
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f) )s(r 1, r2 ) =40(r 1 )40( r2 ),
where the orbital Pp(r ) is given by

(17)

where coo is the average difference between the energy of
an intermediate state and that of the ground state (i.e.,
the average excitation energy), while cof is the average
difference between the energy of an intermediate state
and that of the final state. For coo we have chosen the
value 1.15 a.u. , which gives the correct dipole polarizabil-
ity of the helium ground state, a=1.38. The choice of
cof will be discussed below. In writing down Eq. (16) we
have only considered the case of final and intermediate
singlet states, since exchange eff'ects (which are small at
high energies) are not included in our treatment. The
sum over m appearing in Eq. (16) now involves only those
intermediate states which we treat exactly. As a rule, we
shall always include at least all the intermediate states
with principal quantum number n (3.

Let us first consider the electron impact excitation of
the 2'S state, with the transfer of L photons. For the
ground state we have used the wave function'

P& &&(r»rz }=C[u&(rl )u3(r2}+u, (r2)u~(r, )], (23)

where u
&
(r ) is given by Eq. (20),

u&(r)=(4m) '~ N[e ' Pr—e '+gr e ' ] (24)

and the values of the parameters are C =0.512410,
N 0 456 615 0 ) 0 33 1~ 0 2 0 464 o'3 0 330
P=0.932435, and Q=0.038820. This wave function,
which is orthogonal to the 1 'S wave function (17) and the
2 'S wave function (19), gives the accurate value —2.0606
a.u. for the energy of the 3 'S state. For the 3 'D state, we
have used a wave function of the type

1
Ps&D(r& r2)= —[0& (Z "i%'sd ( o 2)

2

,(Z;, 2r) P3d (Zo, ri)] (25)

where g~, (Z;, r) and f&d~(Zp, r) are hydrogenic wave
functions corresponding to the effective charges Z;=2
and Zo = 1, respectively.

III. RESULTS AND DISCUSSION
Pp(r ) =(4n )

'~
( Ae "+Be ~"), (18)

with A =2.60505, 8=2.08144, a=1.41, and P=2.61.
For the 2 'S state we have chosen the wave function"

(r&, rp)=C[u&(r) )u2(rp)+u)(r2)u2(r) )],
where

(19)

and

u, (r ) =(4m )
' Me (20)

u (2r)=(4n) ' N(e ' Sre '—), (21)

the values of the parameters being C =0.705 226,
M =5.656854, N =0.619280, ~&

——0.865, v2 ——0.522, and
S=0.432 784.

Because in the case of the excitation of the 2 'S state
we have only to consider 'P intermediate states in Eq.
(16), it is a simple matter to include all (simply) excited
states of this kind, which we represent by expressions of
the form

A. Atomic hydrogen target

Before presenting the results of our calculations, we
want to make a remark concerning the domain of validity
of the treatment used for taking into account the laser-
atom interaction. Indeed, since the main criterion for the
validity of our perturbative treatment is that the interac-
tion be nonresonant, the possibility that the laser frequen-
cy matches the frequency of an atomic transition in the
case of a laser-assisted excitation collision process in-
duces new limitations for the values of the intensity
which can be considered. Let us denote by (n, n') any
pair of states which can be connected by an intermediate
radiative transition during the scattering event. Hence, a
quantitative estimate of these limiting values of the field
intensity can be obtained by the requirement

(26)

where the quantity M„„ is defined by Eq. (3) and plays
the role of a coupling parameter. We could ask, for ex-

+/I, (Z, , rz)g„z (Zp r, )], (22)

where g„and g„~ are hydrogenic wave functions corre-
sponding to 1s and npm states with effective charges
Z; =2 and Zo =1, respectively, and the index n can take
both discrete and continuum values. Doubly excited
states are not taken into account by this method. How-
ever, their contribution can be estimated by using the clo-
sure method (see Appendix A) and is found to be small.

Let us now consider the excitation of the 2'P state.
Since we want to include exactly in Eq. (16) all intermedi-
ate states with principal quantum number n (3, we also
need in the present case the wave functions of the 3 'S
and 3 'D states. For the 3 'S state we have constructed a
wave function of the form

1s
%co=0.117 eV

2$ 3$ 4s

2p
3p
4p

2.559[8]
7.587[8]
1.358[9]

7.373[5]
1.893[7]
6.213[7]

6.183[7]
3.010[5]
3.257[6]

2.084[8]
7.291[6]
1.649[5]

1s
Ace=1. 17 eV

2$ 3$ 4s

2p
3p
4p

2.292[8]
6.919[8]
1.245[9]

7.373[6]
7.680[6]
3.524[7]

2.508[7]
3.010[6]
3.047[6]

1.182[8]
6.819[6]
1.649[6]

TABLE I. Maximum values of the electric field strength (in
V cm ') allowed by our perturbative approach for various di-
pole transitions in atomic hydrogen and two typical laser fre-
quencies. The numbers in brackets indicate powers of ten.
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ample, that the detuning remains always more than ten
times greater than the term on the left-hand side of Eq.
(26). The maximum values allowed for the electric field
strength under this condition are displayed in Table I for
various dipole transitions and for two typical laser fre-

wi principal quan-quencies. In the case of a final state with
' '

l
turn number n =2, for instance, the condition (26) is
satis ed for the frequency corresponding to a Nd: YAG
yttrium aluminum garnet laser, namely, fico=1. 17 eV,
provided that Bc&10 Vcm '. For final states corre-

Nd:Y
sponding to n=3, on the other hand h' h-'an, a ig -intensity

would
aser can certainly not be consideredi ere since it

wou be strongly resonant with the intermediate transi-
tion between the n =6 and n =3 levels (irico =1.33 eV.C06 3—
Nevertheless, an infrared laser, for instance a COz laser
Ac@=0.117 eV&~ can be used without matching any atom-

~ ~

ic transition. In that case, Eq. (26} implies that the elec-
tric field strength bo should not be higher than 2X10
Vcm ' (see Table I).

In Fi s. 1-3 w'g . — e give the differential cross sections cor-
responding to the excitation of the 2s, 3s, and 3d states
with the absorption of one photon (L = 1), as a function

10 '.

10'

10'

10'

10'
0 2.5 5.0 7.5

8(deg)
10.0 12.5

FIG. 2. Sam. Same as Fig. 1 but for the excitation of the 3s state of
atomic hydrogen, a laser photon energy fur=0. 117 eV, and an
electric field strength @o——2X 10' V cm

10'
C:

0

10 '.—
O

Cl

o 10-

10
0 2.5 5.0

I

7.5
8 (deg)

10.0 12.5

FIG. 1. First-Born d ffdifferential cross section corresponding to
the electron-impact excitation of th 2 fe s state o atomic hydro-
gen with absorption of one photon {I.=1). Th

' '
elec-e incident elec-

tron ener is E =5gy is; = 00 eV, the laser photon energy is Pi~=1. 17
eV, and the electric field strength 6 = 10 V
larization vector of the field is chosen to be parallel to the
momentum transfer 4,. Solid line, full calculation usin &~. {7)

ectronic result obtained by neglecting the dressing
of the target; dotted line, calculation of Eq. (7) within the clo-
sure approximation.

10'
0 2.5 5.0 7.5

8(deg)
10.0 12.5

FIG. 3. Same aas Fig. 2 but for the excitation of the 3d state
of atomic hydrogen.
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TABLE II. Contribution (in percent) of the various intermediate states to the dressing term in Eq.
(7), in the case of an atomic hydrogen target and for a fixed scattering angle 0=10'. The incident elec-
tron energy, the laser photon energy, and the electric field strength are chosen as in Figs. 1-3.

Intermediate
state 2$

Ace=1. 17 eV
@o——10 V crn

2p

Final state

3$

%co=0.117 eV
@0——2&(10' Vcm

3p 3d

1s
2$

3$
4s

2p
3p
4p
3d
4d

79.71
9.86
2.21

5.16
64.85

2.26
0.48

15.25
0.47
0.17
4.77
1.06

1.30
86.71
6.99

0.22
3.45

64.49
2.27
0.18
0.56
0.01

21.30
3.46

8.47
86.75
2.10

0.91

of the scattering angle 8 and for an incident energy
E; =500 eV. We are working in a geometry in which the
polarization vector s of the field (which is along Co for
the case of linear polarization considered here) is parallel
to the momentum transfer lL. According to our previous
discussion, the laser frequency and electric field strength
will be taken to be 1.17 eV and 10 V cm ', respectively,
in the case of a final 2s state, and 0.117 eV and 2&(10
V cm ', respectively, in the case of a final 3s or 3d state.

In Fig. 1 we show the cross section corresponding to
the 1s~2s excitation process. The complete result, ob-
tained by using the scattering amplitude (7), is compared
to the "electronic" cross section in which dressing effects
are neglected. As in the case of elastic collisions, '

dressing effects are seen to be dominant in the forward
direction. This is due to the presence in the atomic"
term of S-P transition amplitudes which behave like b,
for small h. Moreover, we notice a destructive interfer-
ence between the electronic and atomic amplitudes near
8=3.8'. The presence of such interferences is a general
feature of 1s ~ns transitions in the case of inverse brems-
strahlung (L & 0), provided that one considers low-
frequency lasers [such that the laser frequency is less than
the frequency corresponding to the lowest resonance ap-
pearing in Eq. (7)]. Also shown in Fig. 1 is the cross sec-
tion obtained in the closure approximation by replacing
in Eq. (7) co„.o by a mean value r0= —', a.u. and ro„ f by 0
which is a reasonable choice since the final 2s state will be
mainly coupled with the intermediate 2p state and both
are energy degenerate. We stress that the discrepancy be-
tween the "exact" and the closure results increases when
other mean values are taken for cu„ f. This confirms that
the closure approximation is not reliable in the present
context.

The results displayed in Fig. 2 correspond to the
1s~3s transition and show a qualitatively similar behav-
ior as in the case of the 1s~2s process. However, the
dressing effects are now less important, since the electric
field strength is here reduced to 2& 10 V cm '. In Fig. 3
it is seen that dressing effects are also dominant, at small

scattering angles, in the case of the Is~3d transition.
Moreover, we notice that in this case the interference be-
tween the atomic and electronic amplitudes is construc-
tive; this is in contrast with the results obtained for
1s~ns transitions. We do not show figures concerning
1s ~np transitions, since dressing effects are rather small
in this case. Indeed the electronic s-p amplitude, which
behaves like 6 ' foi' small 5, now dominates the cross
section at small angles.

In Table II we give the contribution (in percent) of the
various intermediate states to the dressing term in Eq. (7)
for a fixed scattering angle 8=10', the other parameters
are chosen as in the figures. It is seen that in every case
only a few intermediate states contribute significantly to
the sum, in agreement with our discussion preceding Eq.
(16).

In Figs. 4 and 5, the frequency dependence of the cross
sections is shown for L= 1, E; =500 eV, and a fixed

scattering angle 8=5'. Here we have developed the
Bessel functions appearing in Eq. (7) to first order and we
have normalized our cross sections to the mean laser in-
tensity I=c@'olgrr. Our results then reduce to first order
ones (both in the laser-projectile and laser-atom interac-
tions), and the electric field is assumed weak enough for
first-order perturbation theory to hold even in the vicini-

ty of atomic transition frequencies. Note that in this lim-
it our results reduce to those obtained by Jetzke et al., in
the same way as in the elastic case.

Figures 4 and 5, showing abrupt changes in the vicinity
of Bohr frequencies, indicate that the behavior of the
cross sections with respect to the laser frequency strongly
depends on the structure of the target. It is also interest-
ing to note that the results are sensitive to the presence of
those Bohr frequencies even far away from resonance.
Another interesting feature is that, in the case of a final
state with principal quantum number n =2, one does not
observe peaks corresponding to virtual dipole transitions
ending in the final state, while in the case of final states
with n =3 only intermediate states with n =2 are seen to
contribute to such resonant processes. This could seem
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FIGG. 4. Variation of log&o(da/dQ) as a function of the laser
photon energy, for the electron-impact excitation of the n =2
states of atomic hydrogen in the presence of a laser field and in
the case L =1. The incident electron energy is E, =500 eV and
the scattering angle is 8=5'. The electric field 4 is assumed to
be weak and is chosen to be parallel to tQe momentum transfer
h. The cross sections have been normalized to the mean laser
intensity I=cbo/8n. . Solid line, excitation of the 2s state;
dashed line, excitation of the 2p state.

rather surprising since our transition amplitude E . (7)q.
presents poles corresponding to all radiative transitions
between intermediate and final (as well as initial) states.

owever it can be shown quite generally (see Appendix
8) that these intermediate resonances, when occurring in
a transition between an intermediate state and the final
state, "cancel out" to lowest order in the field in the case
L & 0 (absorption or inverse bremsstrahlung) except for
intermediate states with lower energy than the final state.

Let us now turn to the case L & 0 (emission or stimulat-

10

O

b
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0
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i ~Ii
~ si, , l-

/ e & 'i

i

~ I
~ ~

i

4 6 8

laser photon energy {eV)

10

I

12

FIG. 5. Same as Fig. 4 but for the excitation of the n =-3
states of atomic hydrogen. Solid line, excitation of 3s state;
dashed line, excitation of the 3p state; dotted line, excitation of
the 3d state.

FIG. 6. Sarne as Fig. 4 but for the emission of one photon
(L = —1).

ed bremsstrahlung). Figure 6 shows that, in contrast to
the case L =+1, the frequency dependence of the 1s~2s
and 1s~2p cross sections, for L= —1, exhibits peaks
corresponding to radiative transitions ending in the final
state. The reason for this behavior is discussed in detail
in Appendix B. However, it can readily be understood
that since the atom interacts only once with the laser field
in the weak-field limit considered here, a resonant transi-
tion between an intermediate state and the final state can
only take place through the absorption of one photon if
the intermediate state has a lower energy than the final
state (that is, the atom gains energy). Conversely, that
transition can only be resonant in the case of emission for
an intermediate state having a higher energy than the
final state. We also note that, even at higher field intensi-
ties, it is apparent from Eq. (7) that important asymetries
between emission and absorption should be expected.
This is because, under the substitution L ~—L, the term
proportional to JL (x ) behaves like the "electronic" term,
w ich is proportional to JL (x ) [that is, it is multiplied by
a actor ( —1) ] while the term proportional to L
JL(x)/x (which did not appear in the elastic case' ) is
multiplied by a factor ( —1)~+'.

B. Helium target

We first display some results which clearly vindicate
the validity of our method and confirm the discussion of
Sec. IIB. In Table III we give various results concerning
the evaluation of the scattering amplitude, Eq. (7), in the
case of a final 2'S state and for one absorbed photon
(L =1). Thiis evaluation has been performed in several
wa s: (aib re iy: ~ y replacing co„f by an average excitation ener-

gy (for all intermediate states, including the 2 'P and 3 'P
ones) and performing the summation analytically by clo-
sure; (b) with the same average energy, but performing
the surnrnation numerically with the help of the wave
functions (22); (c) by closure, but including exactly the
2 'P and 3 'P states with their correct energies, according
to Eq. (16); (d) according to Eq. (16), but with explicit in-
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TABLE 111. Evaluation of the scattering amplitude, Eq. (7), in the case of the excitation of the 2 S state of helium and for one ab-

sorbed photon (L =1), as a function of the average energy co, . Column (a), analytical calculation in the closure approximation;
2 S

column (b), numerical calculation in the closure approximation, using intermediate states described by Eq. (22); column (c), numeri-

cal calculation with the "exact" inclusion of the 2 'P and 3 'P intermediate states; column (d), numerical calculation with the exact in-

clusion of all simply excited intermediate states; column (e), evaluation of the contribution of doubly excited states. The numbers in

brackets indicate powers of ten.

Average energy
N (a) (b) (c) (d) (e)

0.1

0.218
0.5
1.37

—9.627 681[—3]
—9.967 787[—3]
—1.018 200[—2]
—1.030406[—2]

—9.651 368[—3]
—9.980 736[—3]
—1.018 823[—2]
—1.030 647[—2]

—6.639 757[—3]
—6.036 013[—3]
—5.655 717[—3]
—5.438 981[—3]

—5.996 811[—3]
—6.007 510[—3]
—6.014 206[—3]
—6.018090[—3]

2.819730[—4]
1.547 696[—4]
7.440 103[—5]
2.859 280[—5]

elusion of all simply excited intermediate states (up to nu-
merical saturation); (e) finally, the contribution of doubly
excited states, calculated as described in Appendix A, is
also given in Table III.

From the analysis of these results, the following con-
clusions can be drawn. Firstly, it is seen that the closure
result (a) always agrees with its counterpart (b): This
proves that our choice for the wave functions of the inter-

10'

mediate states is adequate. Secondly, we see that the ex-
plicit inclusion of the 2 'P and 3 'P states (c) considerably
afFects the closure results (a): This confirms that our im-
provement of the latter is necessary. Thirdly, we remark
that the explicit inclusion of two intermediate states (c) or
more (d) yields very similar results. In particular, the
best agreement is obtained for our "best value"
to ~

——0.218 a.u. , which has been fitted for 8=0'. Final-

ly, the contribution of doubly excited states is seen to be
small. In Table III the scattering angle is taken to be
8=5', the incident electron energy is E, =500 eV, the
electric field strength is Co=10 Vcm ' and we are
working in the geometry in which Co is parallel to the
momentum transfer h. The photon energy corresponds

10

10'
0 2.5 5.0 7.5

8{deg)
10.0 12.5

FIG. 7. First-Born differential cross section corresponding to
the 1 'S~2 'S excitation process in the presence of a laser field,
in the case of a helium target, and for the absorption of one
photon (L =1). The incident energy is E; =500 eV, the laser
photon energy is Ace=1. 17 eV, and the electric field strength is

4o ——10 V cm '. The polarization vector of the field is taken to
be parallel to the momentum transfer h, . Solid line, full calcula-
tion using Eq. (16); dashed line, electronic result in which dress-
ing effects are neglected.

10'
0 2.5 5.0 7.5

e{deg)
10.0 12.5

FIG. 8. Same as Fig. 7 but for the excitation of the 2 'P state
of helium.
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FIG. 9. Same as Fig. 7 but for the emission and the absorp-
tion of two photons (L =+2). Solid line, full calculation in the
case L =2; dashed line, full calculation in the case L = —2; dot-
ted line, electronic result in the case L =+2.

to that of a Nd:YAG laser, namely, fico=1. 17 eV. We
stress that our conclusions would remain the same for
other choices of those parameters.

The foregoing conclusions are further confirmed by the
results given in Table IV. Here, the contribution (in per-
cent) of the various intermediate states to the "atomic"
amplitude is shown both in the case of 2 'S and 2 'P final
states. As expected, the intermediate states with n (3 al-
ways give the dominant contribution (about 90%). We
note that, in the case of the 1 'S~2 'P process, we have
chosen for the average excitation energy the value

cop ]p c02 ]pl 0.2 1 8 a.u. It should be noted that, albeit

somewhat arbitrary, that choice has little incidence on
the final results. We also notice that the results bear a
close analogy with those obtained in atomic hydrogen.

In Fig. 7 we show the electronic and exact cross sec-
tions corresponding to the 1 'S~2 'S excitation process,
in the case L = l (absorption of one photon), as a function
of the scattering angle 0. The other parameters are the
same as in the tables. The behavior of the curves qualita-
tively agrees with what was obtained in the elastic case
and in atomic hydrogen. In particular, dressing effects
are seen to be very large at small scattering angles, and a
destructive interference between the electronic and atom-
ic terms is clearly present. Figure 8 shows the corre-
sponding results for the 1 'S~2 'P process. As expected,
the importance of dressing effects is strongly reduced
with respect to the preceding case. This is because the
electronic amplitude now behaves like 6 ' for small 6,
and is dominant at small b, . As in the case of an atomic
hydrogen target, the above-mentioned interference is also
seen to be removed when considering S-P transitions. Fi-
nally, Fig. 9 shows the cross sections corresponding to
the absorption and the emission of two photons (L =k2),
respectively. As discussed in detail above in the case of
atomic hydrogen excitation, the theory predicts impor-
tant asymmetries between inverse and stimulated brems-
strahlung. That feature constitutes one of the main
differences between elastic and inelastic scattering in a
laser field.

IV. CONCLUSION

In this work we have extended our analysis of
electron-atomic hydrogen and electron-helium collisions
in a laser field to the case of inelastic collisions. In the
case of S-S and S-D transitions, dressing effects have
been shown to be responsible for very important
modifications of the cross sections at small scattering an-

gles in the case of laser-assisted scattering. On the other
hand, those effects are reduced drastically when consider-
ing S-P transitions. The frequency dependence of the
various cross sections also presents new aspects because
of possible intermediate resonances in the laser-atom in-
teraction during the collision event. The presence of
those resonances imposes new limitations to our ap-
proach, since for small detunings the domain of validity
of our perturbative treatment is restricted to smaller

TABLE IV. Contribution (in percent) of the various intermediate states to the dressing term in Eq.
(16), for the excitation of the 2 'S and 2 'P states of helium with the absorption of one photon (L =1)
and for three values of the scattering angle 0. The incident electron energy, the laser photon energy,
and the electric field strength are chosen as in Figs. 7 and 8.

1'S 2'S 1 'S~2 'P

0 (deg)

Intermediate
state

gn ~I' 1'S 2'S 3'S 3'D

0
5

10

83.44
82.38
80.20

6.58
6.75
6.96

99.87
99.81
99.60

0.64
0.74
1.10

91.75
92.32
93.33

1.47
1.58
1.72

6.11
5.35
3.78
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values of the electric field strength than for elastic
scattering. Nevertheless, this should constitute a "plus"
from the experimentalist s point of view since it could al-
low the observation of dressing effects at lower laser in-
tensities than in the elastic case, provided the laser fre-
quency is chosen adequately.

and we obtain, in the same way as in Eq. (16),

S, = 2i—h Co Vq.&t/i~)s(r), r2)
~

e

+e ' —2
~ P~,s(r„r2)) .

(A 1)

(A2)
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APPENDIX A: EVALUATION
OF THE CONTRIBUTION

OF DOUBLY EXCITED STATES

The method we have used for evaluating the contribu-
tion of doubly excited states in the case of the 1 'S~2 'S
process is the following. In a first step, let us consider
Eq. (7) and make the closure approximation. The sums
to be evaluated are of the form

This expression is readily evaluated using the wave func-
tions (17) and (19). It should be noted that the summa-
tion has been performed over all excited states, including
doubly excited ones.

In a second step we use as intermediate states wave
functions of the form (22). As discussed in Sec. IIC,
these describe only simp/y excited P states of helium.
They enable us to evaluate the expression

S2= g'M, , ) f I „,(6)
n'

(A3)

where the notation g' means that the summation in-
volves only simply excited states. Using Eqs. (17) and
(19), Eq. (A3) reduces to

S2= —4Cb, &u&(r2)
~
Po(r2)) g &fz (Zo, r, )

~

e@0 r,
~
Po(r&))

n, p, m

y[&u, (, )
~

e '
~
1(„(Z,r, ))

—&uz(r2)
l
ui(r2) &&ui(ri)

i
e '

I fn, m(ZO ri»l . (A4)

Since the hydrogenic wave functions g„~ (Zo, r, ) in turn form a complete set, closure can be used with respect to the
variable r& to yield the expression

S2 ——4iCb, &ut(r)
~
$0(r))CO Vz[&uz(r)

~

e' '~ Po(r))+&u2(r)
~

u&(r))&u&(r)
~

e' '~ $0(r))], (A5)

which can be evaluated in a straightforward way. Upon
comparison between the results (A2) and (A5), the contri-
bution of doubly excited states to the sum S, is then
readily seen to be given by

APPENDIX 8: WEAK-FIELD
LIMIT OF EQ. (7)

1. Case L ~ 0 (absorption)

S=S]—S~

= 1024iCMN @o~
B

3+(a+2)' (P+2)'

To lowest order in the external field Co we can approxi-
mate the Bessel functions in Eq. (7) as

JL(x)= (Bl)

X
1

(2+r, )

3S
(2+r2)

and

JL (x)=
LJ~(x ) L —1

(L —1)!2
(B2)

A(a+2) 8(P+2)
23+[(a+2)'+&']' [(0+2)'+ ~']' (A6) where x=& ao. In that limit, Eq. (7) reduces to the

simpler expression
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f81,L
( 1g.~ )Lf81(g)

—L
( —1) x
( L—)! 2

(B4)

and

(B3)

JL(x ) ( 1)L L ——1

JL(x )= L—
x L ——1! 2

—L

so that Eq. (7) now reduces to
L

(B5)

As a result, the first term in the large parentheses, in
which the radiative transition connects the final state
with an intermediate state n', cannot be resonant except
if the intermediate state has a lo~er energy than the final
state. We want to stress that the situation would be quite
different at intermediate field strengths, since in this case
resonant terms proportional to JL (x ) and Lx 'JL (x )

would not cancel any more.

2. Case L &0 (emission)

In this case, the formulas (Bl) and (B2) become, respec-
tively,

(B6)

As a result, the situation is seen to be opposite to the case
of absorption. Indeed, the first term in the large
parentheses now becomes resonant for co„.& ~f, while in
the last term radiative 1S~nP transitions become non-
resonant.
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