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A theory for calculating a many-transition spectrum of electron-ion collisional excitations in the
distorted-wave approximation (DWA) is presented. First, it is shown that the collision strength in-
cluding exchange can be factorized into (i) a radial part, involving one-electron wave functions only,
and the summation over partial waves of the continuum electron; and (ii) an angular part, involving
the coupling between bound electrons in the target states only, specific to each transition. Factor-
ized representations of the collision strengths are derived in various coupling schemes. Second, the
computationally involved radial part is shown to be a smooth function of transition energies over a
very wide range, allowing easy interpolation. These two results enable one to obtain a complete
collisional-excitation array with a drastic reduction of the number of time-consuming radial calcula-
tions compared with standard methods. This allows the solution of problems which were heretofore
considered impractical. As an illustration, the whole array of excitation rate coeScients for Ni-like
Gd xxxvII including the lowest 107 levels (5671 transitions) was calculated in the DWA, and used
in a steady-state collisional-radiative model. Resulting population inversions are presented versus
plasma density.

I. INTRODUCTION

Cross sections for excitation of ions due to electron-ion
collisions are required for calculating level populations
and spectral line intensities of non-local-thermody-
namic-equilibrium (non-LTE) plasmas. This information
is important for diagnostics of plasmas occurring in
fusion experiments, x-ray lasers, astrophysics, etc. For a
reliable evaluation of the plasma parameters such as tem-
perature, density, and especially level populations, one
must know the excitation cross sections accurately, and
detailed quantum-mechanical calculations are necessary.
A comprehensive review of the theory for such calcula-
tion was given by Henry. '

Three main methods are commonly used. The first is
based on the Coulomb-Born (CB) approximation, where
the continuum orbitals are calculated for a free electron
in a Coulomb potential. An improved method is the
distorted-wave (DW) approximation, in which the contin-
uum orbitals are calculated in a more realistic potential
which takes into account the ion structure. These two
methods assume independent excitation channels for the
various ionic transitions and yield a. scattering matrix
which is not necessarily unitary. In a few DW models
the calculation also treats resonances where the total
wave function includes closed channels. The most accu-
rate approach used today is the close-coupling {CC) ap-
proximation, which couples the various channels and
yields a unitary scattering matrix. This method does
take into account resonances as well. The crucial draw-
back of the CC method is the prohibitively long compu-

tational time needed, relative to the other methods.
Fortunately, for highly ionized heavy atoms appearing

in hot plasma, the coupling among the various channels
is very weak' and the DW method is most appropriate.
Also, since the cross sections, behaving as 1/Z~, are rela-
tively small in this case, the unitarization correction is
not needed. Still, the enormous amount of relevant tran-
sitions needed to determine the level populations and line
intensities in these heavy ions does not enable a direct ap-
plication of the commonly used DW methods, due to
computer time limitations. A simple way to cope with
this problem was proposed by Hagelstein, when model-
ihg an x-ray laser of Ni-like Eu XXXVI. He calculated ex-
citation cross sections with the relativistic DW method
only for the 106 resonant transitions from the ground
state to higher levels, while the less important cross sec-
tions of the remaining 5565 transitions among the excited
levels were approximated by a classical path model, valid
for dipole-allowed transitions.

Why are computations of cross sections so time con-
suming? It should be realized that the first computations
by the DW and other methods were performed for light
atoms, which are of great interest to astrophysics. These
atoms possess very simple configurations. Moreover,
these atoms were often in plasma conditions very close to
the corona equilibrium, and few excited states were popu-
lated, so that a small number of cross sections were need-
ed. In most of the previously mentioned methods, each
collisional transition is computed separately. The physi-
cal reason for these separate computations is that the
wave functions of the continuum electrons, hence the ra-
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dial integrals, depend on the energy of the levels involved
in the transition, due to conservation of the total energy
of the system.

On the other hand, in the case of ionized heavy atoms,
with complex configurations involving d or f electrons,
an array of transitions connecting all the levels of two
mixed configuration manifolds may include thousands of
transitions. Hence the question should be asked whether
using methods devised for light atoms and computing
each transition separately is efficient, or is some part of
the work duplicated?

In this work we develop a relativistic DW method for
calculating a whole spectrum of excitations simultaneous-
ly, suppressing any redundancy. As a starting point, we
noticed while looking through many numerical results
that the previously mentioned radial integrals do not de-
pend strongly on the transition energy, so that if one
could extract from the total cross section the energy-
dependent part, one could greatly simplify the numerical
work by interpolation.

This approach is inspired by the central-field model for
calculating radiative transition probabilities A, in com-
plex spectra, where the A, are factorized as a product of
an angular part carrying the coupling between the angu-
lar momenta for each fine-structure level, and of radial
multipole integrals, which involve only one-electron wave
functions, and thus have common values for all the levels
in one configuration. In an analogous manner, the
present work is concerhed with establishing two main
points.

The first main point is the analytic factorization of the
collision-excitation cross-section formulas, including ex-
change and configuration interaction in the target states,
into a radial part, formally common to all the transition
array of a configuration manifold because it involves only
bound and continuum one-electron wave functions, and
an angular part, involving only the coupling between the
bound electrons in the target states, specific for each tran-
sition, but easily calculated. This idea was first intro-
duced and demonstrated in a few simple pure
configuration examples by Sobelman et al. In the
present work we show that the collisional excitation is
represented by an effective one-body operator defined on
target states, common to both "direct" and "exchange"
bound-continuum integrals, thus achieving the factoriza-
tion. The latter is applicable to any coupling scheme and
to mixed-configuration states and is thus suitable for
heavy atoms in realistic plasma conditions.

The second main point of this work concerns the radial
part, which is the most time consuming part, of the DW
calculations. It involves only one-electron wave func-
tions, but in contradistinction to the case of radiative
transitions, the radial integrals depend indirectly on the
transition energy hE, through the energy loss of the con-
tinuum electron and conservation of total energy. We
show that this dependence is weak as a function of hE,
for fixed energy of the outgoing continuum electron.
This allows interpolation of the radial part in hE, based
on a very small number of actual computations.

In Sec. II we introduce the one-transition theory, lead-
ing to the factorization of the collision strength for

II. ONE-TRANSITION THEORY

A. Background and notation

The collisional strength for transition between target
states +0 and +1 in the relativistic DW approximation,
without unitarization and with proper normalization of
the continuum wave functions, is

floi=g g floiGo Ji»
'T 'T

&0 &1

where the tilde sets j0 and g& designate the partial waves
of the incoming and outgoing continuum electrons
characterized by the individual quantum numbers

[ko, T&,jo} and [ki,T„ji}, resPectively, where k is the
continuum electron momentum and

floi(jo Ji)= X [Jr] l &oi I' (2)

N+1
+01 0 1

t j =1 tjT

and

[J]=2J+1, [JiJ2 . ]=(2J,+)(2J,+1) (4)

and where go and P, are the antisymmetrized initial and
final states of the complete system of N+ 1 electrons (tar-
get and continuum electron),

f, =}%;(I;,J;),j;;JT,MT}, i =0, 1 .

In Eq. (5) Jo and J, are the total angular momentum of
the target before and after the collision, respectively, and
JT is the total angular momentum of the complete sys-
tern. Different target states having the same angular
momentum J, are distinguished by I, . In general, %0

mixed-configuration states in various coupling schemes,
and present the effective target operators involved. In
Sec. III we deal with the implementation of the results of
Sec. II for transition arrays, in conjunction with the in-
terpolation process of the radial part of the collisional
strength. A summary and discussion are given in Sec. IU
where the results of the Ni-like Gd xxxviI collisional ra-
diative model are presented, showing population inver-
sion. For completeness, we derive in Appendix A the re-
quired representations of the collisional interaction and
some necessary identities, such as the recoupling of the
exchange operators in terms of direct-type operators for
various coupling schemes. In Appendix B we give some
useful examples for matrix elements of the effective atom-
ic operators.
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and 4', are mixed configuration states,

I,-

ql, (f'„J,)= ga„'(y„,J;)y„(y„,J, ), i =0, 1 (6)

where y„(y„,J; } relate to a pure coupling scheme,

a„'(y„,J;) are the mixing coefficients, and the index n

I

runs over all the states of the interacting configurations.
Clearly, Eq. (6) is valid also for the case of a single

configuration. Due to the antisymmetrization of the
states tlo and f& in Eq. (3), the electrostatic interaction in-
volving jo and j, may be rePresented by an oPerator [see
Appendix, Eq. (A12)]

V(3o, 3, )—= g = g g[{Z'"'(jo,j, ) Z' '(3o, 3, ))X"(jo,3o;j„3,)+(Z'"'(j„3,) Z'"'(3o, j,))X"(j„3„3„j,)] .
i,j ij jo, y& k

(i &j)

(7)

Here jp and j, represent sets of individual quantum num-
bers j—:(n, l,j ) of bound electrons. The unit tensor
operators Z'"'(j, j') in Eq. (7) are defined by the single-
particle reduced matrix elements

&nilijill("(j j')lln~l2j2&

=5(n „n )5(l, , I )5(j„j)5(nz,n')5(l~, l')5( jz,j'),

where C' ' are the spherical harmonics defined on quan-
turn numbers j„jb,etc., satisfying the usual parity con-
dition on the orbital angular momenta I„ Ib, etc., with
rank k, and R (a,b;c,d) are the Slater integrals, which
depends on j quantum numbers when the Dirac one-
electron wave functions are used. The two terms in the
square brackets of Eq. (7) are the "direct" and "ex-
change" parts, respectively.

N+1
Z'"'(j, j')= g g,'"'(j,j') . (9)

with the condition that ji, k, and j2 satisfy the triangular
inequalities, but without constraint on the parity of orbit-
al angular momenta l, and by

B. Direct matrix element

Let us denote by DJ the direct angular matrix ele-
T

ment:

Moreover,

c"'ljl. & & jb IIC'"'ll jd &

X R "(a,b;c,d ), (10)

Dz =&Col {Z'"'(jo ji)'Z'"'(3o 3&)) I 4i& .

By removing the antisymmetrization between bound and
continuum electrons it can be shown that

Ds ——&%'o3o(N+1)Jr
I
(Z' (3o ji)'Cbt+&(3o~Ji) }

I
O'Di(N+1)JT &, (12}

where the bound antisymmetrical states and the symmetric operator Z'"'(jo, j, ) are defined for electrons 1,2, . . . , N.
Equation (12) can be reduced immediately using the well-known rule for the scalar product of two operators acting

on different parts of the wave functions [Eq. (3-36) of Ref. 10 and Eq. (4.169) of Ref. 11]. The result is

J Jl j] JT
&'Po(l o Jo)IIZ'"'(jo ji}ll Pi(f'i J&) & (13)

jp Jp k

This reduction to Eq. (13) is described graphically' ' by taking out the triangle from the diagrams representing the
matrix element, i.e.,

J J J
T 0

LI Jl jl JT

j J k
(14)

C. Exchange matrix element

We denote the exchange operator matrix element by

&J', = & fo I
{Z'"(jo3i).Z'"'(3o, ji })

I
ti'i & . (15)

The factorization of Eq. (15) to separate target and continuum matrix elements is not immediate as for the direct part,
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since the operators Z' '( j,j) mix bound and continuum electrons. For relativistic j-j target states 4;, the exchange ma-
trix element, becomes

&s, = &'4jo(&+1)~r I
I:Z'"'(jo ii) CIv+i(jo, ji)11+iji(»~r & * (16)

where 4, is an antisymmetrized state of electrons 1,2, . . . , N —1, N+1. The reduction rule of Sec. II C does not apply
to Eq. (16).

However, it was shown' ' that the exchange operator of Eq. (7) can be expressed in terms of direct-type operators
which allow the desired factorization. Specifically, the exchange angular operator is expressed as' (see Appendix A)

Jo J&
(Z'"'(jo J() Z'"'(Jo j,))= g ( —1)"+'(2r+1) —. . (Z'"(jo,j, ) Z'"(jo, j, )) .

Jo J&
(17)

Substituting Eq. (17) in Eq. (15) and using

g" —y( 1) ' (2r 1)
T Jo

the reduction rule, as was done for the direct part, we obtain

j, k J, j, JT
&q'o(lo~ )llz"'(jo j )llq'(1 ~ )&.

J& Jo o

The graphical description for this reduction is as follows:

k

(19)

We now return to Eq. (2) and express the contribution of specific continuum partial waves jo and j& to the collisional
strength by

'2
fool(30 ~jl) g (2JT+ 1) g g Di X"(jo Jo j i i i) +~. X"(jo,jo ji ji)

JT Jp Ji

2
JT

= &(2Jr+1) & & &'4IIZ'"'(jo jt)llq'i& '-. '(2k+1)'"P"Go Ji'jo ji)
J k o Jo k

T Jp~ J)

(20)

where

Jo
P"(jo,g„jo,j, )=(2k+1) '~ X"(jo,j&&,j,,j,)+ g( —1)"+'(2k+1)'~2

Jo

J)
'&(jo jo'j& j&)

J) k
(21)

The summation over JT can now be carried out using the orthogonality relations of 6j symbols, yielding for the total
collision strength of Eq. (1},

floi=8 X fto(jo ii)
'T 'Y

Jp& J)

where

=8 X X & '411Z'"'(jo ji)Ill'i & & q'ollZ'"'(jo jl ) Ill'i & & "(jo A jo jl »
k Jp, Jl,

JpJl

(22)

Q (Jo~3t~jo~Ji)= X P ('Jo~ji~3o~J&)P (3o~Ji~3o~3&) .
'T

Jp~ J)

The target matrix elements in Eq. (22}can be expressed in terms of the pure basis states of Eq. (6) as

&'4(lo~ )IIZ'"'(jo, ji)llq'(1 ~ }&=g~. '(r . ~o)~ '(}'i J»&m. (ro. ~o)IIZ'"'(jo ji)lie (7»J»&
n, m

(23)

(24)
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and can be calculated by the usual techniques of Racah
algebra using standard computer codes. ' (Analytical
formulas for some useful cases are given explicitly in Ap-
pendix B).

It is remarkable that the cumbersome continuum
dependence of the collisional strength is factorized out
analytically in Eq. (22) from the target part, even though
the exchange interaction is taken into account, as well as
configuration mixing. Moreover, for pure configurations

jo=jo and j, =j'~ and Eq. (22) reduces to

self by the fact that some values of k might not satisfy the
usual parity constraints for electric multipoles, since this
role is now played by t in Eq. (21}. This result is similar
in spirit to the recent formulation of inelastic cross sec-
tions by Lee and Fano, ' albeit without introduction of
new quantum numbers. Here we are only interested in
total cross sections. We shall now show that similar fac-
torization holds for other coupling schemes used in
different physical circumstances.

D. Semirelativistic approximation

jo jl k

(25}

and for excitations between different configurations only
one term in the sum over jo and j, remains. Thus col-

lisional excitations behave like one electro-n rnultipole
transitions, with a radial part described by Q (jo,j,; jo, j', ).
Note that the contribution of the exchange manifests it-

I

A semirelativistic approach approximates the large-
component radial part of the continuum electrons by
Schrodinger solutions with zero small component, while

keeping a full relativistic description of the bound elec-
trons. Furthermore, since these continuum radial solu-
tions are independent of jo and j&, the summation over
these indices in Eq. (23) can be carried out on the angular
part using the relation

(slj ))C' '([s'l'j ') = ( I((C'"'()I')( —1)' +'+1+ "(2j +1)' (2j'+ 1)' j j' k
(26)

and known relations between n jsym-bols. The result for the collisional strength is the same as Eq. (22), with

Q"(jo ji'jo jI}=& g P""(To Ti jo ji}P"'(To»i'jo jI»
r, t

(27)

where T= ( k, ? I and

peak(T ?'
J J } (2k+1}1/2(2j +1}1/2(2ji +1}1/2

T1 1

2 2

Jo Ji

X 2(2k+1) ' '5 +"(j T j T )+(—1)'+'(2r+1)' '(2t+1)' '

lo
x g( —1)"

Tk' 0

T, k'
'&" (jo»o'Ti ji}t

(28)

X"(a,b;c,d ) = ( I, //C'"'//l, ) ( lb /~/C'"'f~/l„)

XR "(a,b;c,d) . (29)

Here the X" have a slightly different definition than in

Eq. (10),

I

sible for a general I J scheme such as j-jJ, SLJ, j,KJ,
etc., where the target states +; are characterized by a to;
tal J, which is coupled further with the continuum

Ik, l,j) electron to Jr as in g; of Eq. (5).
We define the double tensor Z'"'"(l, l') by the single-

particle reduced matrix elements as in Eqs. (8) and (9),

It should be pointed out that the sum over r and t in Eq.
(27) is preferable to the original sum over Jo, j, for fixed

To T] since r can take values 0 or 1, and t is restricted by
the bound electrons' angular rnomenta, through the tri-
angular conditions of the 9j symbol of Eq. (28}.

E. Collision strength in nonrelativistic ( I J )jJz- schemes

(n&l&)(g'"'"(l, l')~)nzlz) =5(n„n)5(l„l) (5nz, n' }(5l 21'),

(30)

where r and t are the tensor ranks with respect to S and
L, respectively. The reduced matrix element here is
defined by applying the Wigner-Eckart theorem twice
with respect to both S and L. It is easily seen that

In the nonrelativistic case the radial parts of the bound
(continuum) electrons depend upon l —= [ n, l ) (T: I k, I ])—
and not upon j (j ). In this case a single treatment is pos- ~(i, i')=Z' "'"(l,l')=2 '/ Z~"'(l, l'), (31)
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with

& n) I ) II('"'(l, l')Ilnz/z & =5(n, , n )5(/), I )5(nz, n ')5(lz, I') .

(32)

The operator Z'"""(l,l') is obtained by recoupling r and t
to k.

It is convenient to use in this case the following repre-
sentation for the collisional interaction of the target and
the continuum electrons To, I, (see Appendix A),

g ( 1)r+t+k(Z(rt)k(I I ).Z(rt)k(T f ))
1

/&j 0 rE EP E1
I to, T) I

x 25, o5, kx'(/o, To, l), T') )+(2r+1)(2t+1)g ( —1)"'+'+' r x'(I, T f, I, )

(33)

where X (l„ls', l„ld ) are defined by Eq. (29).
Taking the matrix element of Eq. (33) between the states )t), of Eq. (5), following the same steps as in the relativistic

j-j scheme of Sec. II C, and summing over j0,j&, we obtain the following result:

+o)=g X X X &'PollZ'"""(/o /()llq') &&'4IIZ'"""(/o l()llq') & 'Q"'(/o I(;lo I(),
rt lp l1, k

'O E1

with

(34)

(35)

and

I() T, k'
P"(To,T(;Io, l, )=25„o(2t+1) '/ X'(lo, To;I„T,)+( —1)'+'(2r+1)'/ (2t+1)'/ g ( —1)" ' — 'X" (/o, To;T„l, ) .0~ 0~ 1~ 1

(36)

It should be mentioned that the results of Sec. II D for the semirelativistic approximation may be obtained directly
from Eq. (34) using the identity (Appendix A)

Z rt)k(I / ) y (pJ + 1) ((/zj2+ 1))/2(2k+ 1))/2

Jp j1
J0

T1

2

I, t Z' '(j() j, ) . (37)

For the SLJ coupling scheme it turns out that the sum-
mation over k in Eq. (34) can be carried out and the re-
sults are expressed in terms of regular double tensors
Z'"'. Furthermore, J0 and J1 appear only in a 12j sym-
bol.

F. Collision strength in the SLM+MI coupling scheme

y; = I(/I;(r;, S;,L; ),T;;ST,L7,M@7,ML7 I, i =0, 1 . (39)

The same procedure as in the other schemes leads to the
desired factorization between the target and the continu-
um, i.e.,

In physical situations where the state vectors of the
complete system, target plus continuum electron is in LS
coupling scheme, it is convenient to use the representa-
tion (A4) of Appendix A for the collisional interaction,

r, I lo, l
)

&& & q'ollZ'""(/o /()llq') &

X Q"'(l(), 1, ;/o, I', ), (40)

N+1
(lo) — x (2ST + ( )(2I y + ( ( Qp x lk&I

T i j =1 ijT

where

(38)

where Q"' is defined in Eq. (35).
Thus for the nonrelativistic case the collisional excita-

tions behave like one-electron double tensor multipoles
with respect to the orbital and spin spaces. The spin
dependence originates from the exchange term in the col-
lisional Hamiltonian.
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III. TRANSITION ARRAYS AND INTERPOLATION
OF THE RADIAL INTEGRALS

In Sec. II we established the factorization of the col-
lision strength into an angular part and a radial part in-
volving the sum over partial waves, thus establishing the
first point exposed in the Introduction. However, the ex-
pressions considered so far concern the collision strength
of a transition between two levels. In this section, we ad-
dress the problem of a transition array.

Let us consider as an example the case of relativistic
wave functions, and for that matter, rewrite Eq. (22), tak-
ing into account Eq. (24), in a more compact forin,

0,„=8+ g(i
/

n )(n//Z"//s)(sf r)
k n, s

X 'g (i
f
n')(n'/[Z "//s')(s'

/
r)

ll, S

xQ (j„,j, j.j, l&E,,). (41)

The transition takes place between the level r, de-
scribed as a combination of the pure configuration states
(PCS) s (s'), with coefficients (s

~

r) ((s'
~
r)) of one

configuration manifold, and the level i, a combination of
PCS n (n'), with coefficients (i

~

n ) ((i
~

n') ), of the oth-
er one. The radial integrals Q" are defined through Eqs.
(23}and (21). Here their dependence on the transition en-
ergy hE;„ is explicitly stated.

It is clear from Eq. (41) that, indeed, all the depen-
dence on the quantum numbers of the fine-structure lev-
els is separated from the radial wave functions. The ma-
trix elements of the Z operators can thus be computed
like ordinary multipole transitions; '" they are indepen-
dent of the energies, and actually even of the element, so
that they can be used for a whole isoelectronic sequence.
On the other hand, the Q depend on radial wave func-
tions, and on the energy of the transitions only.

Equation (41) is analogous to the example, quoted in
the introduction, of the radiative transitions. However,
there are two fundamental differences with the case of ra-
diative transition integrals, which are given in the follow-
ing.

A. Properties of the Q "(j„,j, ;j„,j, ) integrals

A consequence of the factorization is that the
Q (j„j„j„,j, ) integrals are not squares nor products of
integrals, when n+n', or s+s', that is, when
configuration mixing plays a role. Consequently, in the
general case, taking into account configuration mixing,
Eq. (41) does not describe a product of matrices, or
squares of matrix elements, as in the case of radiative
transitions, and the number of operations necessary to
evaluate a full collisional transition array increases at
least as the fifth power of the size of the transition ma-
trix. Also, the number of such integrals increases as the
fourth power of the number of bound orbitals involved in
the spectrum considered. This is particularly important
for the case where a relativistic description of the bound-
electron wave functions is necessary, because, as is well
known, the departure from pure jj coupling, which is sel-
dom negligible, manifests itself by "relativistic subcon-

figurations" mixing. In addition, the number of relativis-
tic orbitals is obviously nearly double than that for the
nonrelativistic case. However, the products of
coefficients (i

~

n )(i
~

n') (s
~

r )(s'
~

r ) are fourth order in
"configuration mixing, " and are often small enough to be
neglected. Consequently, many Q" do not practically
influence the final results.

When configuration mixing can be neglected, the situa-
tion is like radiative transitions. Strictly speaking, the in-
tegrals of the type Q (j„,j,;j„,j, )—to which we refer in
the sequel as Q "(j„,j, )—are not squares of integrals nei-
ther. However, according to Eq. (23), they are sums of
squares, i.e., positive for all partial waves, so that one can
write

0;„=8+ g(i [
n)(n/[Z"/fs)(s

/
r)

k n, s
'2

x[Q "(j„,j, I
bE;„)~' ' (42)

As suggested by the notation in Eq. (41), the Q" de-
pend on the transition energy

(43)

where E; and E„are the initial and final target state ener-
gies and c;„and c.,„, are the incoming and the outgoing
electron energies. This energy dependence comes from
the requirement of energy conservation, and has nothing
to do with a possible breakdown of the central field ap-
proximation. As a matter of fact, in many cases, simply
assuming the Q to be energy independent would be a
poor approximation.

Now it appears from many numerical computations
that the Q"'s are smooth functions of the transition ener-

gy, and hence can be interpolated between very few
values of b,E. More precisely, the Q"'s can be represent-
ed in terms of any two of the following variables c 'E

AE, X=c;„/AE, u =c,„,/hE, or any monotonic function
of these.

It turns out that except for dipole-allowed transitions,
the choice EE,c „, is appropriate. In most cases it is
even possible to obtain sufficiently accurate Q" (bE,„,
s,„,} by retaining the linear term only. For dipole-
allowed transitions, it was found that the linear approxi-
mation was better when using the variables log(bE) and
&Out.

This behavior of Q" is demonstrated for various kinds
of transitions in Ni-like GdxxxviI in Figs. 1 —3, using

Therefore, the collision strengths are squares of matrix
elements. Moreover, it is clear from Eq. (23) that the
building blocks for the Q" are the integrals P". The num-
ber of these behaves as the square of the number of orbit-
als only. It is here that the global approach of computing
a whole spectrum simultaneously makes a difference, be-
cause each P is cominon to several Q". This approach is
possible, however, only if there is a way to compute all
these P" at the same energies, as described in Sec. III B.

B. Interpolation as a function of transition energies
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IV. SUMMARY AND DISCUSSION

In this work we have developed a method for calculat-
ing a complete spectrum of collisional excitations. We
have derived factorization formulas where the collision
strength including exchange is represented by a one-
electron angular operator, acting on target states, which
multiplies a radial part containing the dependence on the
continuum electrons. The relativistic, semirelativistic
(i.e., nonrelativistic continuum wave functions), and non-
relativistic cases were worked out, and the corresponding
formulas are given. These factorization rules apply also
in the case of configuration interaction. In conjunction
with an interpolation procedure for the energy-dependent
radial part, those formulas enable a drastic reduction of
the number of radial calculations, which are the most
time-consuming part of the calculation needed for the
complete spectrum analysis.

The theory, in the semirelativistic approach, was im-
plemented in a set of computer codes for calculating pop-
ulations distribution of complex excitation spectra in
non-LTE plasma. In these calculations, collisional exci-
tations as well as radiative spontaneous decay are includ-
ed. As mentioned earlier, the description of these pro-
grams is outside the scope of the present work, but they
are mentioned here to compare the results of the
factorization-interpolation method with conventional
ones.

Numerous computations of cross sections and rate
coefBcients for collision excitations in various ionized
atoms were performed as tests of the method, ' and com-
pared with results obtained by other authors. ' Although
the numerical methods differ, the cross sections and rate
coefficients obtained for similar target states definition
are always within a few percent. The gain in computing
time was checked at Lawrence Livermore National Labo-
ratory. One standard code in use there (MCDw) re-
quires 10 min of Cray computer time for 36 hn =1 tran-
sitions in the 37-level Ne-like model, while this one com-
putes all the 663 hn =1 and hn =0 transitions in 6 min,
an improvement of a factor of 30. Other computations
have been performed on Ne- and Na- like, ' Mg-like,
and Ni-like atoms.

As an example, we report here complete spectrum cal-
culations for the Ni-like Gd xxxvii case mentioned in
the preceding, including all the 5565 transitions among
excited states. At this stage, since we wish only to illus-
trate the results of the collisional-excitation cross sec-
tions, we have neglected all ionizations and recombina-
tions, and we assume a steady-state equilibrium. The re-
sults for the cross sections for excitation from the ground
state were compared with those of Hagelstein, also com-
puted in the DW framework, and are within 10%%uo relative
difference. No attempt was made to compare our rate
coe%cients with those obtained by the classical path
model. The computations were performed On the Con-
trol Data Corporation CDC-855/170 computer of the
Computing Center of the Hebrew University in
Jerusalem, and took about one hour and a half of
central-processing-unit (CPU) time, including the compu-
tations of energy levels and radiative transition probabili-
ties.

The populations of some levels, obtained with this ap-
proximative model, exhibit relatively large inversions (for
optically thin plasma), and are shown versus plasma den-
sity for an electronic temperature of 750 eV in Fig. 5. We
do not report the values of the expected gains, because
obviously, without ionization, recombination proper radi-
ation transport, and a time-dependent model, the num-
bers are very approximate. But the point here is to show
that these lengthy calculations can be performed much
quicker with the factorization-interpolation method, even
without an access to a supercomputer. A detailed inves-
tigation of this system will be described in a forthcoming
paper. Analogous transitions in Ni-like EuxxxvI were
previously calculated, and experimental results have
been reported recently.

Computations were also performed for the more com-
plex atomic system Co-like Xe xxIx, in order to identify
electric quadrupole transitions recorded in a tokamak
spectrum. Configurations 31, 31 4s, 31 4p, 31 41,
31 4f, 3p 31', 3p 31 4s, 3p 31 4p, and 3p 41 41 were
included, summing up to more than 300 levels, i.e., about
45000 transitions. It should be pointed out that for the
Co-like spectrum, the number of radial calculations is not
much larger than for the Ni-like case, since it depends
only on the number of orbitals involved. The results, ob-
tained at the Hebrew University in about 2 h of comput-
ing time, have been reported, and will be published
shortly. To the best of our knowledge, this is the first
time such a complex spectrum of collisional excitations
has been completely computed in the DW framework.
Thus the proposed method enables us to obtain the solu-
tion of problems which were considered practically im-
possible until now. It must be clear, however, that the

Gd Ni-like
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FIG. 5. Normalized reduced-level populations N' vs elec-

tronic density for Ni-like Gdxxxvri thin plasma at electron
temperature T, =750 eV. N'=N/(2J+1), Ng; reduced popula-
tion for the ground state. (a) 3d (3/2)4d 5&2, J= 1; (b)

3p'(3/2)4f, ~, , J=2; (c) 3d (5/2)4p, ~~, J=); (d)
3d'(5/2)4d, /„J=2; and (e) 3d'(3/2)4d3/2 J=0. Population
inversions for a possible x-ray laser are marked by arrows.
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gain of time would not be significant for simpler spectra,
where the number of fine-structure levels per orbital is
small.

In this paper only collisional excitation was mentioned.
However, the factorization-interpolation method can be
easily applied to other atomic processes in plasmas treat-
ed in the DW framework. For radiative recombination,
which is a one-electron operator to begin with, there is no
angular problem, and the interpolation idea can be used.
It is not difficult either to implement the idea of
factorization-interpolation for autoionization and elec-
tron capture, which are basically two-electron Coulomb
interaction, like the collisional excitation discussed in this
paper. The extension to collisional direct ionization
should be quite simple, since it is a special case of excita-
tion, where the final state has a continuum electron.
Thanks to the factorization, the sum over the partial
waves of the ejected electron can be performed, and the
resulting angular operator is just an annihilation opera-
tor. Work is in progress on this subject.
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APPENDIX A

where a, p, y, and 5 are sets of individual quantum num-
bers and

a((((((2( 5(()y(&)I(
1

r12

= g( —I)'&t
~

Cq"'[5&&p~ C'",'
I y &R "(~,p;»y) .

k, q

(A2)

In Eq. (A2) C'"' are the spherical harmonics and
R (a,p; 5, y ) are the radial Slater integrals.

We start with the scheme of the individual quantum
numbers ( n, s, l, m„m ( I. It has been shown' that the
(2s+1)(2!+1)components of

a~as, ag, and a as

of

form an irreducible double tensor set of ranks s and I
with respect to s and I.

Since the Slater integrals are independent of m, and

ml, the summation over these indices recouples the pairs

Representation of the electrostatic interaction operator

The second-quantization form of the electrostatic in-
teraction is

a a@sa,, =a asa@ —5& a a

where the recoupling coefficients

(A3)

a ag as a(1)P(2) 5(1)y(2)
l (j lj a, p, y, b

(Al)

(11'mIm)
~
kq), ( —,

'
—,'m, m ~

~

00)

are supplied from the matrix elements of the operators
C'"' using the Wigner-Eckart theorem. The result is

where

[Z (l 1 ) Z( (lp ls) 5( ( (2l +1) /Z( (1 ls)]X (I lp lr ls)
l , Ep, k

l, l~

(A4)

and

I =—[n, s, l f,
(l lp lr ls) &1 [(C ((I &&lp(JC [[ls&R (1 lp l ls)

z(k)( l l i
) 21/2z {0k)(l

(A5)

(A6)

(A7)

Z (l l') — (2~+ 1)—/ (2k+ I)—)/2Iatxy I(Kk)

= —(2)r+ I) (2k+1) ' g (ll'mm'
~
kq)( —' —,)p(M'

~

a~)at(„
Im, m,

P~P

It can be easily shown that the operator Z'""'(l, l') is the second-quantization form of the symmetric operator

g(Kk )(l ll )

(A8)

(A9)
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with the single-particle reduced matrix element

& n, s, l, Ilg'""'(l, l')lln2s212 & = & n, I, Ilg'"'(l, l')llnzl2 & =5(n l, n )5(ll, l )5(n2, n')5(I2, l'), (A10)

where for double tensors the matrix elements are reduced with respect to both s and l.
In the relativistic case the Slater integrals depend on the individual quantum numbers j but not on m . In this case

we define

by

nsljm and a„,Ij

a„,l —— g (slm, m, Ijm )a„„
m, , mI

(Al 1)

yielding the representation (Al) in the nsljm scheme.
We can now recouple a„,l. and

nsl jm ( } nslj —m

of Eq. (Al) in a similar manner as in the SL case. The result is

j +j&+&g(Z' '(j„jr) Z'"'(jp, js)—( —1) ' P 5;; (2j +1} 'i Z' '(j,js})X"(j,jp.,j,js),
k

Jy~ Jg

where

(A12)

j= fn, sl,jI,
X"(j.jp j js)=&-'I.i.IIC'"'ll-,'I,i, &&-'IpipllC'"'ll-'Isis&ll "(j.jp j, js»

j j' k
&slj IIC'"'lls'I'j'& = & IIIC'" III' &( —1)' +''+ j+ "(2j +1)' (2j'+1)'

2

[Eq. (3-38) of Ref. 9] and

(A13)

(A14)

(A15)

Z (j j')= —(2k+1) ' Ia a')'"' (A16)

Z' ' is the second-quantization form of the symmetric operator whose single-particle reduced-matrix element is

& n 1 I |J|llk'"(j j') lln2I2j~ & =5(n l, n }5(Ii I }5(A i »(nz n'»(I2 I'»(i2, i'»
%+1

Z'"'(j, J')= g gi"'(J,J'),
(A17)

Taking the matrix element of (A12) between the states %o and 4, of Eq. (3), we obtain the collisional interaction as

V(Jo Ji)= g = g g[(Z'"'(jo, j,).Z'"'(Jo, J, ))X"(jo,Jo, j,,J, )+(Z'"'(jo, J, ) Z'"'(Jo, j, ))X"(jo,Jo,J,,j,)] .
i (J 'J j0.3&

(A18)

The two terms in the square brackets are the "direct" and "exchange" parts, respectively.
The contribution of the term Z' in (A12) vanishes for collisional interaction, since the factor 5p (5. -,5. - ) (for the

direct and exchange part, respectively) can be made to vanish if we choose an orthogonal basis for radial wave function.
Furthermore, the factor —, in (A12) is canceled since each radial integral appears twice in the sum. For the nonrelativis-
tic case the collisional-interaction operator has the same form as Eq. (A18) with individual I's instead of j's.

By recoupling the creation and annihilation operators of the continuum electron (and bound electron) separately us-
ing Eqs. (1-21), (3-13), and (3-29) of Ref. 9 and the anticommutation relations of these operators, we obtain for the ex-
change angular part the relations,

k
(Z'"'(jo, J, )-Z'"'(Jo, j,))= g( —1)"+'(2t+1) '

—. . (Z'"(jo,j,).Z'"(Jo, jl))
Jo Ji

(A19)

and

Io Tl k
(Z'"'(lo, T, ).Z'"'(To, I, })= g ( —1) +'(2t + 1) ' ' g (2r+ 1)(Z'"'(lo, I

&
).Z'"'(To, T, }) .

o I| t
(A20)
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Another useful representation of (A20) is

lo T, k
(Z'"'(lo, T, ) Z'"'(To, l, ))= g ( —1)"+'(2t+1) ' — 'g(2r+1) g ( —1)"+"(Z'"'"(lo,l, ) Z'"""(f T ))

lo I, t
X

(A21)

where the operators Z'"'"(I, I') are obtained by recouping r and t to x.
Equations (A19), (A20), and (A21) represent the exchange angular operators in terms of direct-type operators which

allow the factorization of the matrix element in terms of separate target and continuum matrix elements. Substitution
of (A21) in (A4) yields the representation (33) of the collisional interaction. The following useful identity,

2

Z( )k(1 I ) = P (2j + 1 )I /(22j + 1 )I/2(2k + 1 )I/2

&0 &l
jo j, k

(A22)

is obtained from the definitions (Al 1) and (A16) and from the recoupling coefficient [Eq. (3-13) of Ref. 9].

APPENDIX B

Analytical formulas for the matrix elements of the operator Z'"' are obtained easily for the following two useful
cases, by Eq. (A8), Eqs. (3-35) and (3-39) of Ref. 9, and Eqs. (31) and (32) of Ref. 12. The results are as follows:

(I l JI»j2 (I'2 J2»J'&
I

[ ( + 1)]1/2(j"I I J I I

j"l I J )(j"21 J
I ]

j"2+ I J )( 1)" +"2+ 2 2 2

X(2k+ 1)(2J + 1)1/2(2J + 1)1/2(2J+ 1)1/2(2J~+ 1)1/2 J J J
J J' k

(B1)

(B2)
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