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Quantum system driven by rapidly varying periodic perturbation
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A quantum system driven by a high-frequency periodic perturbation is studied. By using the
asymptotic expansions in terms of inverse powers of the driving frequency, a class of unitary time-

dependent canonical transformations is defined which renders the transformed Hamiltonians time

independent. One representative of those Hamiltonians is the quasienergy operator, which is explic-

itly derived up to the fourth order. The classical limit of the theory and the possibility of separating
the mean-motion Hamiltonian is discussed. It is shown that this separation can consistently be car-
ried out to higher orders only in the case of a uniform external force. The application of the
method to unperturbed systems with regular confining and singular potentials is discussed by con-
sidering the examples of harmonic oscillator, particle in the double-well potential, and particle in

the Coulomb potential.

I. INTRODUCTION

In classical mechanics a common approximate way of
describing the motion of a Hamiltonian system perturbed
by a rapidly varying external periodic force is to try to
separate the "mean motion" from the superimposed
high-frequency oscillations caused by the external pertur-
bations. This procedure involves the averaging of classi-
cal equations of motion over one period of external force
and results in an effective, time-independent, mean-
motion Hamiltonian function. '

In the present work we study the analogous quantum-
mechanical problem. The theory is formulated in terms
of time-dependent unitary canonical transformations and
allows for a straightforward classical limit. As pointed
out in Sec. II in the general case of periodically driven
systems a class of unitary time-dependent canonical
transformations exists which renders the new
(transformed} Hamiltonian time independent. All time-
independent Hamiltonians from this class have the same
spectrum, and the quasienergy operator belongs to this
class. In the case of the high-frequency perturbation, and
for a class of systems defined in Sec. III, an explicit con-
struction of canonical transformations is presented by us-
ing the asymptotic expansions in inverse powers of the
driving frequency. The quasienergy operator is derived
up to the fourth order and the results are related to the
Magnus expansion of the evolution operator. The exam-
ination of the classical limit reveals that the separation of
the mean motion can consistently be carried out to higher
orders only in the case of a uniform external force. The
latter case is studied in more detail in Sec. IV where the
mean-motion Hamiltonian is derived up to the sixth or-
der. It is also shown that in the case of a harmonic oscil-
lator driven by a uniform periodic force the present
theory gives the exact solution, but when applied to
singular potentials it may face divergence problems. Our
conclusions are summarized in Sec. V.

II. GENERAL CONSIDERATIONS
AND FORMULATION OF THE PROBLEM

Let p =Ip, ,p, , . . . ,p)vI and q=Iq), q, , . . . , qNI be
sets of canonically conjugate momentum and position
operators of a quantum system described by a time-
periodic Hamiltonian H(p, q, t)=H(p, q, t+T). Then the
well-known Floquet theorem applies (see, for example,
Ref. 4, and references therein) and the unitary evolution
operator of the system takes the form (a system of units
with fi= 1 is used throughout the work)

U(p, q, t)= W(p, q, t)e

W(p, q, O) =1, W(p, q, t + T)= W(p, q, t),
(la}

(lb)

P (p q t) e
—is(p, q, i)p is(p, q, i)

Q(pq t)e is(p, q i)qeis(p, q t)

SC(P, Q, t) =Sr(P, Q)=e'"'tl "II(P,Q, t)e
—iS(P, Q, t)

~iS(P, Q, t)

(»)

(2b)

where G(p, q) is the Hermitian, so-called quasienergy
operator and W(p, q, t} is the unitary time-periodic opera-
tor. Various perturbative and nonperturbative methods
of describing the evolution of periodically driven systems
have been proposed in the past (see, for example, Refs.
4—6).

The method adopted in the present work, although
particularly convenient for establishing the correspon-
dence with classical treatments at high frequencies, is ac-
tually quite general. It is based on the construction of the
time-dependent canonical transformation (p, q}~(P,Q)
which renders the new Hamiltonian K(P, Q) titne in-
dependent. The transformation is defined in terms of a
time-periodic Hermitian operator S(p, q, t }=S (p, q, t + T)
(which is a Hermitian functional form of canonically con-
jugate operators),
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U(p t) iS(p, q—, r) —iK(p, q)r iS(p, q, O) (4)

The last formula represents the connection between evo-
lution operators in (p, q) and {P,Q) "representations. " By
equating the right-hand side (rhs) of Eqs. (la) and (4) and
taking into account that S(p, q, t) is periodic in time, after
some simple algebra one derives

The last formula is analogous to the relation between
"old" and "new" Hamiltonian functions in classical
mechanics when canonical transformation (in its Lie-
algebraic formulation ) is explicitly time dependent. In
Eq. (3) H(P, g, t} and S(P,Q, t) are the same functional
forms as H(p, q, t) and S(p, q, t) but with old variables
(p, q) replaced by new variables (P, g). It should be em-
phasized that (as explicitly shown in Sec. III) the condi-
tion of time independence of the new Hamiltonian does
not unambiguously determine the transformation (i.e.,
the operator S). There is actually a whole class of opera-
tors (S,K) satisfying condition (3).

The evolution operator in terms of (p, q} variables can
now be expressed as

H (p, q, t) =HO{p, q)+ V(q)sin(oit +{t}),

HO(p, q)= ,'p —+U(q).

(6a)

(6b)

A. Construction of canonical transformation

Let us expand the generating operator S from Sec. II in
an asymptotic series in inverse powers of co,

00

S(P, Q, t)= g kSk(P, g, t) .
CO

Then, by using operator equality

In order to use co=2~/T, the frequency of periodic
perturbation, as a large parameter in the theory, we shall
assume that the exact wave function of the system
represents a wave packet of bound eigenstates of Ho,
such that co))co,j, where co;& is the Bohr frequency for
the transition between any pair of eigenstates.

G (p q } e is ( P, q 0)K (p q )e is (P, q, 0 )

$fT(pq t)e iS(pqt)eiS, (p, , q, O)

(5a)

(Sb)

00 ' J
e' Ae ' = g . , [S,[S,. . . [S,A] ]],jf

Therefore solving for any K and S is, in principle,
equivalent to solving for 6 and R. In particular, from
(5a), it follows that operators G and K are unitary trans-
forms of each other and therefore have the same eigen-
spectrum. From (Sa), it also follows that imposing the
condition S(p, q, o)=0 [in addition to (3}]leads simply to
I{ =G.

The question, however, arises, as to whether there are,
and under what circumstances there would be, other con-
ditions that could be imposed on S and which would lead
to physically meaningful interpretation of the time-
independent Hamiltonian K (P, Q). This question will be
explored in the following sections for the case of a high-
frequency external perturbing force.

III. CONSERVATIVE SYSTEM DRIVEN
BY A HIGH-FREQUENCY PERIODIC PERTURBATION

Let us be more specific and consider an N —degree-of-
freedom system defined by a Hamiltonian

where the commutators are j-fold nested, and from Eq.
(3) one derives the following asymptotic expansion for the
new Hamiltonian:

K (P, Q) = g K'"'(P, Q),
n=o ~

where

1 aS, (P, g, t)
K"'(P,Q)+ —=H (P, Q, t),t

(1Oa)

with

and for n ) 1,

1 aS„„(P,g, t)K'"'(P, g)+ — "" ' ' =Z(")(P,g, t), (1Ob)
CO

n

&'"'(pg t)= g g . [s„,. . . [s„,H]. ]+ yj=l kl&1 j=2 ..1I—

BS„
S„,. . . S„

co Bt
(loc)

and

g ki=n g ni ="+
1=1 1=1

(lod)

By using the condition that K(P, Q} is time independent,
Eqs. (loa) and (lob) can simultaneously be solved for
K'"'(P, g) and S„+,(P, g, t), n =0, 1,2, . . . , by the fol-

lowing inductive procedure. Noting that S„+,is periodic
in time, hence

f+ T BS„+1f dt =0,
t Bt

one easily determines from (loa) and ( lob)
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K '(P, Q)= —f H(P, Q, t)dt,
T t

BS) 1 f+T=H(P, Q, t) ——f H(P, Q, t)dt,
co Bt T t

and for n ) 1,

(12a)

(12b)

remains undetermined. This is exactly the ambiguity
mentioned in Sec. II, in the determination of the pair
(S,K} solely from the condition of time independence of
K. In order to remove it one has to impose additional
conditions on S(P, Q, t). Possible ways of doing this are
discussed in Secs. III B and III C.

K'"'(P, Q) =—f R'"'(P, Q, t)dt,T
(12c) B. Quasienergy operator

1 ~Sn +1
=R '"'(P, Q, t) ——f R ("'(P,Q, t)dt,

co t

(12d)

where R'"'(P, Q, t), as seen from (10c), depends on
S

& S2 ~ ~ . , S„and is therefore determined in the previ-
ous steps of the inductive procedure.

Equations (12b) and (12d) determine each of S„+) up to
some additive time-independent Hermitian operator.
Since S„+, is periodic in time, it is equivalent to saying
that its zero-frequency Fourier component

S„+)(P,Q, O) =0 (14)

and with the time-dependent Hamiltonian as defined in
Eq. (6a), one finds up to the fourth order in I/co,

4

G y G(n)

n=o
(15)

As mentioned in Sec. II, the condition S(P, Q, O)=0
determines the new Hamiltonian as a quasienergy opera-
tor, i.e., G(P, Q)=K(P, Q). Thus by solving (12a)—(12d)
with the condition

S„',(P, Q) = f S—„+,(P, Q, t)dt (13) with

G[o)

G")=i [ V, Ho]cos(t,

G' '= —[Ho, [Ho, V]]sing —[ V, [ VHo]]( —,'+ —,'cos ())),

(16a)

(16b)

(16c)

G' '=i [Ho, [Ho, [ V Ho]]]cosg ——[Ho, [ V, [Ho, V]]]sin2$ ——[ V, [Ho, [Ho, V]]]sin2$, (16d)

G(~) = —[Ho, [Ho, [Ho, [Ho, V]]]]sin(}))+[[V, Ho], [ V, [ V, Ho]]](—,
) sin())) ——,'cos(t) sin2$)

+[[V, H()], [H(), [V, H()]]](——,
' —

—,'cos (t) )+ [H(), [V, [H(), [H(), V]]]](—,'+ ,', cos2$—+,'c()s P) —. (16e)

C. Classical limit and separation of mean motion

Up to now we have dealt with the quantum-mechanical
system, but all of our formulas preserve their forms in the
case of classical dynamics governed by the Hamiltonian
function which corresponds to (6a) if only all commuta-
tors are replaced by Poisson brackets,

1
—.[A (p, q, t),B(p,q, t)]~ [A(/, y, t),%(/t, ~, t)I,

1
(17)

where A, X,p, y are classical dynamical functions and
canonical momentum and position variables. As for uni-
tary canonical transformation

The corresponding expansions for generator S and uni-
tary operator 8'are given in Appendix A.

Nauts and Wyatt have applied the Magnus expansion
to the evolution operator corresponding to Hamiltonian
(6a) in the special case (I)=m/2. Their result for the
quasienergy operator obtained up to the second order is
reproduced by formulas (16a)—(16c). This indicates that
the two methods are closely related.

(pq t )~e is(P, q, t)g(pq t)e is(P, q, r)— (18)

it corresponds to the classical time-dependent canonical
(Lie) transformation

A(p, ~, t)~e ~»& "A(p, +,t),

where 4'(p, y, t) is a linear operator in the space of
dynamical functions,

P(p, y, t)[A (/i, y, t)]=
t $(fi. ,y, t},A(fi, y, t) J . (20)

Bearing in mind the above facts we shall proceed to work
with quantum-mechanical variables. In all the following
formulas classical results are obtained by substitution
(17).

In order to establish the connection with classical treat-
ments' of the problem a deeper insight into the struc-
ture of the transformations inverse to (2a} and (2b) is
necessary. Using again formula (8) and expression (7) one
finds
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(p ~ ) iS{,P, Q, t)p —iS{P,Q, t)

=P,. + y P,(")(P,g, t),
n=1 ~

(p ~ t) iS(P, Q, t)g —iS(P, Q, t)

=Q;+ g „q "'(P Q t»
n=1 ~

(21a)

(21b)

sc")=a, ,

I|,")=0,
K' '= ——,'[V, [V,H()]],
sc")=0,
K' '=i [S4,H()] ——,'[V, [H(), [H(), [V,H()]]]] .

(25a)

(25b)

(25c)

(25d)

(25e)

ki ——n . (22c)

In the previous classical treatments' of the system de-
scribed by (6a) an effective time-independent Hamiltonian
function A(P, 6) has been derived up to the order 1/co
by requiring that, when averaged over one period of fast
oscillations, original variables reduce to new variables,

(23a)

—f /t, dt=P; .
t+T

t
(23b)

In Ref. 3 the claim is made that the method has been ex-
tended to order 1/co . If the conditions (23a) and (23b)
are fulfilled the Hamiltonian function R(P, 6) can be
said to describe "the mean" (i.e., smoothed over fast os-
cillations) motion of the system.

In our formulation, as seen from (2la) and (21b), condi-
tions (23a) and (23b) correspond to requirements that the
zero-frequency Fourier components of q

' and p ', up to
a given order n, all vanish,

f q,'"'(P, Q, t)dt =0, (24a)

p{k) I' ',t 0 (24b)

In each order k =1,2, . . . , n conditions (24a) and
(24b), via relations (22a) and (22b), impose restrictions
upon the zero-frequency Fourier components Sk, Eq.
(13), of the generating operator S, which were otherwise
undetermined. Clearly, it may happen at certain order,
that conditions (24a) and (24b) overdetermine single
operator Sk(P, Q). Indeed, when applied to Hamiltonian
(6a) the above procedure of determining the canonical
transformations goes smoothly up to the order 1/co
where diSculties are encountered. The resulting asyrnp-
totic expansions for S, p;, and q,. are listed in Appendix 8,
whereas the time-independent Hamiltonian is given by
expansion (9) with

where

(i)J
pi (P Q t) y y ~

)
[Sk) [Sky&' ' ' [SkJtP )']) &

j=l k() 1

(22a)

q '"'(P, Q, t)
tt (i )J

[Sk,[Sk, . . . [Sk,Pi ] ]], (22b)
j=1 k() 1

1 av av
=4ag, ag,

' (27)

which is the same as the classical result. ' On the other
hand, the classical result quoted in Ref. 3,

1 av av a'e
=4 aa, aa„aa,aa„' (28)

is meaningful only if the condition (26) is fulfilled (uni-
form external force), in which case it follows from (25e)
with S4 ——0.

Regarding the quantum Hamiltonian defined by
(25a)-(25e), it can be seen that it has a much simpler
structure than the quasienergy operator (16a)—(16e) but,
as noted in Sec. II, still the same spectrum. Thus, at least
in principle, it can be used for determination of the
quasienergy spectrum (with S04 ——0, for example), al-
though any clear physical -interpretation, even in the clas-
sical limit, of that Hamiltonian is lost. The result for the
quasienergy operator, as given by Eqs. (15) and
(16a)—(16e), can of course be rederived by using relation
(5a) and Eqs. (25a) —(25e), independently on the choice of
So

IV. UNIFORM EXTERNAL FORCE. EXAMPLES

All the formulas of the preceding sections considerably
simplify in the case of a uniform external force,

V(q)=f q; . (29)

In particular, the conditions (24a) and (24b) can be
satisfied at least up to the order 1/co with the resulting
time-independent Hamiltonian,

Now, S4 is to be determined in such a way that condi-
tions (24a) and (24b) for n =4 are fulfilled. However, as
shown in Appendix B, this is possible only if the coupling
term V(Q) obeys the condition (hereafter we assume
summation over the repeated indices),

a'v(g) a'v(g)
ag, ag, ag, ag,

= '

i.e., only when V is a linear function of the coordinates,
and in which case one should take S4 ——0.

Thus, for the general case of an arbitrary function
V(q) in Eq. (6a), it is not possible to separate the mean-
motion Hamiltonian, in the classical sense of Eqs. (23a)
and (23b), of order higher than 1/to . With Ho given by
(6b) the commutators in (25c) can easily be calculated to
give
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A. Harmonic oscillator

This is an exactly solvable problem and therefore a
good test for an approximate theory. All the expansions
used in the previous sections are in general case asymp-
totic, i.e., divergent; however, for this particular case, as
shown, they all converge towards the exact solution.

We take the potential of the harmonic oscillator in X
dimensions to be of the form (q:—q;q;)

CO

U(q)= q2
(31)

Then, from Eqs. (12a)—(12d), one finds for the generating
operator S (P, Q, t), which fulfills the conditions (24a) and
(24b),

S2k, —— f; Q;coo —cos(cot+(() }
2k —2

—(1—5k i) Sf coo sin(2cot+2P),

S2k f;P; coo" si——n(cot + p),
(32a)

(32b)

with k =1,2, . . . . If coo/co & 1, the sum (7) is convergent
so that

S(P,Q, t)= 2 2 [f;P;sin(cot+/)
1

CO —
COO

cof; Q, cos(cot—+P)]

K(P, Q)=Ho(P Q)+,f;f;+,f;f, ~
1 1 c}U

1 c)U c)U
' c);Bgk c)g.c)gk

The corresponding asymptotic expansions for S, p;, and

q, are listed in Appendix C. The classical result derived
up to the order 1/co by Nadezhdin and Oks coincides
with the first three terms in Eq. (30). The time-
independent Hamiltonian K(P, Q) can be used to deter-
mine the approximation to the quasienergy spectrum at
large frequencies of the external perturbation. We next
consider a few examples by specifying the potential U(q)
in Eq. (6b).

2

G (P, Q) =—P, — f;cosP
1 CO

CO —
COO

f2

+—,'coo2 Q, — f;sing +
CO —

COO 4(co —coo)

(36)

8. Double-well potential

As an example of a one —degree-of-freedom system in
confining potential, we consider the double-well potential

U(q)= —aq +Pq (37)

with a,Pp0. Then, up to the sixth order in 1/co, one
finds from Eq. (30),

p2
K(P, Q)= + A, + A, g'+ A,g',

2
(38a)

with

f2

Ao ——

4CO

af2 a2f2

2CO CO

+

3Pf 12agf
CO CO

36P2f 2

CO

(38b)

(38c}

(38d)

The constant Ao does not affect the dynamics, and the
effective time-independent potential (which also deter-
mines the quasienergy spectrum), is either a double
(A 2 & 0) or a single well (A2 & 0}.

H(p, r, t)= —,'p ——+fz sin(cot+/) .1

T
(39)

C. Coulomb potential

This problem has been treated semiclassically (up to
the order I/co ) by Nadezhdin and Oks as a model for a
highly excited hydrogen atom driven by a linearly polar-
ized electric field. It is of interest to compare their results
with quantum treatment. The time-periodic Harniltonian
is taken to be

f2

sin(2cot+2P) .
8 CO

(33)
Then, by using notation Q =R= tX, Y,ZI one finds from
(30)

P coo
K(P, Q)= + Q +

4(co —coo)
(34)

CO

p, =P, + 2 cos(cot+/),
CO —

COO

(35a)

q; =Q;+ 2 2
sin(cot+/) .

CO —
COO

(35b)

Thus the quasienergy spectrum, i.e., the spectrum of the
Hamiltonian (34) is that of the harmonic oscillator. The
quasienergy operator derived from Eq. (Sa) is

The time-independent Hamiltonian and canonical trans-
formation between original and new variables are given
by

P 1 f f 1 —3cos6
4co 4co R

f 1+3cos 8
+4 ~ R

1 f 1 (4)nlm 2 + 2 + 4nlm
2n 4CO CO

where

(41a)

with cose=Z/R. Leaving aside for the moment the
term K'6' of order I /co in Eq. (40), the quasienergy spec-
trum can be estimated by using perturbation theory. The
nontrivial shifts to the hydrogenic spectrum come from
the term K' ', so that one finds (correct zeroth-order
wave functions are those in spherical coordinates)



1744 T. P. GROZDANOV AND M. J. RAKOVIC

(4)
~nlm

1=0
3n

f [3m —l(1+1)]
n 1(1+1)(21—1)(21+1)(2l+3}

(41b)

(41c)

and n, I, m are the usual spherical quantum numbers. Ex-
pressions (41b) and (41c) can be compared with the semi-
classical result

(4)„ f [3m —(1+1/2) ]
8n (l+1/2)

(42)

For large values of quantum numbers 1, expressions (41c)
and (42) converge to each other.

As seen from Eq. (40) the term I(. ( ' is even more singu-
lar than I( ' ', and in an attempt to include the contribu-
tion of the order 1/co to the quasienergy spectrum, one
is faced with the problem that diagonal matrix elements
between s states of E' ' diverge. This points out a general
limitation of the present method when applied to singular
potentials. As indicated by Eq. (30), higher-order terms
contain products of higher derivatives of the potential,
thus becoming increasingly singular. Nevertheless, bear-
ing in mind the asymptotic nature of the expansions in-
volved, the results such as (41a)—(41c) or (42) can still be
meaningful.

V. CONCLUSIONS

We have studied the quantum system perturbed by
rapidly varying external periodic force. By using asymp-
totic expansions in inverse powers of driving frequency, a
class of time-dependent unitary canonical transforma-
tions, which renders the transformed Hamiltonian time
independent, can be defined. Additional conditions on
transformation can be imposed, either to identify the
time-independent Hamiltonian with quasienergy operator

or to interpret it as a mean-motion Hamiltonian in the
classical limit. In the latter case the interpretation can be
carried out to higher orders only in the case of a uniform
external force. The method reproduces the exact solution
in the case of a harmonic oscillator driven by a uniform
force and faces divergence problems when applied to
singular potentials.

APPENDIX A

From (12a)—(12d), with conditions (14), apart from
(16a)—(16e), one finds, for the first four terms in expan-
sion (7),

S, = V[cosg —cos(cot +P )],
S2 i [ V, H——O][sing —sin(cot +/)],
S3 ——[Ho, [Ho, V]][cosg—cos(cot +P )]

(Al)

(A2)

As defined in Eq. (5b), the unitary periodic operator W
can be found by exponentiating the operator S. Up to the
third order in 1/co one obtains

—[ V, [ V, Ho]][—,'sin2$ ——,'sincot ——,'sin(2cot + 2/ )],
(A3)

S4 ——i [Ho, [Ho, [ V Hz ]]][sing —sin( tot +P ) ]
—

—,', i [ V, [Ho, [ V, Ho ]]][cos2$ —cos(2tot +2P ) ] .

(A4}

3

W= y W'"',
n=o

W" ' = i V[cosg cos(cot—+ ((}}], —
W' '= [ V, Ho][sing —sin(cot ~P)] ,' V [co—sP—cos(cot+—(t})],
W' '= i[HO, [Ho, V]—][cosg cos(cot+((—})]+i[V,[V,HO]][—,'sin2$ ——,'sin(2cot+2P} ——,'sincot]

(A5)

(A6)

(A7)

(A8)

——( V[V Ho]+[V,HO]V)[cosltl cos(cot+/)][sin—p —sin(cot+/)]+ —V [cosp —cos(cot+/)]
2 6

(A9)

APPENDIX B

From (12a)—(12d), with conditions (24a) and (24b), simultaneously with (25a) —(25e) one finds, for the first four terms
in expansion (7),



38 QUANTUM SYSTEM DRIVEN BY RAPIDLY VARYING. . . 1745

S, = —V cos(tot+/),

S~ =i [Ho, V)sin(tot+/),

S3——[Ha, [V Ho])cos(tot+/)+ ,'[—V,[V Ha]]sin(2cot+2((),

S =S i ,',
—[ V—[H,[H, V] ]]cos(2tot +2P }+i[H, fH, [H, V] ]]sin( tot +P } .

The corresponding expansions (2 la) and (21b) for momentum and position operators are given by

p "=i[P;,V]cos(tot+/),

p '= —[P;,[V, H&]]sin(cot+/),

(Bl)

(B2}

(B3)

(B4)

(B5)

(B6)

p '=i [P;,[Ha, [Ha, V]]]cos(tot+/) ——[P;,[V, [Ha, V]]]sin(2tot+2P)+ [[H—~, V], [V,P;]]sin(2tot+2P), (B7)

p "=i[S4 P;]—l[V [P [Ho [V»0))))+-.'[[Ho V) [P; [VHo)))

+—4[[V,P;],[H a[H aV]]]—[P;,[Ho, [HO, [VHa]]]]sin(tot+/)

+(—,'[[V P;],[Ha, [HO, V]]]——,'[[Ha, V], [P;,[ VHO]] —
—,
' [P;,[ V [Ha, [VHa]]]])cos(2tot+2P),

q(1) 0

q,
' '= —[Q, , [VHD]]sin(cot+/),

q,
' '=i [Q, , [Ha, [Ha, V]]]cos(cot+/),

q,."'=t [S,', Q, ]——,'[V, [Q, ,[H„[V H, ]))l+-,'[I H„V), [Q, , [ V, H. ]]]

(B9}

(BIO)

(Bl 1}

—( —,', [Q;,[ V, [Ha, [V Ha]]]]+—,
' [[Ho, V], [Q;,[V Ho]]])cos(2cot +2/) —[Q;, [Ha, [Ha, [ VH&]]]]sin(tot+/) .

(B12)

Now, the conditions that the zero-frequency Fourier
component of p

' and q
' in Eqs. (B8) and (B12) vanish,

obviously fix the commutators [S4,P;] and [S4,Q;]. On
the other hand, from the Jacobi identity it follows that

[[S4,P;],QJ]=[[S&,QJ],P;], i,j =1,2, . . . , N . (B13)

Upon substitution, and after some algebra with repeated
application of the Jacobi identity, the condition (B13)
gives

[QJ [[VP 1 [[Ha V) Ho]))

=[[P; [H0 V)) [QJ [HO V))) (B14}

Substituting expression (6b) for Ha in (B14) and explicitly
calculating commutators we obtain condition (26) quoted
in the text.

APPENDIX C

In the case of a uniform external force the separation
of mean motion can be carried out at least up to the sixth
order. The corresponding expansion coeScients in Eqs.
(7), (2la), and (21b) are (summation over repeated indices
is assumed)

S, = f,Q, cos(tot+—(()),

Sz ——f;P;sin(tot +/),

(Cl)

(C2)

S3 — f cos(tot+/—)
' f sin(2tot+2P)—, —av 2

'aQ, 8
(C3)

S4 ———P,f; sin(cot +P },i 2 BU
2

(C4)

S& ———,
' P,f, , —+U cos(tot+/) ,'f f sin(2cot+—2—P},

av a'v
'2

I J
(C5)
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8 U aU
S6 ——i f;fJ,P [—', + —,', cos(2cat+2P)]+i + U, + U, ,f,

aQ, aQ,
'

2

p;"'=f;cos(cot+/),
p(2) p

02U

I J

sin(a)t +P), (C6)

(C7)

(C8)

(C9)

p; =i f~ . , sin(cat +P ),'BQ, B, ' 2

p2

2 2

8 Ucos(a)t+P)+ ,' f,fk—sin(2a)t+2$),

(C10)

(Cl 1)

P 8 U P P BU P
16 2

' l BQBQBQ " 2
'

2
' ~(jQ. '

q(1) p

q,
' '=f, si n( cat+/),

q(3) p

sin(tot+/), (C12)

(C13)

(C14)

(C15)

8 U
q 4'=f sin(cot+y),

(s) t P z BU
Q; 2»f, ~2

cos(cat +P),

(C16)

(C17)

a'U P P
U

BU P
q '= —

,', fkf»~Q &—Q &Q
cos(2~t+2$) — Q" 2

+U'
2

+U' J BQ
'

2i j k j
sin(cot+/) . (C18)

Note that S„=O for n =1,2, . . . , 5, but S6&0 in order to vanish the zero-frequency Fourier components of q
' and

(6)

L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed. (Per-
gamon, Oxford, 1976), Sec. 30.

I. C. Percival and D. Richards, Introduction to Dynamics
(Cambridge University Press, London, 1982), p. 153.

B.B. Nadezhdin and E. A. Oks, Pis'ma Zh. Tekh. Fiz. 12, 1237
(1986).

4A. Nauts and R. E. Wyatt, Phys. Rev. A 30, 872 (1984).
~J. H. Shirley, Phys. Rev. 138, 979 (1965).

H. Sarpbe, Phys. Rev. A 7, 2203 (1973).
J. D. Bjorken and S. D. Drell, Relatiuistic Quantum Mechanics

(McGraw-Hill, New York, 1964), Sec. 14.
E. C. G. Sudarshan and N. Mukunda, Classical Dynamics, A

Modern Perspective (Wiley, New York, 1974), p. 55.
V. S. Popov and A. M. Perelomov, Zh. Eksp. Teor. Fiz. 57,

1684 (1970) [Sov. Phys. —JETP 30, 910 (1970).


