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Phase operators for SU(1,1): Application to the squeezed vacuum
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A phase-operator formalism is constructed for the Lie algebra of SU(1,1). Uncertainty relations,
analogous to the usual number-phase relations, are also constructed. These relations are then evalu-

ated for SU(1,1) coherent states, of which the squeezed-vacuum state of the electromagnetic field is

an example. We argue that the new phase, in the case of single-mode fields, may be interpreted as
the phase associated with the square of the field amplitude.

I. INTRODUCTION

Recently there has been some interest in the phase
operators associated with the squeezed states of the elec-
tromagnetic field. Sanders et al. ' use the phase operator
formalism of Susskind and Glogower (see also Refs. 3, 4,
and 5) to show that squeezed states (actually squeezed-
vacuum states exhibit phase sensitive fluctuations. The
number-phase uncertainty relations do not approach the
semiclassical uncertainty products as for the case of the
ordinary coherent states. This would be as expected since
there is no classical analog to the squeezed states. On the
other hand, Lynch has described a phase-operator for-
malism where the phase operator may be interpreted as
the relative phase between the real and imaginary com-
ponents of the field amplitude. The expectation values of
these phase operators were found for squeezed states and,
as expected, reduce to the classical value for small
squeezing with large-field excitation. Finally, we mention
that the phase operators for squeezed light produced
from a nonabsorbing nonlinear medium modeled as an
anharmonic oscillator also exhibit enhanced fluctuation. 7

In this paper we consider an alternate approach to the
formulation of phase operators for the squeezed-vacuum
states. As has been shown, the squeezed-vacuum states
are an example of generalized coherent states (CS) associ-
ated with the noncompact Lie group SU(1,1). We there-
fore devise generalized phase operators given in terms of
the elements of the su(1, 1) Lie algebra. A similar set of
phase operators has been considered for the SU(2) spin
coherent states and studied in the case of high spin —the
classical limit. Our interest for the SU(1,1) case will be
mainly for the squeezed-vacuum states of a single-mode
field, where the results are nonclassical in the limit of
high squeezing.

In Sec. II we briefly review the su(1, 1) Lie algebra and
the relevant representations of su(1, 1). Coherent states
are also reviewed. In Sec. III we present the generalized
phase variables and define various uncertainty relations
analogous to those of the usual Heisenberg algebra.
We evaluate these uncertainty products for the squeezed
vacuum and discuss the limiting cases of high and low
squeezing. In Sec. IV we argue that the new phase opera-
tor, in the case of single-mode quantum fields, is associat-
ed with the quadratures of the square of the field ampli-
tude. In Sec. V we conclude with a brief summary.

II. su(1,1) LIE ALGEBRA AND COHERENT
STATES

In this section we briefly review the su(1, 1) Lie algebra
and the associated coherent states. We use the Perelo-
mov definition' of generalized coherent states.

The Lie algebra of SU(1,1) consist of three generators
Eo and K+ satisfying the commutation relations

[Ko,K+ ]=+K+, [K,K+ ]=2Ko .

The Casimir operator is

C =Kti ,'(K+K —+—K K+ ) .

(2.1)

(2.2)

In this case we obtain C= —
—,'„so that k =—,', —', . The

k= —,
' representation corresponds to states with even

numbers of photons, while the k =—,
' states contain odd

numbers of photons. This is easily seen by noting that
the number operator N =a a may be written, from Eq.
(2.4), as

N =2I( 0
——,

' (2.5)

Coherent states for SU(1,1), following Perelomov, ' are
given as

~ g, k)=S(a) ~o, k),
where

(2.6)

We shall be interested only in the unitary irreducible rep-
resentation known as the positive discrete series 2)+(k),
where k is the Bargmann index and the eigenvalue of C is
k ( k —1 ). For the 2)+ ( k ) representations we denote the
basis states as

~
m, k ), where Ko is diagonal according to

Ko
~
m, k) =(m+k)

~
m, k), m =0, 1,2, . . . and k &0.

The actions of E+ and I( are

K+
~

rn, k ) =[(m +1)(m +2k)]'~
~

m + l, k ),
(2.3)

K
~

m, k ) =[m (m +2k —I)]'~
~

m —l, k ) .

A realization of this algebra relevant to single-mode
fields is the oscillator realization given in terms of the
operators a and a . We have

Ko =—,
'

( a ta +aa t
) =—,

' (a a +—,
' ),

(2.4)
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S(a)= exp(aE+ —a'E } (2.7) S=—(e —e ), C= —(e+e ) .
2l 2

(3.4)

and where a= —,'He '+. The variables 0 and y are group
parameters and have the ranges —ao & 0 & ao and
0&y&2n Expanding in terms of the 2)+(k) basis we
have

I (m + —,')
1g,k)=(I —1g1')" y, ,

'
g 1m, k),

The commutation relations

[Eo,C]= i—S,
[EO,S]= iC',

lead to the respective uncertainty relations

(3.5a)

(3.5b)

X, =—,'(a+a ), X2= —.(a —a ),
2l

such that

(2.9)

(2.8)

where g= —tanh( —,'e)e '+. Properties of these states may
be found in Refs. 10 and 8 and references therein.

Now consider the single-mode field again with the Lie
algebra realized as in Eq. (2.4). We define the quadrature
operators

(bE, )(bc) & -,
' 1(s )

1
.

(bE, )(bs) &-,'1(C )
1

.

(3.6a)

(3.6b)

U, =(bE, )'(b, C)'/(S )'& —,',
U, =(bE, )'(bS)'y& C )'& -,',

(3.7a)

(3.7b)

and the symmetrical form

Thus one can form generalizations of the uncertainty re-
lations proposed by Caruther and Nieto, namely,

[X,,Xz]=—,l

2
' (2.10)

z (bS) +(bC)
(&s &'+ &c )') (3.7c)

from which follows the uncertainty product

(bXi) (bXq)z& —,', . (2.11)

Squeezing" exists if (b,X, ) & —,
' or (bX2} & —,'. For the

SU(1,1) CS we have (X; ) =0, i =1,2, so that the vari-
ance, in the X, quadrature, for example, may be written
as

(C ) =
I ( I

coW'(I —
I ( I

')'"S, ,

(S)= —1$1siny(1 —1(1 ) "S&,

(3.8a)

(3.8b)

We first calculate the necessary expectation values with
respect to the SU(1,1) CS

1 g, k ) for arbitrary index k.
Denoting these expectation values as ( ), it is straightfor-
ward to show that

(bX, )'=(E, )+ ,'&E +E- (2.12)

Now for the SU(1,1) CS for the squeezed-vacuum state,
with k =—,', the average number of photons in the state is

n=&N&=—1 1+ 1g'1 1

1 —14'
I

'

+-,'
I 0 I

'(I —
I ( I

')'" cos(2V»sz

(s ') =-,' ——,'(1—1) 1')'"

——,
'

I 4 1'(1—141')'"«s(2%)S2

where

(3.8c)

(3.8d)

With the phase y=0 the variance of X& becomes

(bX, ) = —,'(n+ —,')——,'[n(n+1)]' (2.14) S, = g (2k) m+1 m!
(3.9a)

The greater the average number of photons, the greater
the degree of squeezing. This kind of squeezed-vacuum
state may be produced by the degenerate parametric
amplifier.

S~= g (2k)
m=0

(m+2k+ 1)(m +2k)
(m +2)(m+1)

2m

m!

(3.9b)

III. PHASE OPERATORS FOR su(1,1)

We define the exponential operator

e=(E E )-'"E, e'=E, (E E, )-'I' (3.1)

and where ( ) is the usual Pochammer symbol. The
minus sign in Eq. (3.8b) is due to the manner of defining
the phase of the variable g. Also we need

(Eo) =k cosh8, (Ko) = —,'k(k+1)( cosh~8 —1)+k2,

Since [EO,E K+ ]=0, one can show that

[Ko,e]=—e, [Eo,e ]=e (3.2) from which we obtain

(3.10)

We note that

e1m, k)=1m —l, k), e 1m, k)=1m+1,k) . (3.3)

In analogy to the usual case, we define sine and cosine
operators

( b,Eo ) = —,
' k sinh 8 . (3.11)

For the case of oscillator realization it is possible to show
that (bE )=o(bN) l4. In turn, it can be shown that for
the SU(1,1) CS with k =—' that (bN) =2(n +n), where
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n is given by Eq. (2.13).
Note that

(c 2)+ (s ') =1—
—,'(1—

i g i

')'", (3.12)

1
So ——

Now suppose we write

(3.18)

which has the limits —,
' and 1 for

i pi small and large

(
i g i

~1), respectively, just as in the case of the usual
phase operators. Note also that for

i g i
~0,

(C') =(2k)'
i g i

cosy&, (3.13a)

(S ) = —(2k) 'i
i g ~

sing&, (3.13b)

(C' ) = —,'+ —,
'

i (i &k(2k+1)cos(2q), (3.13c)

and

Sl ——gB x

where

So ——g A x
m=0

(3.19)

(3.20)

(S ) = —,
' ——,

'
i g i

&k(2k +1)cos(2q&) . (3.13d) A =(2k} /m!

We now consider the asymptotic case for i(i ~1.
For finite k the higher-order terms in the series S, must
be very close to those of the series

So ——g (2k}
aa ifi2m

m!

and

B = A [(m +2k)l(m +1)]'
For suSciently large M we can write

(2k +m —1)!,(141'}
2k —1! o m!

(3.14)

QBx + g A x
m=M

On the other hand, we have

(3.21)

which is, in fact, a sort of hypergeometric function. Us-
ing standard procedures, ' this series can be written in in-
tegral form as So ——g A x + g Amx (3.22)

d e
—u(1 —x)~ 2k —1

(2k —1)! o so that

m=0 m=M

where we have set i(i =x. Now make the change of
variable y =u ( 1 —x). Since 0 & x & 1, the limits are un-

changed and we obtain

M

S, =so+ g A 1—
m=0

' 1/2
m +2k

Xm+1 (3.23}

But

1 1
e

(2k —1)! 1 —x 2" o

f e ~y " 'dy =(2k —1)!,
0

so we have

(3.16)

(3.17)

1

(1 i(i )"
M (2k) 1—

m!

Thus we have

' 1/2

(3.24)

(2k )
(1—

i g i

')'"s, =1+(1—
~ g ~

')'" y
m=0 mt m+1

Apparently, as
i g ~

~1, the last term becomes vanishingly small. Thus in this limit

( C ) =
i ( ~

cosIp = cosy,

(S ) = —
i g ~

sinIp= —sing .

A similar analysis for S2 leads to

(3.25)

(3.26a)

(3.26b)

(1
i g i

2)2kS 1+(1
i g i

2)2k
m!

1/2
(m +2k)(m +2k + 1)

(m +1)(m +2) (3.27)

from which follows that as
i g ~

~ 1,

(C ) = cos (IR),

(S ) = sin (y) .

(3.28a)

(3.28b)

I

Apparently then the preceding analysis shows that in the
limit of high-field excitation (

i g i
~1) we recover the

classical results for the expectation values C, S, C'2 and
S,just as is the case for the ordinary coherent states.

Next we examine the uncertainty products in these
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ln the limit «lo~ " ' '
E s (3.11) and (3.13)) hecomes, «omprodnct U(

( 5

(3.29)
1L0

U, (
I g I

1m)= ""
(2k)

I 0 I

sin the identityin this limit. U g~here (&Cj =
4

she+1»=fan h( g /2 ) —sjnh0/( cosh + (3.3O)

4A) .then, as
I 41

1
lim U1(

I ( I P 4sinzy
2

) ) 4 ~

I el -o
2Similarly, for Uz( I 0 I

1
lim Uz(

I kl 'p
4coszq

) & 4
I 4 I

-0
htch is independent o Pand for Uz(

I 4 I

U, (lkl )=-
Ill

(3.31)

(3.32)

(3.33)

2.0

0.1 1.0 10.0

/4, d 7T/5f r y —77/6

sed in terms of &ielectric fi ld ay be expressed in er

E + cos(cot )+X2 (4.2)
me as those ob-ion limits are the same

theprres onding uncer ain
states for ow- e

con-case of hig exci
y o

at theoh rent states thathecaseo t eo i y
ts tend to increase wiuncer

t to d o t t th
' 'mize. It is easies

1
1 h of h k=-y

fh
e consider only t e

in le-in to the squeeze
' 'tU for

po g
ga netic field. n ig.

hotonp gan les as a unc i
hi her n,

1 h d Si
can uite c eanu

h' }1' 'll t t d'guc u
ntfor U3, w ic i

thed2. These enhancedd fluctuations are e
1 counterpart. We alsohas o classica

hn the grea e
ber-

ca g g
he reater the fluctua iFigs. 1 and 2, the grea e

Phase uncertainty products.

he field amplitude we obtainNo if we square t e ew

E = Yo+ Y, cos(2cot)+ zY sin(2tot),

where

(4.3)

Y =—'(a a+aa ),0 4

Y 1[az+(at)2] (4.4)

[Y Yz]=—„'i(2N+1),1& 2 4

btains the uncertain y
'

t relationfrom which one o tains

(4.5)

4i

the quadratures oof theY and Y2 are e
'

n rela-d "t"f th'" "t'tsquared field amplitude and satis y
tions

ASE OPERATORS FOR sa(1,1)

OF THE SQUARED FIEL 12.0

b

e =a(aa )
1/2e=(aa ') a, e (4.1)

b ociated with the phaseThese operators in tu ocia e aseurn may be associa
of the quadrature operators X, an

d loped is valid for anyat we have deve op
'

r anIh2)+ ( k ) representatio

e
1

'
te realization or

elds. The
pp op

urselves o
he. h. phy. ---stion arises as to t e pques

'

tors in this case.
the

)

1 hase operators as
and a
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h bose operators a an1 al ebra of t e osHeisenberg-Weyl a g

may e written as
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(~Y, }(~Y,)&-,'
~
(N+-,')

~
. (4.6) I [a 2(a t)2] —I /2a 2 ~p t I (a t }2[a2(a f )2]—1/2

Hillery' has sho~n that the squeezing of the squared
field amplitude is a nonclassical effect. This amounts to
the requirement that (b, Y, ) & —,

'
~
(N+ ,') ~

—or (EY2)
&-,

~
(N+-, & ~.

However, Gerry and Vrscay' have pointed out that
the algebra of the squared field amplitude is isomorphic
to the su(1, 1) Lie algebra. This is easy to see by noting,
from Eq. (2.4), that

K, =—,'[a +(a ) ]=Y, ,

K2 ———.[a —(a t) ]= Y2,2 tZ
4i

Ko= —,'(a a+aa }=—,'(N+ —,')= Yo,

such that

(4.7)

[Kl,Kz]= iKo —.
From this commutator it follows that

(bKi )(EKED) & —,
'

i (Ko) i

(4.8)

(4.9)

which is equivalent to Eq. (4.6}. These uncertainty rela-
tions and the generalized squeezing have been discussed
by Wodkiewicz and Eberly. Through the definition of
Eqs. (3.1), or in terms of the bose operators, we have the
new phase operators as

(4.10)

It would seem reasonable, by analogy, to interpret the
new phase for the single-mode bose realizations as the
phase associated with the quadratures of the squared field
amplitude.

V. CONCLUSIONS

In this paper we have developed a phase-operator for-
malism for the dynamical group SU(1,1). Uncertainty re-
lations similar to the usual number-phase relations have
been constructed. When these relations are evaluated
with SU(1,1} coherent states we find enhanced fluctua-
tions for high excitation indicating a nonclassical behav-
ior. For the case single-mode quantized electromagnetic
field such a state is a squeezed-vacuum state. We have
argued that the new phase operator is, for the single-
mode-field case, the phase associated with the quadra-
tures of the squared field amplitude.
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