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Nuclear reorientation and Coulomb excitation in a magnetic field
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We study the scattering of a charged structureless particle by a nucleus, described by means of its
electric multipole moments, projectile and target being immersed in a homogeneous and constant
magnetic field. We present an analytical expression and a recurrence rule for the matrix elements of
any multipole operator. The multipoles higher than zero induce reorientations of the target. The
Coulomb excitation rates we obtained coincide in the zero-field limit with the well-known field-free
result.

I. INTRODUCTION

In the recent past, astrophysics stimulated interest in
studying how physical processes are altered when occur-
ring in the presence of strong magnetic fields. White
dwarfs and neutron stars seem to be endowed with in-
tense magnetic fields up to 10' G. The original proof
that large magnetic fields must exist in collapsed objects
comes from the flux conservation law' and from observa-
tion of Larmor lines in the spectrum of pulsars. A
thorough investigation of scattering processes of charged
particles in strong magnetic fields is therefore of interest
to astrophysics. Moreover, general properties of these
scattering phenomena are of interest from a fundamental
point of view.

Charged particles embedded in a uniform constant
magnetic field can move freely along the field direction,
while their transversal motion is confined in quantum
Landau states. This characteristic of the charged parti-
cles motion dominates the dynamics of any collision
event in intense magnetic fields, which impose their cylin-
drical symmetry on the scattering problem in contrast to
the case of field-free scattering where the symmetry is
spherical.

In the present work the motion of a charged particle
moving in a homogeneous and constant magnetic field,
scattered by a fixed system of charges like a nucleus, is
formulated as a first-order perturbation problem. The
magnetic field is taken into account exactly, whereas the
Coulomb interaction is a perturbation field. The
Coulomb excitation amplitudes of any multipolarity are
obtained whatever the intensity of the field is. We give
the appropriate definition of the rate of inelastic scatter-
ing and show that it agrees with the field-free rate in the
zero-field limit. Until now, the studies of scattering of
charged particles in a uniform constant magnetic field
were restricted to elastic Coulomb scattering (the pertur-
bation being the external monopole llr) and to the par-
ticular case of electrons confined to low-lying Landau or-
bitals.

The definition of Landau states has been treated ex-
haustively in the literature. In Sec. II we, however, recall
some useful formulas concerning wave functions, ener-
gies, and density of states.

In Sec. III we formulate the scattering problem follow-

ing two parallel approaches using either the S-matrix or
Green's-function method. We warn the reader that the
collision problem in the presence of a magnetic field has
to be described, keeping in mind that the appropriate
geometry is the cylindrical one. In this geometry we
build a general expression for the rate of Coulomb excita-
tion of any multipolarity. In the zero-field limit the
spherical geometry is restored; the Coulomb scattering
rates at this limit agree with the well-known expression of
the cross section for the electromagnetic excitation of a
nucleus by a charged particle.

In Sec. IV we outline the evaluation of the matrix ele-
ments required to calculate the Coulomb scattering rates.
We show in Sec. V that these matrix elements agree with
the field-free elements in the zero-field limit.

II. BASIC DEFINITIONS

A. Energy states and wave functions

Let us consider the Schrodinger equation describing a
structureless particle of charge q scattered by a central
potential V(r) in the presence of a uniform magnetic field
B.

Hg=[HO+ V(r) jg=EQ,
with

'2

Ho —— p — A2' C

where A is the vector potential of Coulomb gauge
A= —,'B)&r and r is the position vector of the charged
particle relative to the center of the potential.

We first call to mind eigenstates of Ho, these are
known to be separable into a plane wave propagating
parallel to the field and a two-dimensional harmonic-
oscillator-type solution of the transversal motion. Taking
the z axis along the magnetic field direction the Hamil-
tonian Ho can be separated in the following way:

Ho —Hll+H

with
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and

Pz
Hll

——

H, = + + (x+y ) Q—L,
2m 2m 2

sion of the wave function g:

g—=4„,k
——exp(ik, z)P„,(p, g),

where

tI}„,(p, g) =exp[i(n s)P—]I„,(yp2)

~h~re II =~/2 =
~ q ~

B/2mc is the Larmor frequency, co

being the cyclotron frequency.
Changing to cylindrical coordinates (p, g, z), wave

functions and energy states of Ho are given by

and

2

I„,(yp )=(n!s!) ' exp —y (yp )
"

, A, k,
—e"p('k z)'(i', , (p 4)

E =(k, fi /2m)+E„. The functions P„A(p, g) and the
P'

energies s„=A'co(n + —,
'

) define the Landau states;

[ ~

A
~

—(sgnq)A]n=n +

is the principal quantum number and A the magnetic
quantum number.

Explicitly, the Landau orbitals are harmonic-oscillator
wave functions:

, A(p 4) =exp('A4)R, , ! A! (p)

with radial functions

x Q,
" '(yp') .

The functions Q,
" '(yp ) are associated Laguerre polyno-

mials

s!L," '(yp ) for s &n
Qtl —

S( 2)
n!L„' "(yp ) for n &s .

The quantum numbers n, s are non-negative integers, the
correspondence with the quantum numbers n, A being
obviously

n=n + ~

A
~

—(sgnq)A
P 2

A=(sgnq)(s —n)

so that the correspondence is

R„!„!(p) =exp
lAI

p
2b'

2
P
b

(n, (sgnq)A&0)~(n =n, s =n +(sgnq)A),

(n, (sgnq)A &0)~( n =n —(sgnq)A, s = n ) .
The parameter b defines the oscillator length

' 1/2
2'

y
—1/2

L„l l are Laguerre polynomial defined by
P

nt dn —a
L„(x)=(—1)

'
exp(x)x [exp( —x)x "] .

(n —a)! n —a

A Landau state of principal quantum number n is
infinitely degenerate.

Classically, the particle is spiralling around the direc-
tion of the field, the width of the spiral being smaller for a
larger magnetic field and inversely

(r) =y '(n+ —,'), n =0, 1,2, . . . ,

where

2Ac
y

For a principal quantum number n, there is an infinity of
such "classical orbits, " their guiding centers being locat-
ed on a cylindrical shell whose radius is

(ro) =y '(s+ —'), s =0, 1,2, . . . .

The energy of a state being defined by the principal quan-
tum number n, there exists an infinity of degenerated
states according to the "geometrical" quantum number s.
This implies that a particular linear combination of pure
states 4„,k has to be used in order to describe a scatter-

ing problem. Later on we will come back on this point
(Sec. III).

B. Boundary conditions and density of states

We now give the definitions of the density of states and
of the boundary conditions appropriate to the magnetic
field case, in a way similar to that used for a three-
dimensional plane wave (i.e., the field-free case).

Along the field direction z, the usual boundary condi-
tion for the plane wave exp(ik, z) on a quantization length
L, defines the density of states dn, =L, /2~ and the plane
wave normalization constant (L, )

'~ . Within the plane
perpendicular to the field, the energy Eg =R k g /2m yields
the quantized energy E„=(n+ ,')fico and the quantized—
value k~=4y(n+ —,'). Going to the classical limit, the
following correspondence holds:

f dk„ f dk = f dp~ f k~dk~

This relation gives a geometrical interpretation to the
quantum number s and to the degeneracy of the nth Lan-
dau state. The quantum numbers n, A, and s are linearly
dependent according to A=(sgnq)(s n). The choice of-
the quantum numbers (n, s) leads to the Sokolov expres-

n=0

where co„ is the degeneracy of the nth Landau level. The
continuum in k~ coalesces into a discrete spectrum of lev-
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els such that the degeneracy between two successive Lan-
dau levels is

tial. We choose the Coulomb interaction

co„=
2 f kidki f dpi,

(2m. ) 0

where K„=4y(n +—,
' ), i.e., co„= y /m. Moreover, the

normalization of the wave function P„,(p, P) on an ele-
mentary area (mL). in the plane perpendicular to the
field is given by

N g f deaf pdp~ I„,(yp )
i

=1
S

s E(~L )

between the scattered particle whose r is the vector coor-
dinate and the target nucleus whose g and p(g) are, re-

spectively, the internal coordinates and the nuclear
charge density.

We expand the Coulomb potential in multipole com-
ponents and retain the external terms only:

+1
V(r g)=q g g r ' 'Y~(~)mg, (23)

1)Pm = —1 +
or

N
7r—=1,

S

s g(mL2)

where mz defines the electric multipole operator of the
I, m

nucleus,

owing to the normalization of the functions I„„
f dt

i I„,(t) i

' = 1 .

According to the relation ( ro ) =y '(s + —,
' ), the number

of s quantum states in the basic area (nL ) is given by f (r, g)=4„, I, (r)
~
I,M ), (2.4)

This expression of the Coulomb interaction factorizes the
operators in the r and g coordinates. Moreover, the un-

perturbed states, solutions of the Schrodinger equation
for Ho(r)+Hz(g), are also factorized in r and g,

i.e.,

f dtpo f Podrp =277 g =7TL
0 0

s~(mL2)

where 4„,k (r) describes the motion of the scattered

particle (2.1) and where
~

I,M ) describes a nuclear
state of angular momentum I and magnetic component
M . Finally, the energy E is defined by the sum

S

s E-(m'L )

ds =yL k, A
E = +%co(n + ,' )+EI— (2.5)

In conclusion, the normalization constant N of the Lan-
dau states is N =(rrL )

In the basic cylindrical volume, V =~L . L„ the gen-
eral normalized wave function, is

III. COULOMB SCATTERING RATES
OF ANY MULTIPOLARITY

1
n, s, k i/2 p( kz ) 2 i/2 Nn, s(p~y) i

L (nL )

and the density of states is defined such that

fp(n, s, k, )dk.= f p(k, )dk, g p(n) g
n=p s=p

(2.1)

The scattering amplitudes can be derived following two
parallel approaches, the S-matrix formulation and the
Green's-function method. To make things clear about
the problem of the field-free limit, we give both formula-
tions.

A. The Green's-function method

f dk, (nL)~ g.2' —oo 7T p p

(2.2)

C. The Coulomb interaction

The scattering of a structureless charged particle (q, m )

by a nucleus of charge (ze), the system being embedded in
a constant magnetic field B=B1„is described by the to-
tal Hamiltonian

H =Ho(r)+HN(g)+ V(r, g),
where Ho(r) is the Hamiltonian operator for the scat-
tered particle in the constant magnetic field (Sec. II A),
HN(g) is the intrinsic Hamiltonian describing the states
of the nuclear target, and V(r, g) is the interaction poten-

The scattering state 4+(r) associated with the incom-
ing wave 4 (r) of the particle in the magnetic field is
defined by an integral equation of the type

4+(r) =4 (r)+ f GE+(r, r')v(r')@+(r')dr' (3.1)

where we use the shortened notation a:—(n, s, k, ). In
(3.1), the perturbation v(r) is one of the operators
[r ' 'Y& (co)], a function of the projectile coordinates
only, associated with the electric multipole operator
mz of the target nucleus (cf. Sec. II C).

l, m

The function Gz+(r, r') is the Green's function associat-
ed with the Hamiltonian Hp of a particle in the presence
of a magnetic field for a defined energy E. The integral
representation of this Green's function is
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GE+(r, r') = g P„,(p, P)P„', (p', P')
n', S'

+ „dk,' exp[ik,'(z —z')]
X 2a E —E, ,n', s', k

(3.2)

where

k'A
z

'k'1l is~ 2m
+%co(n'+ —,

'
) .

Starting from this general expression of the Green's func-
tion, some authors perform the integration over dk,'

and obtain a new formula,

G&+(r, r')=, g P„,(p, P)P„', (p', P')

exp(ik,
'

~

z —z'
~

)
(3.3)

where

k,'—: E 4y—(n'+ ,' ) . —

exp(+ik, 'z)
~+„,„(r)+ g P„,(p, P)

i
k,

'
i

(k, k )

)& Ans n's' as z ~ ~ (3.4)

where

A„, „,(k„k,') =— fP„', ( pP)exp(+ik, 'z)

Taking the asymptotic limit
~

z
~

~ ~, the scattering
wave (3.1}transforms into

@+(r)=—@„+,„(r)

(b,E ti&0) are proportional to the square of the transi-

tion amplitudes (3.5) from an initial state 4„,k to a final

one 4, , k, . Although the state 4„s k does not reduce
n', s', k

'
z

to a plane wave at the zero-field limit, the Green's func-

tion GE+(r, r') as defined in (3.2) reduces to the plane wave

Green's function. However, the scattering wave func-

tion defined in (3.4) is an asymptotic form (
~

z
~

~ oo ),
from which it is no more possible to came back to a
spherical scattering wave by the extinction of the magnet-

ic field. That kind of treatment implicitly assumes the
occurrence of a very intense magnetic field leading to an

extremely thin confinement around the field direction.
The scattering rates

~
A„,„,(k„k,') ~, defined from (3.5)

with Landau states as initial and final states, take the
correct field-free form (cf. Sec. V); however to obtain the
correct field-free scattering cross section, one has to per-
form both the summations over (n', s', k,') and the aver-

age over (n, s, k, ) according to the precise definitions of
the density of states for a charged particle in a magnetic
field (cf. Sec. II). Moreover, in a beam scattering experi-
ment, the distribution of the initial states of the charged
particles inside the field has to be defined owing to the
physical situation involved (cf. Sec. V}.

Starting from the general expression (3.2) of the
Green's function, another point of view has been adopted
by one author who performs the integration and both
summations, obtaining a closed expression. The scatter-
ing wave function built by means of that Green's function
is a regular function of the magnetic field. Consequently,
the extinction of the magnetic field is exactly obtained,
leading to the well-known results of reference.

B. The S-matrix formulation

In the S-matrix formulation, the required S-matrix ele-
ment is

Xv(r)4„+, k (r)dr (3.5)
&p

~

S
~

a&=&p
~
a& ——' f dt fdr dggti (r, g, t)V(r, g)

XP+(r, f, t),
appear as transmission and reQection coefficients of a
one-dimensional scattering process.

In the Coulomb excitation, the energy conservation is
guaranteed by E =Ett [Eq. (2.5)]. It means that

~
k,'

~

has to be replaced in the Green's function (3.3) by
' ]/2

~
k,'

~

= k, +4y(n n') bE &— —

where

g (r, g, t) =g (r, g)exp E t—
is a solution of [Ho(r)+H~(g)]g=iA5, $ and g+(r, g, t)
is the scattering wave associated with g (r, g, t) at
t~ —00. The average transition probability per unit
time and per energy interval dE& in the final state is

ivy
——

i &P i
S —1

i
a)

i p(Ett)dEti,

where p(Ett) defines the density in energy of the final

states and

~
&P[S —1 ~a) ['= „gEg—E'. )

2

X f gati (r, g)V(r, g)g+(r, g)drdg

In the first-order approximation, one replaces the scatter-
ing wave f+(r, g) by the unperturbed wave (2.4),

f (r,g)=4„, t, (r)
~

I M ),

with bE tt =Et Et . The —elastic scattering (b,E tt 0, ——
P a

b n =0, k,'= kk, ) is similar to the collision in one dimen-

sion: observable quantities being transmission coefficient
containing the contribution from the transmitted wave
without scattering. The presence of the magnetic field al-
lows for transitions between Landau states, b,n&0
without nuclear excitation, AE

13
——0. These define a

pseudoelastic scattering.
If one assumes that the nuclear Zeeman states remain

degenerated in energy, our definition of elastic and pseu-
doelastic scattering includes the nuclear reorientation
process (cf. Sec. III C). The inelastic scattering rates
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so that the partial rate w& becomes

wp —— 5(Ep E—~)

X )
(n', s', k,') (IpMp) V(r, g'}

)
I M )

)
n, s, k, ) )

Xp(Ep)dEp, (3.6)

in which the matrix elements of the interaction are identi-
cal to the scattering amplitudes A„, „,(k„k, ) [Eq. (3.5)],
defined in the Green's-function approach.

Using the explicit form of V(r, g) as given in (2.3), the
partial rate w& becomes

ao +j 2

wp —— 5(Ep E—) g g (n', s', k,') r ' 'Yi (r)
)
nsk, )(IpMp) mE )

I M ) p(Ep)dEp .
lm

(3.7)

This defines the Coulomb excitation probability of the
final nuclear substate

) IpMp ) from the initial one

(
)
I M ) ) connected with the transition from the state

)
n, s, k, ) to the state

)
n', s', k,' ) of the scattered particle

embedded in the magnetic field. The Coulomb scattering
rate describing the nuclear transition I ~I& is obtained
by summing the partial rates (3.7) over the final states
and by averaging them over the initial ones,

Wp ——g' g wp
a P

where, explicitly, g' and gp means, respectively,
1/2I + 1 g g „', k and gp g, , k, .

The nuclear matrix elements are well known from the
traditional Coulomb excitation; they are related, after
summation over the nuclear magnetic quantum numbersI ~Ipto the reduced probabilities Bz

4 2 2

Wp —— g ' g f5(Ep E)p(Ep—) g 5(l,I,Ip)Bp'
l&0 +

2

X g )
(n', s', k,') r ' 'Yl (r)

)
n, ,s,k)

) dEp . (3.8)

f dk,'(n.L )+ g2m. —~ m „,
(3.9)

Let us now define what we mean by the summation
g, , k, over the final states of the scattered particle in

n Ss~k

the magnetic field. The density p(Ep } stands for the den-
sity of final states in the energy range (Ep, Ep+dEp),
taking the following relation into account:

k,'2%2

Ep= ' +e(n'+ ')+Er . -
2m 2 p

From this relation, it appears that the summations
g, , k, and the integration fp(Ep )dEp are overlapping.

As defined in Sec. II B the density of states
)
n', s', k,')

normalized on the basic volume V =(n L )L, is such that

. —= g f dk,'p(k,')p(n', s')
n', s'

Finally, g, , k, jp(Ep)dEp can be replaced by

L, N'

(nL )+ g2~ ~ „, p, , p 2A

dEP (Ep)

(E fiend, n )'—co n

(3.11)

where N' is the maximum integer value of n' associated
with k,'=0.

Let us now conclude by the definition of the averaging
g», k over the initial states of the scattered particle. An

initial momentum k, being given, the initial state of the
scattering process is defined as an incident beam of uni-
form density which is represented by a mixture of Lan-
dau states where the different s values have the same
weight. Classically, it means a uniform beam of particles
representing all possible impact parameters ( r0 ),
[(rp) =y '(s+ —,')]. For an initial momentum k„ the
averaging g», is thus defined by

For an energy E, n' and k,' are correlated according to

k fi k'R
E = —hE p

—— +Acohn,
2m 2m

OO QO

X'=— X X
n s j~ n =ps=07T

where the total initial current j, is given by

(3.12)

dk,' = m

2'

1/2
dE

(E &~an)'"—
with hn—:n' —n, so that

(3.10)

k, fi k, A
J =~ g ) I„,(yp')

)

'=+ . (3.13)
m m m

Introducing these explicit definitions, we may now
present the scattering rate (3.8}as follows:
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1/2

WH —— (rrL )+ g
n =0 s =0 n'=Os'=0

P(EH )dEH

EO g g 1/2

4 2 2

5(l,I,I )5(E E—)B
(21+1)3 ' ' H H

+I
l
(n', s', k,

'
l
r ' 'Yt (r)

l
n, s, k, )

l
. (3.14)

m= —I

C. Angular momentum and energy dependence

In the scattering of a charged particle by a target nu-
cleus, embedded in a magnetic field, the Coulomb excita-
tion of a nuclear state I& starting from an initial state I
is defined by the electric multipole momenta mE, where

Im

l is fixed by the nuclear spins,

l

I IH l
&1&I +—IH, (3.15)

and where m is fixed by the magnetic quantum numbers
of the initial and final states of the scattered particle,

m =A' —A. (3.16)

Energy conservation implies

k 2g2 k '2g2

+fin)hn +DE
H2m 2m

so that the nuclear transition occurs only if

k, A
&Acohn+hE p,2m

(3.17)

This scattering rate describes the process in which a uni-
form beam of charged particles of wave vector k, in the
field direction scatters into all possible Landau states ac-
cording to the Coulomb excitation (I,EI )~(IH, EI ) of

a P
the target nucleus. In Sec. V we show that in the zero-
field limit, formula (3.14) agrees with the field-free
Coulomb excitation rate.

scattering rate (3.14) as a function of the initial energy or
momentum k, shall reAect this behavior of the phase
space factor.

D. The nuclear reorientation process in elastic scattering

If one assumes that the mass of the nucleon is large
enough in regard to that of the scattered particle so that
the nuclear Zeeman effect can be neglected, the
(2I ~H~+1) magnetic nuclear substates (I ~H~, M ~H~ ) have
the same intrinsic energy EI ~z ~. Let us rewrite the

a P
Coulomb excitation amplitude for a given multipole or-
der,

a'H —— (n', s', k,
'

l
r ' 'Y& (r)

l
n, s, k, )

2l +1
IH 1 I
M mM Hll E, ll

Given the nuclear states (I,M ) and (IH, MH), the con-
tributing multipole-order 1 values are

l

I IH l
&1—

(I +II3. Selection rules in the magnetic quantum num-
bers are present within each matrix element in the excita-
tion amplitude a'&,

m =M —MH and m =(n' —s') —(n —s) =A' —A .

These relations are exactly the expression of the conser-
vation law for the magnetic component of the whole sys-
tem,

M +A=M&+A' or M —M& ——A' —A .

In what we previously defined as elastic and pseudoelastic
scattering, both being associated with AE

H
0(Sec. ——

III A), a nuclear reorientation effect is possible. Owing to
the transverse quantification of the states of the scattered
particle in the magnetic field, transitions of any

hn=o 2 3

where 4n =n' —n and AE
13
——EI —EI . The presence

P a
of the magnetic field allows for transition between Lan-
dau states hn&0 without nuclear excitation hE

H
0. ——

The elastic and pseudoelastic scatterings, associated with
the monopole component of the Coulomb interaction,
have previously been dealt with in the literature.

For a nuclear transition I ~I&, the left-hand side of
(3.17) takes continuous values in k, . On the contrary, on
the right-hand side of this relation, one term is a continu-
ous varying term whereas the other varies by discrete
jumps. So the momentum k,' is a multivalued function of
E (or k, ), depending on the values of b n, as shown in Fig.
1.

This pattern is strongly dependent on the value Rcu, i.e.,
on the field strength and on the mass of the particle. For
a scattered e (or e+), the fico value is about 2000 times
smaller than for a proton. This bundle of curves will be
narrower for an electron than for a proton in the same
field conditions. The qualitative dependence of the

0EO
I

E (units of 'hu)

FIG. 1. Final momentum k,
'

as a function of the initial ener-

gy E =k, A /2m —hE & according to the energy conservation
relation [(3.17) in the text].
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m =M —M&
——A' —A with b, n =b, (k, )=0 or

hn =(4y) 'A(k, )&0 are included in what we called the
elastic or the pseudoelastic scattering, respectively.
These transitions correspond to m =M —M& ——s —s'
taking all integers values with any sign; they are associat-
ed with transitions between classical orbits of the scat-
tered particle corresponding to a different geometrical ra-
dius ro [(r o) =y '(s+ —,

' }],as shown in Fig. 2. For a

given nuclear spin I, all nuclear transitions between mag-
netic substates (I,M) and (I,M') are included in the elas-
tic and pseudoelastic scattering processes (DE=0}; they
are associated with the transitions s~s' (bs—:s —s'
=A' —A=M' —M—= bM) between two Landau orbitals

P„, (see Sec. II A) of the particle scattering in the mag-
netic field.

IV. EVALUATION OF THE COULOMB
MATRIX ELEMENT

S

X

(n, s')

FIG. 2. Classical orbits of the scattered particle correspond-
ing to different geometrical radii ro or quantum numbers s,
&r, )'=y '(s+-,').

We summarize the evaluation of the Coulomb matrix
elements whatever the multipole order I is. The matrix
elements (n', s', k,

'
~

r ' 'Y& (r}
~
n, s, k, ) are not in-

dependent from each other. Those matrix elements cor-
responding to negative angular momentum values
A=n —s &0 (and/or A'=n' —s'&0) are related to the
ones with positive values A =n —s ~ 0 (and/or
A'=n' s'&0—) simply by interchanging n with s (and/or
n' with s'). Furthermore, a three-term recurrence formu-
la links the matrix elements of adjoining indices. First,
we show how to obtain this recurrence formula; second,
we calculate exactly the matrix element which initiates
that recurrence.

A. The recurrence formula

The matrix element (n', s', k,
'

~

r ' 'YI (r)
~
n, s, k, ) is

explicitly defined in cylindrical coordinates (p, P, z) using
the following: (a) for the wave functions, the expression
(cf. Sec. II A)

~
n, s, k, ) =exp(ik, z)exp[i(n s)P]I„,—(yp );

(b) for the spherical operator [r ' 'YI (r)], an integral
representation factorized in the cylindrical variables [Ap-
pendix A, Eq. (A5)],

2 exp(im P)

i+m +a+1
2

Xf duu'+ + z
0

Xexp( —u z )p exp( —u p )

X,F, ( —a, m+1;u p ), (4.1)

where a —= (I —m —0 )/2 and cr =0 or 1 according to the
parity of (l —m). One can write the matrix element
(n', s', k,'

~

r ' 'YI (r)
~

n, s, k, ) as a multiple integra-
tion,

2I (a.+1)I (m +1) +
dpp dz d exp iqz exp i n —s —n'+s' exp im

I (a+m+1)I (I —a+ —,') o m o

XI„,(yp )I„,(yp ) J [du u'+ + z exp( —u z }p exp( —u p )L„(u p )], (4.2)

where q is the momentum transfer in the field direction
(q =k, —k,'); the Laguerre polynomial L„, proportional
to the hypergeometric function in (4.1), is used in place of
this latter.

Let us assume positive values for the quantum numbers
A =n —s and A' =n ' —s', so each Landau function
I„,(yp ) is defined by

2m

J dP exp[i (n —s n' +)sP]e—xp(im P)
0

=2vr6(n s, n' —s' ——m) . (4.4)

The integration over z is obvious; it leads to

I dz exp(iqz)z exp( —u z )

(t)=(n!s!) ~ ~exp —— t " ' s!L" '(t)n, s '
2 s (4.3)

C7
2iq &7r —qexpu' +' 4u'

Performing the integration over the azimuthal angle P
leads immediately to the selection rule (3.16), m =A' —A:

Using the new variable t =yp and the explicit form (4.3)
of the Landau functions, the integration over p reduces to
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(n!s!n '!s'!)
(m /2)+ 1

ss'

where

Q
, I

. r
(4.5)

, I = f dt t" '+ exp( —t)exp
2 2

I. (L" '( ) ')I. " '(t)y. '. y. (4.6}

is defined for each I value; the quantum number m being connected to I n, s;n', s'I by the selection rule (4.4). Finally,
the matrix element reduces to

2trv'm. f'(tr+ 1}I(m + 1)5(n s,—n' —s' —m) ~i „„q
y' '+'PK+m +1)I (I tt—+ ,')(—n!n'!s!s'!)(~2 2 y

(4.7)

where

(X)
2

V""' q, l —= f "du u™~ lexp
4u

2

XK,",",l
r

(4.8)

The explicit calculations to evaluate the integrals (4.6}
and to define subsequently the recurrence formula be-
tween the matrix elements V,"," (q /y, l) are derived in

Appendix B. Given n, n', A=n —s ~0, and A'=n'
—s' ~ 0, the following recurrence formula holds:

2

r
(4.10)

where K,"0(" ' defined in (4.6) reduces to

K,"O'" ', I = f dt t d,'[t "exp( —t)]

rule m=A' —A implies that n' is fixed: n'—:n —s+m
or, equivalently, n —n':—s —m.

For (I,m) given, one has explicitly

2
(X)Vn(n') q I f duu I+m —e —i

0 4Q

2 2

V,",",

' q, I = .+. —1+ q

4y

2
nn'

V, ), ),I
. y Xexp

u2t u2tr. ".y. (4.11)

2
—(s —1)(s'—1)V,

""z, , z, I . (4.9)'" '. y

In this relation, the four quantum numbers (n, s;n', s')
are connected by the selection rule on the magnetic quan-
tum numbers:

m:—(n' —s') —(n —s) .

Each matrix element is I dependent and this recurrence
formula holds whatever is the I value defined by the nu-
clear spins selection rule (3.15),

~
I, I&

~

& I &I +—Itj.

B. The explicit expressions of V,"0"

ZL„"(z)(—1)"z"+"~ 'exp —— = W„+q+(, ~2) q(z),

we obtain
T

I — —1
2 2 2

q ut ut
du u'+ 'exp — exp — L,

0 4u

—:( —1)"
t

' m/2 ' m+2K

K (q v't ly ) . (4.12)

Performing the integration over u with the help of the
identity

It is possible to define an explicit analytic expression
for the first term V,"o" of the recurrence formula (4.9), I
and m being fixed. For s'=0 and n, s given, the selection

By use of the definitions (4.10},(4.11), use of the relation
(4.12), and performing s partial integrations, the matrix
element (4.10) reduces to

2
—m/2

V"'"', I =( —1) +'f dt e p( t)t "d,'—
0 y

m +2K

K (q&t/y )

This last integral is evaluated analytically' so that
(I + m —cr )/2

2

y n (n') q I ( 1 )(t! — — )/2 I (n +1)I (n'+1)%' n'+1, n' —n +1,'
4y

(4.13)
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where 4 is the conAuent hypergeometric function of the
second kind and q defines the momentum transfer in the
magnetic field direction.

%~(r, t)=g (k) exp —i t
exp(i k r) . k 2fi2

2m
(5.1)

V. RESTORATION OF FIELD-FREE
CROSS SECTIONS

Recently, several theoretical articles contributed to the
description of charged particles scattering in the presence
of external electromagnetic fields. The difficulty some-
times encountered in these calculations is that the
scattering waves do not take the field-free forms if Lan-
dau states are used as initial and final states (Sec. III A).
Some authors present solutions to this problem of the
zero magnetic field limit by constructing a superposition
of Landau states which satisfies free-wave boundary con-
ditions when the field is switched off. However, the way
to reproduce the features of the scattering phenomena in
the zero magnetic field limit does not seem to be unique.

A. Laboratory experimental situation

Until now, in the literature, the situation which has
been considered is the laboratory one. A beam of
charged particles of fixed momentum k represented in the
field-free region by a plane wave is assumed to enter a re-
gion in which there is a homogeneous magnetic field. So
one needs to know what are the occupation amplitudes of
the Landau states when a free particle enters the magnet-
ic field.

Faisal" and Ohsaki give two alternative adiabatic ex-
pansions for the wave function to be used. The con-
structed state is a coherent superposition of the degen-
erate Landau eigenstates inside the field which are occu-
pied by the free particle as it adiabatically enters the field.
Zarcone et a1. ' also describe the very different situation
of a sudden switching on of the magnetic field, to define
how the plane wave splits into a combination of Landau
states. This sudden picture is only valid for weak fields
or for very fast particles at the highest laboratory fields.
In laboratory conditions the correct situation is always
an adiabatic one. More recently, coherent states of
charged particles in a homogeneous magnetic field have
been thoroughly studied by Varro' and Varro and
Ehlotzsky, ' the method they use to build such states is
based on the one-dimensional harmonic-oscillator alge-
bra. The coherent states defined by Varro' correspond
to a Gaussian probability distribution of the electron po-
sition in the transverse plane, gyrating along circles with
the cyclotron frequency; the center of these distributions
moves along possible classical trajectories.

k R
X exp ——%co(n +—')+

2m

(5.2}

In a stellar environment, we have to show how the mag-
netic field changes the thermodynamic properties of the
electron gas, assuming the charged particle to be an elec-
tron, for example. Canuto and Ventura' have discussed
this problem. The statistical averaging is performed us-
ing a Fermi distribution in (5.2),

1

E~ —p
g„(k, ) =g„(E)= 1+exp

8
(5.3)

where k~ is the Boltzmann factor, T is the temperature of
the Fermi gas, p is the chemical potential, and E„ is the
energy

k A
+Ace( n + —,

' } .
2m

As previously seen (Sec. III), the scattering in the pres-
ence of a magnetic field is similar to a scattering between
systems having internal structures: the one of the nuclear
target and the one bound to the Landau states of the
spiraling motion of the scattered particle due to the pres-
ence of the magnetic field. Only the motion in the direc-
tion of the field (z direction} is a free motion, whose ener-
gies and moments vary continuously. In such a scatter-
ing whose geometry is defined by a cylindrical symmetry,
the direction of the magnetic field is the only one to be
considered at infinity (Sec. III A). But in the definition
of the scattering rates one has to use a scattering state
like that defined in (2.1) and to solve the averaging g„",&

and the summation g, , „,fdE&p(Ett) according to the

rules defined in (Sec. IIIB}. In (3.14} we gave an ap-
propriate definition of the Coulomb scattering rate and
we show now that this rate agrees with the field-free rate
to the zero magnetic field limit.

and assume that J dk
~

g(k)
~

=1. The wave-packet

solution for a charged particle in the presence of a mag-
netic field would be described similarly by the wave func-
tion

exp(ik, z) P„,(p, P)
QE(r, t)= g C„,g„(k, )

B. Stellar environments

When the scattering of charged particles takes place in
a stellar environment like white dwarfs or neutron stars,
new properties relative to the behavior of the scattered
particles have to be taken into account. In order to de-
scribe the free field scattering of a wave packet with ini-
tial momentum k distributed according to an amplitude
weight function g (k), we use a wave function like

C. The zero-Seld limit

We can decrease the field strength in two ways. One is
the adiabatic process with n kept constant. In this case,
one cannot obtain the plane-wave scattering result be-
cause the Landau orbital P„,(p, P) (A=n —s&0) be-
comes zero in the zero-field limit. The other approach is
a process keeping the transverse energy ki=4y(n + —,

' }
constant. The quantum number n diverges according to



1720 M. DEMEUR AND CH. LECLERCQ-WILLAIN 38

1/y when y goes to zero. To show that the scattering
rate W& [Eq. (3.14)] reduces exactly to the field-free one
in the zero magnetic field limit, we proceed in two steps.
First, we find the zero-field limit of the matrix element
(4.7),

U,"," —= (n', s', k,
'

~

r 'Y& (r)
~

n, s, k, ) .

Secondly, we use the zero-field limits of the summation

g, , k, and averaging g„s k according to their explicit
g

definitions (3.9)—(3.13).
Let us show how to obtain the zero-field limit of a ma-

I

trix e]ement U,"," . We use the expression (A2) of the
spherical operator r'Yi (r) and the integral representa-
tion (A3) of r ' '. Solving the integration over dz

f dz exp(iq, z)z™2kexp( —u z )

2Vni ( —1)"
exp

(2u )I —m —2k+ i

2
qz qz

4g 2uI —m —2k

with the Hermite polynomials H2„or H2n+ &
the matrix

element U,"," transforms itself into

1)n—k

U,",", = g Ct, 2ir5(n s, n—' —s' —m) du u'+ + " 'exp
1-(1+ ' )2' —m -'" o

2
q,

4u
l —m —2k

2Q

where the coefBcients Ck are explicitly given by

( —1)" m!(1 —m )!
k!4" (m +k)!(1—m —2k)!

X f dpI„, (yp )I„,.(yp )p
+ "+'exp( —u p ),

I

One obtains the final expression

~ I ]c m +2k I —m —2k

U-, '= 4 ' y C„'-"
r-o " (21 —1)!!k =0 (qs+qi)

(5.4)

where n' —s' has been replaced by n' —s' = n —s +I and
J is the Bessel function of integer order, and

' 1/2

2 I (n+1)
r o

"' I (s+1)I (n —s+1)
2)(n —s)/2

where the zero order in y is defined when n =s.
According to these limits we have

lim fdpI„, (yp )I„., (yp )p
+ "+'exp( —u p )

= f dpp + "+'exp( —u p )J (qip)

%e keep n, s fixed and define the transverse momentum or
energy qi =4y(n n'):—the quantum number n' diverges
and the zero-field limits of I„,.(yp ) and I„,(yp ) are, re-

spectively,

lim I„,(yp )=J„,+ (q~p),

~ I4ni
(21 1 )ii I Im (5.5)

reduces to

In Sec. II B we showed how the continuum of free parti-
cle states coalesces into equally spaced harmonic-
oscillator energy states in the presence of a magnetic
field. Their degeneracy is defined by

Nn=
2 f kidki f disci

(2ir ) 0

with Is:„=4y(n + —,
' ). If n becomes very large, the follow-

ing correspondences hold.
(a) When y~0, the summation over the final quantum

states

f dk,' + (irL )gg
n's'k '

—m —2k —2k.Q
exp

2 m 2
ql ql L

ql
4u (2u) 4u

(5.6)

The expression (5.4) at the zero-field limit finally reads with the same normalized length L in each direction.

(b) The value of k, being given, when y~O, the expres-

2 2
q +qi

X du u exp
4u

2
q, q~

-Zk
4u

which is exactly the expression we obtained for the field-
free matrix element fdr exp(iq. r)r 'Y& (r) when we

used the development of the plane wave in cylindrical
coordinates,

exp(iq r)= g i"ex.p[iA(ip —q20)]exp(iq, z)J&(q2p) .

g'
(
(n', s', k,

'
~

r ' 'Yi (r)
~

n, s, k, ) )

n, s

reduces to

(
(n', s', k,

'
~

r ' 'Y, (r)
~
n, s, k, ) [

n =Os =0

y k, A

m

1—lim
(
(n', k,s'

~

r 'Yi (r)
~

n, s, k, ) )
. (5.7)

U; y-0
Coming back to the scattering rate W& defined in (3.14)
and using the field-free limits obtained in (5.5) —(5.7), we
find
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2 2 2

lim W&
——

&
JdEQQttutt5(Etl E—) g &

5(1,I,I&}BE
r-& lrt (2M) u i)p (2!+1)

4m.

, lkn —ktll" '& Yim(q)Yim(q)
[(21—1)!!]

a,. & ~k.—k },
" 4d-n,k kp r-I

A' u [(21+1)!!]
(5.8)

where the momentum transfer q is replaced by
q =k —k&. This last expression (5.8) is exactly the
differential cross section for Coulomb excitation calculat-
ed in the plane-wave Born approximation.

VI. CONCLUSIONS

In this paper we studied the scattering of a charged
structureless particle by a nucleus described by means of
its electric multipole moments, projectile, and target be-
ing immersed in a homogeneous and constant magnetic
field. The effects of the magnetic field are taken into ac-
count exactly, the electric interaction being described
through first-order perturbation. Physical situations cor-
responding to such conditions are of astrophysical in-
terest.

We present an analytical expression and a recurrence
rule for the matrix elements of any multipole operator.
The Coulomb excitation rates we derived coincide in the
zero-field limit with the well-known results of a direct
field-free evaluation.

To consider multipoles higher than the zero one (Ruth-
erford scattering) is not a mere generalization; these mul-
tipoles are able to induce reorientations of the target, pro-
cesses which are included in our treatment. We also con-
sider the physics of Coulomb scattering in a magnetic
field either in a laboratory situation or in stellar environ-
ments.

APPENDIX A

The cylindrical symmetry of our physical problem sug-
gests transformation of the expression

means of the well-known property

2F, (a, b;c;t)=(1 t) '—2F, a, c b;c;—

The expression we are interested in reads finally

2

r ' 'Y& ——exp(imp)p z r '2Fl Kr; m—+ I;
T

(A4}

where we used the following notation. (a) l —m =2K+a,
where 0 is equal to 0 or 1 according to the even or odd
character of (i —m); consequently 2K is the largest even
integer included in (1 —m ). (b) r= l —K+ —,

' =K+ u
+ m +—,

' is a positive half integer.
The hypergeometric function 2F, ( K, 7",m +—1;p Ir )

is a polynomial of degree K in p Ir; formula (A4) thus
contains a finite number of negative powers of r. Using
the integral representation (A3) one easily obtains our
final factorized expression

2 00

1(r) exp(im(!!) du u'+ + z exp( —u z )p
0

Xexp( —u p ),F, ( —K;m ~1;u p ) . (A5)

We assumed a positive value of m; Laplace functions
with a negative value of m are easily derived from the
former ones by means of a well-known formula.

APPENDIX B: RECURRENCE FORMULA
FOR THE MATRIX ELEMENTS

—I —lY (8 y) (Al)
In (4.6) we defined

into a formula where the cylindrical coordinates (p, P, z)
are factorized, as far as possible.

We present two useful expressions of (Al), starting
with a formula we obtained earlier:

r'Y& ——exp(imP)p z™

nn'
K,",",I = dt t" '+ exp( —t)exp

0

Xs!L," '(t)s'!L," ' (t)

2
lm ut

X
. y

(B1)

I —m I —m —1 82

X2F)
2

'
2

' ' z2
;m+1;—

(A2}

where K=(i —m —a )/2 and o =0 or 1 according to the
parity of (i —m). We perform in (Bl) an integration by
parts and we use the Rodrigues formula

A first way consists in completing formula (A2) by an
integral representation of r ' ', namely,

2 oo

r '=, duu exp( —u r ).
I (1+—,') 0

s!L," '(t) =exp(t)t' " [exp( t)t"]—„5'

and the relation

b Ln' —s'(t} Ln' —s'+l(t} (B3)

A second way consists in transforming formula (A2} by We first obtain the expression
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u tK,",". =s'K,""
&, , — dt s —1!L," &'+' t t +'

', exp —t t", t L„
0 ".r

Q t
exp r (B4)

After one more integration by parts and making use of all the relations previously defined [(B2), (B3), and (B4} itself
with (s,s') replaced by (s —l, s' —1)],we establish the formula

K,"," =(s'+s —1)K,"".. . —(s —1)(s' —l lK,""2, 2

+(s' —1}!f dt (i' '[exp( t)—t"]L,". ;+'(t)t
0

T

m m
—u t2

(B5)

Using twice the relation

2u t
t

2 2
Q +( Q

r "' r

(s' —1)!f dt 5' '[exp( t)t "]—L,",'+'(t)t exp
0 y . r

and writing explicitly the successive derivatives over t, the last integral in (B5) takes the explicit form

u2t u2

Q u t—m —1 L„
y r

2 2 2 2

+ —m-2u t
1 L +] u t u tL +2 u t+ K—2r y y

"
y

(B6)

For a =0, the second and third terms in (B6) have to be replaced by zero. For it= 1, only the third term has to be re-
placed by zero. For x & 2, all three terms in (B6) are present.

Using (B5) and (B6), let us now write the expression of the matrix element V,",". (q /y ) defined in (4.8):
I I

V,"," =(s'+s —1)V,
""i, , i

—(s —1)(s'—1)V,
""2, . 2

+(s' —1)!f dt 5' '[exp( t)t ]1.,". i'—+'(t)t
0

Q2 2

x f "du u'+ ' " exp — exp
0 4u

Q t

Q t u2t u 2t—m —1 L„+
. y . ".r . . y

2—m —1 L„m+1

. r
T T

u +2 u t u t m+~ u2t 2 2 2

+r r " ' r
By use of relation (B3) we can replace L „+,' (u t ly ) by

(B7)

2
+i ut

K—1

2—y~Lm ut
2ut " "

y

so that one integral like

2 2

I = du u'+ ' exp 2 exp
0 4u

transforms itself into

—ut ut +~ut2 2 2

r r "'.r .

a) 2

I = du u'+ + exp exp

—u2t u2t

r .
".y

2 2—ut
~

ut
r .

" ".y

Performing an integration by parts leads to the expression

oo 2
I = f du u™~ !exp exp4r 0 4Q

2

exp exp
4u

+ f du u 1+m cr i——
0

—u t2 1+m —o+2
2

u2t u2t

y
' r (BS)
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By using this last form of I, we can transform the formula (B7) into the new relation

2
V-, '= s+s 1+ q$$4 I

P'Itll
( I )(

& I )
PIIN'

I

dt 5' —'[exp( —t)t ]L,";+'(t)t
y o

2

duu + +exp exp
—u t2

2 2 2 2 2u t u t
l g +] u t u tg +2 u

(B9)

2 2
ynn 0 l ( I)( I I)vnn

. r

By use of the relations between contiguous Laguerre polynomials, the bracket of the last term of (B9) is equivalent to
tr(L „+L„+,' L„+—' ), which is identical to zero. We thus obtain the recurrence formula (4.9),

2 2
Vnn' q, I = s +s —1+

4r
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