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New nonlocal exchange-energy functional from a kinetic-energy-density Pade-approximant model
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A completely new nonlocal exchange-energy functional in terms of a P4 3(x) Pade approximant is

derived from its kinetic-energy-functional counterpart. The new formula exhibits correct asymptot-
ic behavior for large and small density gradients. It can be written in the form of an exchange func-

tional recently proposed by Becke. Furthermore, our exchange functional yields very good ex-

change energies when evaluated with Hartree-Pock-quality densities. Its functional derivative does
not diverge for atomic systems, allowing one to obtain fairly good variational densities and ex-

change energies.

I. INTRODUCTION

The exact, nonrelativistic energy functional for an
atomic system in terms of its ground-state electron densi-
ty p(r) can be written as'

Elp]=Tip]+ v.,lp]+Jlp]+Klp)

and

p= Xp.
cr =a,P

where

V„,[p]= Z f—P ' dr, (2)

, f f P(r)P(r')
d d, (3)

fr —r'f

T [p] is the exact kinetic-energy functional, and K [p] is
the exact exchange-energy functional. Both contain
correlation effects and unfortunately are unknown. They
can be formally written in terms of kinetic-energy density
t(p) and exchange-energy density k (p) as

T[p]=f t (p)dr,

K[p]=f k(p)dr . (5)

(4)

K[p]=K[p, t(p)] .

From here on our treatment will be explicitly spin po-
larized. GPL have shown that a Gaussian Ansatz for the
spherical average of the first-order density matrix allows
one to write, at the Hartree-Fock (HF) level,

Traditionally, people have approximated both T [p]
and K[p) by gradient expansions and many other
different ways, ' but until recently' ' the common
denominator has been that T [p] is treated independently
from K[p]. In this article, developing a suggestion by
Ghosh, Parr, and Lee' ' (GPL), we propose that K[p]
is a functional of t (p),

Thus

xf3tr P (r)
2 t p

(9)

II. SMALL- AND LARGE-GRADIENT
BEHAVIOR OF THE KINETIC- AND EXCHANGE-

ENERGY DENSITY FUNCTIONALS

A. Kinetic-energy functional

The treatment will be spin polarized, but for the sake
of simplicity, from here on we will omit the 0 subindices
and p will symbolize either p or p&. The traditional ap-
proach to T[p] is through the gradient expansion

Therefore, given Eq. (9), one would hope that a good
model for t(p) could be mapped into a good model of
K[p]. The different models for K[p] that one obtains
should show the correct asymptotic behaviors. These are
discussed in Sec. II.

We will show that a Fade-approximant model for the
kinetic-energy density' with correct asymptotic limits is
mapped through this procedure into a new Pade-
approximant model for the exchange-energy density.
The latter shows correct asymptotic behavior for large
and small density gradients. The functional yields excel-
lent exchange energies when evaluated with HF-quality
densities and its functional derivative does not diverge,
allowing one to obtain very good variational densities and
exchange energies.

K[p]= erg fp2P (p—)dr, (7)
T[p]= g T~„=fdr g t2„(p), (lo)

where where

n=0 n=0

38 1697 1988 The American Physical Society



1698 ANDRES CEDILLO, JUVENCIO ROBLES, AND JOSE L. GAZQUEZ 38

(p) = 3 (6&2)2/3 5/3
OP —

io

is the Thomas-Fermi (homogeneous-gas) term and

t2(P) = t ~—(P }= I Vp I'
9 72 p

(12)

is the first gradient correction, etc.
Approximate resummations and truncations of this

infinite series have been proposed. ' A lot of work has
been done along these lines. The correct asymptotic be-
havior of t(p) is known. ' In the region where Vp is
small (far from the nucleus),

t (p) = to(p) = t2(p) (small gradients),

and where Vp is large (close to the nucleus),

t(p)=9t2(p)=ta (p)=—1 IVpl'
8 p

(13)

t (p) = to(p)P4 3(x), (15)

(large gradients) . (14)

Recently, Depristo and Kress' (DK) have given some
arguments to propose a very interesting model for the
resummation of t(p) as a closed expression. This is a

Pade approximant which exhibits the correct asymptotic
limits given by Eqs. (13) and (14). This is

Unfortunately, the functional derivative of K2 diverges
due to its incorrect large-gradient behavior. ' ' This
problem has prevented the so-called X & method from
becoming more popular. In an attempt to mend the
problem, Becke has recently proposed, first on empirical
grounds' and later with some theoretical argumenta-
tion, ' to model k ( p ) as

I Vp I

'
4/3

ks(p) =ko(p) —P
I
vp

I

'
+ 8/3

p

(21)

k(p)~ko(p)+k2(p) (small gradients) . (22)

Becke has suggested that an adequate large-gradient limit
can be obtained by multiplying the short-range behavior
of the exchange-hole density by an arbitrary damping
function. ' This leads, for large Vp, to

where P and 5 are parameters determined by fitting kz to
reproduce HF exchange energies of He, Ne, Ar, Kr, and
Xe. The exponent a can be either 1.0 or 4„and any of
these values gives very good results. The model does not
possess the divergence problem of the gradient expansion,
since the correct large-gradient behavior was imposed
through its derivation. For small Vp,

where the variable x is defined as k(p)~cp
I

V'p
I

(large gradients), (23)

and

t2(p} 5 1 IVpl'
(p) 10g (6 2)2/3 8/3

1+0.95x +a 2x +a 3x +9b3x
P4 3(x)=

1 —0.05x +b2x +b3x

(16)

(17)

where the constant c depends on the particular choice for
the arbitrary damping function. Actually, Becke's func-
tional [Eq. (21)] is directly obtained from interpolation
between the two extremes given by Eqs. (22) and (23).

In what follows, we provide a treatment that unifies the
results of GPL, DK, and Becke. This is a new theoretical
justification of Eq. (21), from a very diFerent viewpoint.

B. Exchange-energy functional

The gradient expansion for exchange energy is '

&[p]= g &2„——f«g k2„(p),

where

n=0

1/3

n=0

ko(p}= ——3 3

2 4m.
4/3 (19)

is the local-density approximation (LDA), or Dirac term,
and

I Vp
I

432m(6' )' p
(20)

The parameters a2, a3, b2, and b3 are determined by
fitting them to reproduce HF kinetic energies of He, Ne,
Ar, and Kr. Results for atoms in the range 1 (Z & 36 are
quite good, especially for the first-row transition metals,
when compared to truncated gradient expansions or to
HF kinetic energies.

III. DERIVATION OF A PADE-APPROXIMANT
MODEL FOR THE EXCHANGE-ENERGY DENSITY

FUNCTIONAL

If one directly substitutes Eq. (15) into Eq. (9), one ob-
tains a new exchange-energy density functional in terms
of a P4 3 Pade approximant. It is

10 ko(p}
k(p)= (24)

9 P4 3(x)

10 1 —O. O5x +b,x'+b, x'
k(p)= ko 1+0.95x +a2x +a3x +9b3x

(25)

Note that for the special case of x=0, one obtains
k (p) = —", ko(p); this is the functional previously obtained
by Ghosh and Parr. ' These authors use it to explain
why the u parameter in the Xo. method is so close to
( '9 )( —,

'
) =0.74. Our Eq. (25) is a more general case.

Let us now examine the asymptotic behavior of the
new functional. If one takes x ~0,

is the first gradient correction. ' k(p)~ —',0(ko ——", k2) (small gradients), (26)
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TABLE I. Exchange energies ( —K) from different models for noble-gas atoms, in atomic units. Values in parentheses are the rela-

tive errors as compared to HF values.

HF'

Model He

1.026 12.11

Ar

30.19 93.89

Xe

179.2

BEb

Eq. {21),
a=—4

LDAb

Eq. (19)

( —')LDA
Eq. (19)&& '9

Ko+K
Eqs. (18), (19),
and (20)

CRG
Eq. {25)

CRGV'
Eq. (25)

1.002( —0.02 )

0.864( —0. 16)

0.960{—0.06)

0.948( —0.08 )

0.879( —0. 14)

0.876( —0. 15 )

12.09( —0.00)

10.97( —0.09)

12.19( +0.01)

11.49( —0.05 )

11.51( —0.05 )

11.55( —0.05 )

30.13{—0.00)

27.82( —0.08)

30.91(+0.03 )

28.81( —0.05 )

29.49( —0.02)

29.57( —0.02)

93.78( —0.00)

88.55( —0.06)

98.39( +0.05 )

90.66( —0.03 )

95.25(+0.01)

95.49( +0.02)

178.93( —0.00)

170.53( —0.05 )

189.48( +0.06)

173.83( —0.03 )

184.53( +0.03 )

184.88(+0.03)

'Hartree-Fock values taken from Ref. 16.
Evaluated with HF-quality densities (see Ref. 20).
Evaluated with variational densities. These are obtained from solution of a Kohn-Sham-type calculation using the effective ex-

change potential given by Eq. (28) of the text.

which is of the form of Eq. (22), i.e., of a truncated gra-
dient expansion, which we know is correct. On the other
hand, if one takes x ~~,

where

3 3
C = ——

2 4m

' 1/3
5 1

108 (6 ')'"
k (p)~ —12m (large gradients),P

I vp
I

' (27)

IV. SOLUTION OF THE EULER-LAGRANGE
EQUATION

We have computed the functional derivative of Eq. (24)
and solved numerically the resulting Euler-Lag range
equation. The result is

K 10 4 CoP

5p 9 3 P4 3

30 43 V p
7 (p )2 4/3C2

30 P4'3 P43 '

(P43) (P43)

vp v(
I vp I

') 8
I vp

I

'
p 3 p

(28)

which is physically correct (it does not diverge). Thus
our functional shows the correct asymptotic behavior for
both small- and large-density gradients. Results for Eqs.
(24) and (5) when evaluated with HF-quality densities
for noble gases are displayed in Table I, in the row la-
beled CRG, and compared against other current
exchange-energy formulas. These values show that our
model compares fairly well. While values for small-Z
atoms are not very good, one can see that for those atoms
in the range 10 & Z (54, our exchange energies are very

competitive.

BP~3 8 P43

432m(6m )' ' » ' Bx

Since as r~oo, p(r)~e " (a being a given constant),
one can show that for this asymptotic limit,

K -e as r~oo .
5p

(29)

k(p) = ko(p)+
10
9

ls
I vp I'

7 p
4/3

1+ mC2 8/3 +I vp I

'
7 p

(30)

This equation is of the same form as the functional pro-

Thus our Euler-Lagrange equation does not diverge, as
many other ones from different models of exchange do.

Variational densities obtained from the numerical solu-
tion of Eq. (28) in a Kohn-Sham —type calculation are
tested by comparing some density momenta with their
HF counterparts in Table II. They are also fed back into
our functional, Eqs. (25) and (5), and the variational ex-
change energies obtained are compiled in Table I, in the
row labeled CRGV. A11 these numbers are again quite
good.

Furthermore, if one rearranges Eq. (25), one can
rewrite the new functional as
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TABLE II. Density momenta and total energy for noble-gas atoms in atomic units. Values in parentheses are the relative errors as
compared to HF values.

(r ')
HF'
Ours

(r&
HF'
Ours

(r'&
HF'
Ours

—Et.t
HF'
Ours

He

3.37
3.30( —0.02)

1.86
1.92( +0.03)

2.37
2.58( +0.09)

2.86
2.75( —0.04)

Ne

31.11
31.07( —0.00)

7.89
7.95(+0.01)

9.37
9.67(+0.03)

128.55
128.08( —0.00)

69.72
69.75(+0.00)

16.07
16.00( —0.00)

26.03
25.92( —0.00)

526.82
526.31(—0.00)

Kr

182.80
183.00( +0.00)

26.24
26.07( —0.01 )

39.53
38.99( —0.01 )

2752.05
2753.76( +0.00)

Xe

317.90
318.15(+0.00)

39.06
38.74( —0.01 )

62.65
61.32( —0.02)

7232.13
7238.0( +0.00)

'Hartree-Fock values taken from Ref. 21.
Our numbers were obtained with variational densities (see footnote c, Table I).

'Hartree-Fock total energies from Ref. 22.

posed by Becke, Eq. (21). Therefore we have provided a
different theoretical argumentation for that model.

Finally, the last two rows in Table II contain a com-
parison between the total energies obtained with a
Kohn-Sham-type calculation using our MC/5p as the
effective exchange potential and variational densities
versus HF total energies. The comparison is again very
favorable. t =t~+C(N)to, (34)

space, since the Laplacian term of Eq. (33) makes tMp
negative close to the nucleus. While Eqs. (32) and (4)
provide excellent results for both local t(p) and global
T [p], this cutoff unfortunately does not necessarily pro-
vide a continuous local t (p).

(iii) The Gazquez and Robles functional, ' given by

V. CONCLUSIONS where

t =to+ —,tw .I (31)

(ii) The truncated gradient expansion, including a La-
placian term, as recommended by Yang, Parr, and Lee,"

with

Mp9(tMp)+tw[1 1(tMp)] (32)

1
tMP ——to+ —' tw+ V P,9 (33)

and q(x) is the Heaviside function, which is inserted to
impose positive kinetic-energy densities in all regions of

Our work has provided a unified vision of the previous-
ly unrelated work of GPL, ' ' Eqs. (7)—(9), the work of
DK, ' Eqs. (15)—(17), and that of Becke, ' ' Eq. (21).
Actually, we have given a new theoretical justification for
Becke's model, through our Eq. (30).

One might be tempted to apply Eq. (9) to a number of
different models of kinetic-energy density t (p} to obtain
the corresponding exchange models. However, some pre-
liminary studies that we have done lead us to believe that
this way of proceeding may not be universally valid. We
have considered the following models.

(i) The truncated gradient expansion, given by

2
C(N)=CTF 1—

1V
(35)

with CTF = —,', (6m ) and 5=1.313, a parameter adjusted
to minimize the error relative to HF energies.

While all these models give fairly good results for
atomic kinetic global energies, our preliminary studies
show that their exchange counterparts are not good.
However, in the present work the very attractive formu-
las of GPL have been successfully used to map a Pade-
approximant model for the kinetic-energy density into its
exchange-energy counterpart, giving a completely new
formula for exchange.

We believe that the unsuccessful result with models (i)
and (iii) is due to the fact that while they provide pretty
good global kinetic energies, they are not good locally
[they do not provide shell structure to t (p)], as discussed
in Ref. 11. Furthermore, the GPL transcription must be
regarded as a local rather than a global mapping. The
function P(p), as given by Eq. (8), is very sensitive from
point to point, so that a bad local description of the ki-
netic energy will be carried over through Eq. (9} to give
both bad local and global exchange energies.

For model (ii), we have a good local description of ki-
netic energy. It contains the Laplacian term which pro-
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vides shell structure to t (p). " However, this model does
not provide good global exchange energies either. This
may be due to the discontinuity of t(p) that arises from
the particular way of imposing positivity to the local ki-
netic energy via a Heaviside function.

On the other hand, as discussed previously, the Pade
model for t(p) behaves well locally. It is continuous and
smooth in both the large- and small-density-gradient re-
gions. ' This flexibility of the Pade representation of t(p)
may be responsible for its successful mapping, as can be
seen from the fact that it can be written in the same form
of Becke's functional, thus providing support for both.
Furthermore, our exchange functional yields very good

exchange energies when evaluated with HF-quality densi-
ties and its functional derivative does not diverge for
atomic systems, allowing one to obtain fairly good varia-
tional densities and exchange energies.
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