
GENERAL PHYSICS

THIRD SERIES, VOLUME 38, NUMBER 4 AUGUST 15, 1988

Higher-order WKB approximations in supersymmetric quantum mechanics

R. Adhikari and R. Dutt
Department ofPhysics, Visua Bhara-ti University, Santiniketan 73125, West Bengal, India

A. Khare' and U. P. Sukhatme
Department of Physics, University ofIllinois at Chicago, Chicago, Iilinois 60680

(Received 28 December 1987)

In the framework of the recently proposed supersymmetric WKB (SWKB) approximation
scheme, we obtain an explicit expression for the quantization condition which contains all terms up
to order A . For spherically symmetric potentials, we find that the SWKB approach automatically

yields wave functions with the correct threshold behavior. This is in contrast to the usual WKB
scheme, where proper r~O behavior necessitates the use of cumbersome "Langer corrections. "
Previous authors have shown that the leading-order (A' ) SWKB quantization integral gives exact
bound-state spectra for analytically solvable shape-invariant potentials. For these cases, we show

that the higher-order correction terms vanish identically. Finally, for nonanalytically solvable po-
tentials, a comparison of our results (comprising of higher-order corrections) with numerically

determined eigenvalues reveals very good accuracy.

I. INTRODUCTION

The WKB method' is one of the most useful tech-
niques for computing approximate eigenvalues of the
one-dimensional Schrodinger equation. In the lowest-
order approximation, the WKB quantization condition is

f &2m [F. —V(x)]dx =(n+ —,')M, n =0, 1,2, . . . .

where the effective potential V,tt(r) is

V,tt(r)= V(r)+ I (I + 1)fi'

2mr

Such a straightforward application leads to an important
difficulty. It was observed' ' that the WKB reduced ra-
dial wave function at the origin has a behavior which is
different from that of the true wave function

In general, Eq. (1.1) yields moderately accurate eigenval-
ues as analytic functions of the parameters contained in
the potential. However, for additional accuracy, it is
necessary to consider second- and higher-order correc-
tions in A. Initial work along these lines was done by
Dunham, while subsequently the technique was applied
to various physical problems by Krieger and co-
workers, ' ' Bender et al. ,

' Kesarwani and Varsh-
ni, ' ' and others. ' Recently, Seetharaman et al.
have expressed Eq. (1.1) in terms of complete elliptic in-

tegrals and obtained an explicit expression for the energy
eigenvalues of the anharmonic-oscillator potential.

A natural way of using the WKB approximation for
three-dimensional problems with spherical symmetry is
to apply the one-dimensional WKB formalism to the ra-
dial Schrodinger equation

(1.2)

(1.4)

It was suggested that this defect could be remedied by
treating the strength of the angular momentum barrier
term I(I +1) not as a fixed quantity but as an adjustable
parameter E. Langer pointed out that E should take
the value (I + —,

'
) in the lowest-order quantization formu-

la. This replacement is commonly known as the "Langer
correction. " When one goes beyond the lowest order and
includes higher-order corrections, the difficulty associat-
ed with the threshold behavior of the wave function reap-
pears again indicating that the Langer correction needs
modification at each order of approximation. However,
the algebraic procedure for adjusting this correction for
higher-order approximations is quite difficult and
cumbersome. ' '

WKB calculations also suffer from another serious lim-
itation. Except for the harmonic-oscillator potential,
they fail to reproduce exact analytic results for other
solvable potentials.
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The purpose of this work is to discuss in some detail a
new formulation of the WKB approximation which is
free of the above-mentioned drawbacks. This new super-
symmetric WKB (SWKB) approach was pioneered by
Comtet et al. using the framework of supersymmetric
quantum mechanics. ' They obtained a lowest-order
SWKB formula

f [2m(E —P )]' dx =nM,
a

where a and b are the turning points defined by

(1.5)

(1.6)

H+ —— + V+(x)
2m

and E =E„' ' is an eigenenergy of H . Here, the Hamil-
tonians H+ correspond to the supersymmetric partner
potentials V+.

invariant potentials, we confirm that higher-order correc-
tion terms vanish identically. Finally, as an example of
nonanalytically solvable potentials, we consider in Sec.
IV the class of anharmonic oscillators V(x)
=A x + +Ah(2d+1)x, A )0, d)0. The leading
O(fi ) result is quite good, and is corrected in the right
direction by the 0 (A' ) terms. We find that the 0 (iri ) and
0 (iii ) corrections are very sinall. A short discussion and
conclusions are given in Sec. V.

II. HIGHER-ORDER TERMS
IN THE WEB APPROXIMATION

Let us briefly indicate the main steps in the derivation
of higher-order correction terms within the usual WKB
framework. For any one-dimensional potential V(x), the
energy eigenvalue problem is given by the Schrodinger
equation

, +P (x)+ P'(x),
2m 2m

(1.7) d + V(x) Ef(x—)=0 .
2m

(2.1)

and P(x) is the superpotential. A remarkable feature of
the SWKB quantization condition, Eq. (1.5), is that it is
not only accurate for large n (as any WKB approxima-
tion should be in the classical limit), but is also exact by
construction for n =0 since E„' ' =0 satisfies Eq. (1.5). It
was quickly discovered that the lowest-order SWKB
quantization relation reproduces the exact bound-state
spectra for several analytically solvable potentials. Sub-
sequently, it was shown by us that the reason behind ob-
taining the exact analytic results for these potentials is
that they satisfy the "shape-invariance" condition
and for shape-invariant potentials, lowest-order SWKB is
necessarily exact. ' We also explicitly computed the
O(iri ) correction term and showed that it vanishes for all
known shape-invariant potentials. Recently, using a
complex integration technique, Raghunathan et al.
have explicitly shown that all the higher-order correc-
tions are zero for the Rosen-Morse potential and have
claimed that a similar result holds for other shape-
invariant potentials too. Thus there is no doubt that for
shape-invariant potentials SWKB is superior to the usual
WKB approximation. What about non-shape-invariant
potentials for which lowest-order SWKB is not exact? In
this connection one might raise the following questions:
(i) As for the WKB case, can one also evaluate the
higher-order correction terms in the case of SWKB
quantization? (ii) If yes, then are the higher-order correc-
tion terms reasonably small for potentials which are not
shape-invariant? (iii) Does one obtain the correct thresh-
old (r~0) behavior of the SWKB radial wave function
for spherically symmetric potentials?

The purpose of this paper is to answer these questions
in some detail. In Sec. II, we quickly review the pro-
cedure for obtaining higher-order corrections for the
WKB method. Starting with the WKB result, we explic-
itly obtain the SWKB quantization condition to O(fi ) in
Sec. III. Our result is Eq. (3.15). We also show that the
SWKB wave function for spherically symmetric poten-
tials has the correct r'+' threshold behavior. For shape-

We consider the case of two classical turning points x,
and xz ()x, ) given by

E —V(x)=0 .

Inserting the wave function

f(x)=exp +i' f S(x)dx

(2.2)

(2.3)

where

S(x)= g (fili)"S„(x)
n=0

(2.4)

in Eq. (2.1) and equating the coefficients of successive
powers of fi to zero, we obtain,

So(x) =&2m [E —V(x)], (2.,5)

S„' i
———g S„S

m=0
n=1, 2, . . . (2.6)

Writing the recurrence formula (2.6) explicitly, one finds

SoS1 ————,'So,

SoS2 = —2S1 —2S1
k

SOSik = —i Sik i
—g S~S2k ~ —

i Sp
m=1

(2.7a)

(2.7b)

(k =1,2, 3, . . . ) . (2.7d)

These recurrence relations may be simplified and solved
successively to obtain various S;,i = 1,2, . . . . Following
the procedure of extending the domain of x to the com-
plex plane, Dunham obtained the energy quantization
condition

(k =2, 3,4, . . . ), (2.7c)
k

SOS' k + i
———

—,
' S2k

—g S~S2k
m=1
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)Szdx+ g (fi/i)" fS„(x)dx =(n+ —,')b .
fl =2

(2.8)

It has been shown explicitly by Bender et al. ,
' that

S2 + &
n ) 1 is itself a total derivative, and hence all odd

terms S3,S5, etc. , when integrated along the closed con-

tour in (2.8) vanish. Following the method of Krieger
et al. ,

' '" the terms ' involving Sz,S4,S6, etc., are
simplified by repeated integration by parts. Furthermore,
converting the nonintegrable singularities in these terms
to integrable singularities, the quantization condition up
to order fi may be obtained as

(2m) / (E y') / dx y"(E y')
24(2m) /2 dE

4 Zp

[7( Vll )2 5 Vt Vttt )(E y)
—] /2d

2880(2m ) dE

d4 x~

, J 216(y"') (E —V) ' 'dx
725760(2m) /

X2

+ 5
93 V' —224~'~"V'"+35 ~' ~"" E —V ' dx = n +-' M , 2.9

For obtaining corresponding correction terms for
spherically symmetric three-dimensional problems de-
scribed by the radial Schrodinger equation (2.1), Krieger
et al. "invoked the Langer transformation

r =e", X(r)=e" P(x) (2.10)

and showed that the leading-order term of the series ex-
pansion (2.4) is of the form

(!+-,')'A'
So —— E —V(r)—

2@i7

(2.11)

K+ =i(i+1) .
1

64E
(2.12)

It emerges that Langer-type corrections vary from order
to order, and the calculation becomes cumbersome and
tedious for higher-order WKB approximations.

III. HIGHER-ORDER SWKB APPROXIMATION

Equation (2.9), being quite general for any potential
V(x) which can hold bound states, will be our starting
point for obtaining the new expansion series in supersym-

which clearly indicates that in the centrifugal term
i(i+1) has been replaced by (i+ —,') . One may then

easily check from (2.3), (2.10), and (2.11) that the correct
threshold behavior (for potentials less singular than 1/r )

1s

& 1/2e ( I + 1/2)lnr

r~o

which is same as indicated in (1.4}. However, it was
pointed out by several authors' ' that the replacement
of i(!+1) by (!+ —,') is not valid if second- and higher-
order correction terms are included. For example, if one
includes terms up to S& in (2.3) and (2.4), it can be shown
that for obtaining the correct threshold behavior of X(r)
at the origin, !(!+1):chas to be replaced —by the solu-
tion of the equation

l

metric WKB approximation. Let us rewrite (2.9) as

I, +I,+I, +I4 (n+ ,')n——R, -. (3.1}

where I&, Iz, I3, and I& denote, respectively, the first,
second, third, and fourth terms on the left-hand side of
(2.9). As mentioned before, Comtet et al. first replaced
V(x) by V (x) as given by Eq. (1.7) and keeping the
leading term P, obtained the modified quantization con-
dition (1.5). It is necessary to emphasize here that there
are two distinguishing features between WKB and
SWKB quantization relations (1.1) and (1.5), respectively:
Firstly, the integrand in the supersymmetric case con-
tains not the full potential

V (x)=P (x)— P'(x),
&2m

but only the leading term, P . Secondly, the turning
points x

& z in (1.1), are the solutions of

E„' ' —(t (x)+ P'(x) =0,
2m

(3.2)

whereas the turning points a and b in (1.5) are the solu-
tions of Eq. (1.6). Clearly,

lim x& 2
——a, b .

A~O
(3.3)

This indicates that while obtaining higher-order SWKB
integrals similar to those in (2.9), one may expect contri-
butions to different orders in R due to the change of the
limits x, 2~a, b as we11 as due to the terms contributed
by the expansion of the integrands which also contain the
parameter A. Now, our job is to do the expansions of the
integrals in (2.9) in fi systematically and to collect terms
of the same order in A.

In obtaining the rearranged series in R, let us first ex-
amine whether any contribution at all comes from the
change of limits. For this purpose we concentrate, say,
on the first integral I, in (3.1),
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x&(A)

I, = f ' f(xh)dx,

where
1/2

(3.4) a

x, df dx2 dx )
I)1 ——lim dx +f (x2, ))i) f—(x), i)i)

o-o &) dA dpi
'

dA

(3.9)

f (x, ))i)—:2m E —P +
2m

One may expand I, in powers of A as

I) ——Q fi"I)„,
n=0

where

I)
I&„—— lim „, n =0, 1,2, . . . .

n! s-o dg" '

(3.5)

(3.6)

(3.7)

(3.10)

f (x2, )ri) =f (x), fi) =0, (3.11)

and hence the contributions due to the change of limits
from x& 2 to a, b are zero in the A expansion. Thus, Eqs.
(3.5) and (3.10) lead to

and so on. The last two terms in (3.10) are the contribu-
tions from the limits as those are functions of A. Howev-
er, by virtue of (3.2)

Using Leibnitz's formula

d xi(i)) xi df dx 2 ())1)f,„,f (x,A')dx = J dx +f (x2, fi)
Similarly,

f b p'dx )r
"g 2(E $2))/2

(3.12)

we get from (3.7)

dx, (fi)—f (x „))i) (3.8)
—1 I b (p')2dx

8(2m)1/2 J (E y2)3/2

Proceeding in this way one gets

(3.13)

I) —(2m)' 2 f (E it) )'—
a 2

$2 j (y~)2(E y2) —3/2dx
8(2m)'/

3 g 2 —5/2d~ 4 E 2 —7/2b, 5%4 b

16(2m) a 128(2m)

7R' 6 21kf (Pi)5(E P2) —9/2d J' "(yi)6(E y2) —11/2d +O(g7)
256(2m ) ~ 1024(2m )3/

(3.14)

It is interesting to note that I„which is of order ())1') in the normal WKB scheme [see (2.9)], now contains all orders
of fi due to the change of the potential V(x) by the superpotential p(x). Similarly, I2, I3, and I4 which are the integrals
of orders ())2 ), (fi ), and (A' ), respectively, in the usual WKB formalism, also involve all powers of R beyond their lead-

ing terms. Explicit expressions for I2, I3, and I4 are given in the Appendix.
As first sight, one may be surprised to see the appearance of odd powers of A such as A', R, etc., in the quantization

integrals I&-I4. However, interestingly as expected, one finds complete cancelation among such terms when one adds

up I&, I2, I3, and I4 and only the even powers of A make nonzero contributions. After some algebraic simplification,
one gets

b AE d
(2m )1/2 J (E y2)1/2dx J ( it)i )2(E y2) —1/2dx

6(2m)' dE

d 6 d3
J 30$'P'"(E —P )

'/ dx+ f ( —8(P') —31$(P') P"

+7/ (P") 5$ P'P"')(E it) )
' —dx—

6+
90 720(2m ) dE f 378(P"') (E —P )

'/ dx

d4 bI [ 2160//'Q"P"'+16—74($') (P") —108$ (P"') ](E—P )
'/ dx

a

d' 6
~ 6 l l l9 ~ 4»+729 2 I 2» 2+399 2 ~ 3

—93/ (P") +224/ P'P"P"' —35$ (P') P""](E—P )
' dx =nirA . (3.15)
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Here F. corresponds to E„' '. Equation (3.15) is our new

SWKB quantization relation up to order A and should be
treated as the analogue of Eq. (2.9) obtained in the usual
WKB approximation. The first two terms of Eq. (3.15),
i.e., up to order A were obtained earlier by us.

Equation (3.15) preserves the basic properties of unbro-
ken supersymmetry. In particular, for n =0, the turning
points a and b are coincident when Eo=—Eo '=0 and
SWKB is exact by construction. Furthermore, it is im-
portant to point out that if instead of E„' ' one is interest-
ed in obtaining a quantization formula for E„'+' [i.e., en-

ergy eigenvalues associated with the sypersymmetric
partner potential V+(x)] one needs to replace iiiP'(x) by
—iiiP'(x), which is equivalent to the replacement i}i—+ —A'

in Eq. (3.15). It is easy to see that the SWKB quantiza-
tion condition for E~+' is again given by Eq. (3.15) except
that the right-hand side will be (n +1)irk'. Thus one sees
that all higher-order SWKB calculations retain the basic
supersymmetric relation

(3.16}

Before exploring the applications of our higher-order
SWKB quantization relation, we would like to emphasize
that unlike the conventional WKB approach, one obtains
the correct threshold behavior of the radial wave func-
tion for spherically symmetric problems without making
any Langer-type modifications. From the lowest-order
term, one obtains

S& —[2ni (E —P )]' ——i'(1+ I )/r
r~o

and consequently

Including higher-order terms such as S&, Sz, etc. , in (2.3),
we have checked that the SWKB wave function behaves
like r'+' as r ~0 to all orders in A, i.e., the SWKB for-
malisrn contains the correct threshold behavior in a natu-
ral way.

As mentioned in Sec. I, it has been shown that for
shape invariant potentials, the leading term in Eq. (3.15)
gives the exact bound-state spectra and the O(A' ) contri-
bution vanishes. Now that we have obtained a more ac-
curate expression containing O(R ) and 0 (fi ) terms, it is
possible to see what their contributions are. We have ex-
plicitly computed these contributions for all known
shape-invariant potentials (see Table I in Ref. 35) and
found them to be zero. (The calculations are tedious but
straightforward. ) This provides an independent check on
the proof regarding the vanishing of higher-order
corrections for shape-invariant potentials.

IV. EIGENVALUES OF
NON-SHAPE-INVARIANT POTENTIALS

in the previous section, we have discussed shape-
invariant potentials, for which all higher-order SWKB in-
tegrals are explicitly zero. In this section, we deal with
potentials for which at least some of the higher-order in-
tegrals are nonzero. One such problem is the anharmonic
potential,

V(x)=A x "+ +(2d+1}iriAx, A )0, d)0,
(4.1)

for which the superpotential is

{('i(x)= Ax +' (4.2)

g(r) —exp —f Szdr —r +'
r-O

(3.17) Treating V as V+ and using the relation (3.19), we obtain
from (5.2) and (3.18) the energy quantization relation

4d +3
4d +2

3d +2
2d +1

~'~ (d+I)r 4" +'
4d +2

T

6 r
2d +1

a'&~(d +2)r
4d +2

720Q I
2d +1

60d(2d —1)+ [ —4(2d+1) —31d(2d+1)+14di —5d(2d —1)]
(4d —1)
(2d + I )

& &ir(d +3 )( 3d +4)I
4d +2

181440Q (2d +1)~I d —2
2d +1

&& [ 3024d'(2d —1)'(2d +1)+216d'(4d —3)[—40(2d +1)(2d —1)+31(2d +1)i—2(2d 1)i]

+(Sd —1)(4d —3)[ 48(2d +1)'—1119d(2d +1}~+1458di(2d +1)+399d(2d + 1)(2d —1)

—372d +448d (2d —1)—70d (d —1)(2d —1)]]={n + (4.3)
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TABLE I. Comparison of energy eigenvalues computed up to order (R ) with the numerical results
for the potential V(x) =x'+x /9 in units of 2m =A= 1.

0
1

2
3
4
5
6
7
8
9

10

o(x')

1.3077
3.6989
6.7953

10.462
14.621
19.220
24.220
29.591
35.309
41.355
47.710

O(A )

1.2142
3.6346
6.7430

10.417
14.581
19.183
24. 186
29.559
35.279
41.326
47.683

o(s')

1.2142
3.6346
6.7430

10.417
14.581
19.183
24.186
29.599
35.279
41.326
47.683

O(A )

1.2566
3.6363
6.7433

10.417
14.581
19.183
24.186
29.559
35.279
41.326
47.683

Numerical

1.1175
3.6364
6.7440

10.417
14.581
19.183
24.186
29.559
35.279
41.326
47.683

31/3g2/31 (
1

) 21/3E —2/31 (
2

)

I 2( z )24/3 I 2( 1 )34/3+
3 3

1318E ' 2 I ( —')
3

109 35r'( z )3'"

=n+1 . (4 4)

In (5.4), successive terms corresponds to order (iii ), (lri ),
and (fi ), respectively. For this case, the term of order
(fi ) is identically zero. Likewise, for the choice A =1,
d = —,', one gets

3E I (-')
5

I 2 4 )213/5
5

2'/5Z-'"I (-2) 469m-""2'"I (-')
5 5

30375I ( —')

=n+1 . (4.5)

For this choice of A and d, it is interesting to note that
one has terms of order (A' ), (iri ), and (ill ), but order (fi )

where

g (2~)1/2(gd+1/ g )1/(2d+1)

Since the Schrodinger equation cannot be solved analyti-
cally for the potentials under consideration, we compare
the SWKB energy eigenvalues with the numerical results
obtained by us using a Runge-Kutta integration program.
As an illustration, we consider two cases: A =—,', d =1
and 3 =1, d = —,'. Using the units 2m =A'=1 in (5.3), we

thus obtain for A =—,', d =1

vanishes. Energy eigenvalues computed from (4.4) and
(4.5) are shown, respectively, in Tables I and II along
with the numerical results obtained by us. The compar-
ison reveals that in general there is an improvement of
accuracy due to O(fi ) terins, but subsequent higher-
order correction terms are negligible. From Table I, it is
seen that the result for the ground state begins to deviate
from its actual value if one includes the next nonvanish-
ing correction term beyond order (fi ). This is perhaps
due to the asymptotic nature of the SWKB series and is
not so surprising when one recalls that similar behavior is
also observed in case of normal WKB calculations.
Bender et al. '" performed higher-order WKB calcula-
tions for the anharmonic potential V(x)=x and ob-
served that the ground-state energy becomes worse by the
inclusion of correction term of order (lrz ) [see Table I of
Ref. 14]. Similar observations were also made by
Kesarwani and Varshni. '

V. CONCLUDING REMARKS

The SWKB quantization condition can be regarded as
a rearrangement of the WKB series in powers of A such
that (i) it is exact for n =0 and (ii) the lowest order gives
the exact eigenvalue spectrum for shape-invariant poten-
tials. It is clearly important to check that in spite of this
rearrangement the higher-order contributions are small.

In this paper we have explicitly obtained the SWKB

TABLE II. Comparison of energy eigenvalues computed up to order (A ) with the numerical results
for the potential V(x) =x' + 3x in units of 2m =4=1.

0
1

2
3
4
5
6
7
8

9
10

o(eo)

2.1422
5.0950
8.4578

12.118
16.016
20.116
24.391
28.822
33.393
38.094
42.914

O(A )

2.0897
5.0642
8.4351

12.100
16.001
20.103
24.379
28.811
33.383
38.085
42.905

O(fi )

2.1148
5.0678
8.4363

12.100
16.001
20.103
24.379
28.811
33.383
38.085
42.905

o(A')

2.1148
5.0678
8.4363

12.100
16.001
20.103
24.379
28.811
33.383
38.085
42.905

Numerical

1.9850
5.1121
8.4088

12.118
15.988
20.113
24.371
28.817
33.384
38.090
42.901
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quantization condition to O(fi ) and have shown that
whereas the higher-order correction terms vanish for
shape invariant-potentials, they are nonzero but quite
small for other potentials. Further, we have shown that
unlike the WKB approach, the SWKB method repro-
duces the correct threshold behavior of the reduced radi-

al eigenfunction for spherically symmetric potentials.
This suggests that the SWKB method can prove to be

very good for eigenvalue determinations. In order to fur-
ther compare the relative merits of the WKB and SWKB
approaches, it would clearly be desirable to compare the
predictions of both approaches for a number of poten-
tials. Further, one should examine if one could compute
large-order terms and phase shifts within SWKB ap-
proach. It must be noted here that the usual WKB
method has a definite edge over SWKB for those poten-
tials for which the superpotential, and hence the ground-
state wave function, is not known. For such potentials,
the additional step of computing the ground-state wave
function either numerically of by a variational technique
is necessary.
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The WKB quantization condition can be expressed in
the form [Eq. (3.1)]

g I„=(n+—,')M,
r=1

(A1)

where I„=O(fi" ). The computation of Ii was de-
scribed in detail in Sec. III. Essentially the same pro-
cedure is used for computing higher-order terms.
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f [(P')'+PP" ]Gdx + f P"'G dx —,f 2[(P')'+PP'P" ]G dx
L

f 3(P') P'"G dx — f 2[($') +P(P') P"]G dx
144(2m ) dE dE4

+ „, , f 2(P') P"'Gdx —
& f [(P') +P(P') P"]Gdx +O(fi", (A2)

4 d b

, f [7(0')'+74'(P")' P(P')'P" 5—$ P'P'"]G —dx

b+, , f [ 14(O')'O"' 9-OC"O"'+5&-O'V""+»a (y")']G dx
1440(2m ) dE a

d4 b+,f 2[7(P')'+7/'P'(P")' P(P')'P" 5$'—(P')'P"']G—dx

g6 b

d4 b+,f 2[ 14(4')'—4"' 944'4"—4'"+5&(P')'P""+15(P')'($")']Gd

d' b+ 27 +7 ' " — ' "—5 ' "'Gdx +0 A' A3

g6 d4
I,= . . .f [9(P')'(P")'+P'(P"')'+6PP'P"P"']G dx

+,f [93(4')'+93(t'((t")'—3934((t')'(t" —844 "0')'0'"

—288(t ((t') (P") —224/ P'P"Q'"+35/ (P') Q'"']G dx +O(fi ) . (A4)
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