PHYSICAL REVIEW A

VOLUME 38, NUMBER 3

AUGUST 1, 1988

Comment on “Obtainment of thermal noise from a pure quantum state”
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Yurke and Potasek [Phys. Rev. A 36, 3464 (1987)] have shown that pure states of correlated pairs
of quantum systems can lead to mixed-state behavior if only one of the systems is observed. We
note that such behavior is well known and describe how the mixed-state properties of these states
have led to their application in thermodynamical problems via the thermofield formalism. The
correlations have been found to lead to manifestly nonclassical behavior (such as squeezing) if both

systems are observed.

In a recent paper Yurke and Potasek' described the re-
markable thermal properties of the individual modes in a
two-mode squeezed state. This phenomenon is of interest
because the mixed-state behavior of the single mode
occurs even though the complete two-mode system is in a
pure state. We note here that this property has been dis-
cussed at length by others.>~ It has led to the use of
these states (and their fermionic counterparts) in finite-
temperature quantum field theory via thermofield dynam-
ics.? Thermofield states have been applied to a range of
thermodynamic problems in quantum optics,’ in particu-
lar problems involving the amplification and attenuation
of light.> They have also been used to describe the pro-
duction of particles by a blackhole through the Hawking
mechanism.®

The motivation behind the thermofield formalism is to
exploit the analogy between the ensemble averages of sta-
tistical mechanics and the vacuum expectation values of
quantum field theory. The statistical average of an ob-
servable A is conventionally given by

(A)=Z YB)Tr[ 4 exp(—BH)] , (1)

where H is the Hamiltonian, Z(f3) is the partition func-
tion, and B is the inverse temperature (B=1/kzT). The
thermofield representation of this ensemble average is
written as a pure-state expectation value

(4)=(op)| 4|0pB)), )

where |0(f3)) is the temperature-dependent vacuum
state. Equating expressions (1) and (2) gives

(0B)| A4 10B))=Z YB3 (n|A|ndexp(—BE,),

(3)

where |n) are the eigenstates of the Hamiltonian with
eigenenergies E,. If we expand the temperature-
dependent vacuum state in terms of these eigenstates,

10(B)=3 |n)f,(B), 4)

then we find that Eq. (3) can only be satisfied if the expan-
sion parameters f,(B) are vectors satisfying the ortho-
gonality relation

FXBY . (B)=Z ' (B)exp(—BE, )8, . (5)

The thermofield vacuum is a vector in an enlarged space
spanned by |n) and f,(B). Such a representation may
be realized by inventing an additional fictitious dynamical
system identical to that under consideration. Quantities
associated with this fictitious system are conventionally
denoted by a tilde. The additional system is therefore
characterized by a Hamiltonian H and orthonormal
eigenvectors |A) with eigenenergies E,. The
thermofield vacuum state may be expressed in terms of
this double basis

|0(B))=Z~"4B) S exp(—BE, /2) | n,7i) . (6)

If the thermal system is a field-mode then the eigenstates
|n) are photon number states. In this case, the
thermofield vacuum state is formally identical to the
two-mode squeezed states discussed by Yurke and Po-
tasek! and others.>*” We have provided a detailed dis-
cussion of the link between two-mode squeezed states and
the thermofield formalism elsewhere.® Note that the
thermofield vacuum is a superposition of only those states
with equal numbers of photons in the real and fictitious
modes. It is this property that is responsible for destroy-
ing off-diagonal matrix elements in the thermofield vacu-
um expectation value. The thermofield formalism allows
us to use pure-state wave functions, in place of density
matrices, to represent thermal states. The price paid for
this ability is that we have to contend with a doubling of
the number of dynamical variables—a fictitious one for
each real one.

If the fictitious mode is actually real, in a genuine two-
mode system, then the thermofield vacuum state becomes
a two-mode squeezed state. Such states have been pre-
dicted in a number of nonlinear optical processes and
particularly in parametric amplifiers,® where single-mode

1657



1658 COMMENTS 38

thermal properties are well known.>*® The mechanism
that is responsible for producing this thermal effect is the
correlation between the two modes induced by the para-
metric amplifier (or similar device). These correlations
are neglected when expectation values are evaluated for
single-mode properties and the properties of the second
mode are not investigated. That is, the single-mode prop-
erties are described by a thermal density matrix that is
obtained by tracing the full two-mode density matrix
over the unobserved mode. %82

When the properties of both modes of a two-mode
squeezed state are observed then the nonclassical correla-
tions between the modes become apparent. These corre-
lations are directly responsible for the strong intensity-
locking between the modes as well as the normal-mode
squeezing that is the definitive feature of two-mode
squeezed states.” It is intriguing to note that the thermal
behavior of individual modes in a two-mode squeezed

state, as well as their nonclassical intensity-locking and
squeezing properties have a common origin in the build
up of correlations between the two modes. The mecha-
nism for thermalization inherent in these states is indeed
intrinsically quantum mechanical.’

The novel properties of the two-mode squeezed states
are by no means unique. It has been shown that correlat-
ed pairs of atoms or spins exhibit similar thermal and
nonclassical properties.!® Moreover, the thermofield for-
malism can be extended to provide a pure-state represen-
tation of arbitrary mixed states of any quantum system.'!
It remains to see how useful the thermofield formalism
will be in practical calculations in quantum optics.
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