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A method is described for reducing noise levels in certain experimental time series. An attractor
is reconstructed from the data using the time-delay embedding method. The method produces a
new, slightly altered time series which is more consistent with the dynamics on the corresponding
phase-space attractor. Numerical experiments with the two-dimensional Ikeda laser map and
power spectra from weakly turbulent Couette-Taylor flow suggest that the method can reduce noise

levels up to a factor of 10.

The ability to extract information from time-varying
signals is limited by the presence of noise. Methods of
noise reduction are a subject of widespread interest in
communication,! physical systems,” and experimental
measurements.> Recent experiments to study the transi-
tion to turbulence in systems far from equilibrium, like
those by Fenstermacher et al.,* Behringer and Ahlers,’
and Libchaber et al.,® succeeded largely because of in-
strumentation that enabled them to quantify and reduce
the noise.

In recent years, traditional methods of time series
analysis like power spectra have been augmented by new
methods. In many cases, the time series can be viewed as
a dynamical system with a low-dimensional attractor that
can be reconstructed from the time series using time de-
lays.” Because the dynamics of the phase-space attractor
are not localized in a time or frequency domain, tradi-
tional noise-reduction methods like Wiener® and Kal-
man’ filters are not applicable. In this paper we describe
a noise-reduction procedure that works by taking many
nearby points in phase space (corresponding to widely
varying times in the original signal) to find a local ap-
proximation of the dynamics. These approximations can
be used collectively to produce a new time series whose
dynamics are more consistent with those on the phase-
space attractor. We demonstrate the efficacy of the
method using chaotic attractors obtained from the Ikeda
laser map'® and a Couette-Taylor fluid flow experiment.'!

The discrete sampling of the original signal means that
the points on the reconstructed attractor can be treated
as iterates of a nonlinear map f whose exact form is un-
known. However, we assume that f is nearly linear in a
small neighborhood about each attractor point x; and
write

x; 1=f(x;))=A;x;+b,=L(x;)

for some matrix A; and vector b;. (The matrix 4, is the
Jacobian of f at x;.) This can be done with least-squares
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procedures similar to those described in Ref. 12. Let
{x;}7—1 be a collection of points in a small ball around
the ith reference point, and let y;=f(x;) denote the ob-
served image of x;. The kth row a/* of A; and kth com-
ponent b{*’ of b, are given by the least-squares solution of
the equation

yH=b"+@|x;), (1)

where y{* is the kth component of y; and ( | ) denotes
the dot product. (Farmer and Sidorowich'® have generat-
ed similar approximations for the different purpose of
forecasting chaotic time series.)

We remark that Eq. (1) can be ill-conditioned, for ex-
ample, when the unstable manifold at x; is nearly one di-
mensional and 4; is 2X2. We detect this situation by
computing the singular values and right singular vec-
tors' of the matrix X whose jth row is x; to find the con-
dition number of X, which is defined as the ratio of the
largest to the smallest singular value. When the condi-
tion number is sufficiently large, we solve Eq. (1) using
the components of x; contained in the subspace spanned
by the singular vectors corresponding to the largest
singular values. (For instance, we find a one-dimensional
linear approximation of f wherever the points x; fall
nearly along a single line.) Moreover, because error ex-
ists both in the points x; and their observed images y;, a
modified least-squares procedure as described in Ref. 15
often gives better estimates of 4; and b;.

In the second stage of the method, we use the linear
(more precisely, linear + constant) maps L to correct er-
rors in the observed trajectories as follows. Given a
“window” of consecutive points {x;,x;,,...,%;,,} on
the observed trajectory, we find the collection of points
{Xi%; 1.4} closest to the observed ones which
also best satisfy the corresponding linear maps. More
precisely, the new trajectory {X;,,}4_, minimizes the
sum of squares
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(terms with subscripts outside [i,i+p] are omitted).
This procedure can be iterated by replacing the original
trajectory {x;} with the most recent least-squares trajec-
tory {%,}, then finding a new solution to Eq. (2).!® More-
over, the windows can overlap; for instance, the second
window can begin in the middle of the first.

We have conducted numerical experiments using the
attractor produced by the Ikeda map [f(z)=p
+cyz exp{i[c;—c3 /(14 | z|?)]}, which models the dy-
namics of a bistable laser cavity.!° We consider the at-
tractor for the mapping z;.,=f(z;), where p=1,
c;=04, ¢,=0.9, ¢;=6. (The complex number z; is
identified with the 2-vector x;.) Numerical evidence sug-
gests that initial conditions in [0.5,1.8] X[ —2,1] are in
the basin of a chaotic attractor whose numerically calcu-
lated Lyapunov exponents are 0.7296,— 1.034 (logarithms
base 2) and whose Lyapunov dimension is 1.71.

We measure the noise level in terms of the pointwise er-
ror e;=||x; .1 —L(x;)|, i.e., the distance between the ob-
served image and the predicted one [using the linear
maps from Eq. (1)]. The mean error is E=(2jej2/N)”2,
the root-mean-square value of the pointwise error over all
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N points on the attractor. We define the noise reduction
R =1—Eg.4/E sy, Where the mean errors are comput-
ed for the adjusted and original noisy attractor, respec-
tively. (R is a measure of the self-consistency of the time
series, assuming that the linear maps are accurate ap-
proximations of the true dynamics.)

The numerical experiments on the Ikeda attractor use
65 536 iterates, to which 0.1% uniformly distributed ran-
dom noise is added. The noise is independent of the dy-
namics, i.e., the input to the computer program is the
series  {z;+m;m; random}, for which E
=7.588X 10~*." The linear maps L are computed using
at least 50 points about each attractor point. Points are
collected until the condition number of Eq. (1) is less than
ten.!” Trajectory adjustment is done in windows of 24
points, and the windows overlap by two points. After
noise reduction, Eg.q=1.178X107% so that the total
noise reduction R is 84%. When 1% noise is added, we
find R=83%.

We have performed similar numerical trials with the
Hénon attractor,'® for which the (j+1)st time series
value is given by

x; o =f(x;,x;_)=1—1.4x}+0.3x;_, .

In this case the pointwise error can be measured exactly
by replacing L with f (the mean error E then becomes a
“correctness index””). When 1% noise is added to the in-

FIG. 1. Chaotic attractors from the Couette-Taylor fluid flow experiment described in Ref. 11 at R /R, =12.9. (a) Raw data. (b)
Attrator after the noise reduction procedure described in the text. (c) and (d) Power spectra corresponding to (a) and (b), respectively.
The units of frequency and power spectral density are as described in Ref. 11.
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put as described above, the noise reduction (measured
with the actual map) is 79%.!° In addition, noise levels
can be reduced almost as much in cases where the noise is
added to the dynamics, i.e., where the input is of the form

{xj+l:xj+l=f(xj+77jaxj_1+nj_1),7]/',7]}'_1 random] .

Next we consider the application of the method to data
from the Couette-Taylor fluid flow experiment described
in Ref. 11. Figure 1(a) shows a two-dimensional phase
portrait of the raw time series at a Reynolds number
R /R_ =129, which corresponds to weakly chaotic
flow.!! The corresponding phase portrait from the
filtered time series® is shown in Fig. 1(b). The noise
reduction, using the above criterion with the linear maps,
is 63%.

Figure 1(c) and 1(d) show the power spectra for the
corresponding time series. We emphasize that the
dynamical information used to adjust the trajectories
(viz., the motion of ensembles of points which are close
together in phase space) corresponds to portions of the
original signal that are widely and irregularly spaced in
time. One question therefore is whether reducing the
high-frequency noise corresponds to discovering the true
dynamics which have been masked by noise. We believe
that the answer is yes, based on those cases where there is
an underlying low-dimensional dynamical system. How-
ever, in chaotic process some high-frequency components
remain, because they are appropriate to the dynamics.

The method is particularly useful in calculations of
dynamical quantities such as metric entropy and attrac-
tor dimension from experimental data. As an example,
we consider the correlation dimension.?! Let C(x;,e)
denote the fraction of points on the attractor that fall
within a distance € of a randomly chosen (with respect to
the natural measure) reference point x;. Let C(€) be the
average values of C(x;,€) over the reference points x;.
Then C(€)~ € for small €, where d is the correlation di-
mension.?!

The dimension calculation illustrated in Fig. 2 is for
the Ikeda attractor described above. The value of C(e) is
estimated from 1000 reference points using 48 values of ¢,
equally spaced on a logarithmic scale from 270 to 272
(only the range 27 ®<e<27% is shown). Distances are
normalized so that the total attractor extent is 1. The di-
mension, which is estimated as the derivative of logC(¢)
with respect to loge, is taken as the slope of the regres-
sion line through six consecutive (loge,logC(€)) pairs.
Although the noise level in the input is only 1%, noise
inflates the dimension estimate even at ball sizes which
are 3% of the attractor extent (top curve). However, the
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FIG. 2. Grassberger-Procaccia correlation dimension d for
the Ikeda attractor, using a data set with 1% uniformly distri-
buted random noise (top curve), the same data set after the
noise-reduction procedure (middle curve), and the original
noiseless attractor (bold curve). The Lyapunov dimension of
the attractor is 1.71.

dimension estimate for the fitted attractor (middle thin
curve) compares favorably to that obtained from the
noiseless attractor (bold line).

Since accurate linear approximations are essential for
the success of the method, there must be an ample num-
ber of points in a small neighborhood about each point
on the attractor. Thus, the data requirements depend on
the dimension of the attractor. This method is best suit-
ed to situations where large amounts of data can be col-
lected but the measurement precision is limited. This
method promises to be of considerable value in the
analysis of experimental data when the time series can be
viewed as arising from a dynamical system with a low-
dimensional attractor.
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