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Local order in a dense liquid
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Transient local hexagonal order in a dense liquid is observed in a molecular-dynamics simulation
of two-dimensional soft disks. Instantaneous local structure factors at a particular density are ob-
tained using an optical transform of the particle coordinates for a single configuration. Local hex-

agonal order is quantified using an order parameter, and its lifetime characterized by the decay of
the order-parameter autocorrelation function. This type of transient structure is significant at den-

sities greater than lo of the freezing density, and becomes persistent near the freezing density.

INTRODUCTION

In this paper we demonstrate a transient local ordered
structure in a dense liquid. While it has long been recog-
nized that local anisotropic ordering must be present in a
fluid —the change of the typical iostropic liquid micros-
tructure to that of the anisotropic solid, and the converse,
has been studied extensively in the context of crystal
growth, supercooling, and glass formation' —our work
differs in that the simulated Quid is probed in situ as an
equilibrium liquid at constant temperature and density.

Our conclusions are based on the local structure factor
and an order parameter evaluated from the standard
"sLLQD" molecular-dynamics simulation of a two-
dimensional fluid. Details of the technique have been re-
ported elsewhere, and previous simulations of the two-
dimensional liquid have been discussed at length by us
and by others. In this work the systems consisted of
3584 or 896 soft-disk particles interacting with an
inverse-twelfth-power potential truncated and shifted at
r =1.5. Simulations were carried out with the system at
constant density p, and kinetic temperature T, for a given
state point, X =pT '~ with the temperature constrained
at 1.0. (All variables are reduced by the potential param-
eters that are in turn set equal to one, as is the usual prac-
tice.} The results presented here were extracted from
simulation runs of approximately 20000 time steps, with
the time step equal to 0.004, for liquid densities in the
range 0.3&p(0.98, and for one density in the solid at
p=1.05. The freezing density for an 896 particle system
has been determined previously to be 0.986+0.001. We
made sure the system was properly equilibrated at zero
time.

LOCAL STRUCTURE FACTOR

The presence of anisotropic local order in an individual
snapshot of the simulation was first detected when we
made use of an optical transform method' of probing the
structure factor S(k). We had previously used this opti-
cal method in a nonequilibrium molecular-dynamics
(NEMD) study of shear-induced anisotropy in two-
dimensional liquids. " Initially the method was used to
parallel some published diffraction work on a real col-
loidal system, but it proved such a simple and efFective
way of monitoring S(k) that we continued to use it, in
preference to an earlier method' involving the Fourier

transforming of the spherical harmonic expansion of the
pair correlation function.

Optical transform methods are well established as aids
to the interpretation of diffraction phenomena in the solid
state, but their use in conjunction with MD simulation of
liquids is quite novel so we give a brief description of the
procedure. To evaluate the structure factor S(k) we ex-
tracted the positions of the particles from the simulation
run at a particular time. The key step was to represent
these positions as transparent dots on otherwise black
photographic film. We scaled the simulation cell length
to 16.6 mm on the film and a particle coordinate was
represented by a 200 pm diameter dot. It should be
remarked that the actual size of the dot affects only the
overall variation of scattered intensity with diffraction
angle, not the structure factor itself. The structure factor
followed as a direct measurement simply by taking the
film as a scattering medium and obtaining a diffraction
pattern using light from a low power He-Ne laser. ' '"
For the 896-particle liquid, composite plots were
prepared that consisted of thirty-six data sets taken at
random times from the appropriate simulation. The sets
were arranged side by side on a 6X6 grid covering an
area of 10 cm)(10 cm on the film. Since there can be vir-
tually no phase coherence between light scattered from
the separate plots, the resulting intensity is the average of
the individual transforms. The position of the particles
on each plot was estimated to be accurate to 0.04%. One
plot was prepared for the 3584-particle system at a densi-
ty 0.9238, scaling the dot size and interparticle distance
to be consistent with the smaller system. The structure
factors from this sample were extracted by viewing the
sample as a whole, and by stopping down the aperture to
look at smaller segments of about 800 particles.

Structure factors for the 896-particle system are
presented in Fig. 1. Figure 1(a) depicts the hexagonal
crystalline pattern of the solid at p=1.05; Fig. 1(b) was
constructed for the system at a density of 0.95 and shows
the typical circularly symmetric pattern of a dense liquid;
Fig. 1(c) shows the diffuse structure of the moderately
dense liquid at p=0. 3. As remarked, these intensity
plots are averages of thirty-six configurations taken at
random times. A more detailed picture emerges when
the structure factor is evaluated from an individual
configuration. For example, Fig. 2 displays snapshots of
S(k) from the run at p=0.95; Fig. 2(a) shows the pattern
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expected for a liquid, but Fig. 2(b) taken from the simula-
tion 50 time steps later, indicates anisotropic features
reminiscent of the microstructure of the solid. In partic-
ular, the second diffuse ring in Fig. 2(b) appears hexago-
nal in shape while in the inner ring there are six spots of
rather brighter intensity. These two examples were
chosen from a set of 36 snapshots taken at regular inter-
vals during the simulation. In approximately half of the
snapshots this hexagonal structure was clearly evident,
although the orientation of the hexagonal structure
varied.

The information contained in Fig. 2 can also be
displayed in r space. For each particle in a configuration
we construct a bond vector by joining its center to the
center of its nearest neighbor. Taking the midpoint of
the bond as the origin, and its direction as a reference an-
gle we plotted the positions of its near neighbors. The re-
sults in Figs. 3(a) and 3(b) correspond to the
configurations used to obtain Figs. 2(a) and 2(b), respec-
tively. Visual evidence of hexagonal order is clear in Fig.
3(b) in both the first-and second-neighbor shells.

The structure factor for the liquid with 3584 particles
at p=0. 9238 is shown as Fig. 4. Figure 4(a) is the resul-
tant S(k) for the whole sample, i.e., obtained by exposing
the total area to the light beam, while Figs. (b) and (c)
where obtained from segments of the sample. Again we
see evidence of the hexagonal order, but observed as a
function of sample area rather than of time as in Figs. 2
and 3.

ORDER PARAMETER

The degree of hexagonal order as a function of density
was correlated in terms of a conveniently chosen order
parameter g, defined as (cos6$), where tI) is the orienta-
tion angle between a particle and its neighbor found in
the ring of thickness dr, distance r away. With reference

(b)

FIG. 1. Average structure factors for the 896-particle soft-
disk system at three densities. (a) The solid at p= 1.05; (b) dense
liquid at p=0. 95; (c) the liquid at p=0. 3.

FIG. 2. The structure factor for the liquid at p=0.95 evalu-
ated from the simulation at two random times: (a) displaying a
circular pattern; (b) with an hexagonal appearance, especially in
the second ring.
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to Fig. 3, the average is thus confined to those particles
lying withing the first-neighbor shell of one of the two
particles. An order parameter of zero corresponds to the
case where there is no preferred orientation of the parti-
cle within the first-neighbor shell, and an order parame-
ter of one corresponds to the case where all particles
make a bond angle of exactly m /3 or —m/3. The order
parameter varies form 0.5 in the solid (at p=1.05 and
T =1) to zero at about —,'0 of the freezing density. The
natural logarithm of g versus density is plotted in Fig. 5

for the 896-particle system at all densities including a
point in the solid, and for the 3584 particle liquid at

p =0.9238. An autocorrelation function C&( t ), was
defined as ( [g(0)—g][g(t) —g]) and normalized to unity
at zero time. Figure 6 shows plots of C&(t) for four den-
sities: p=0.98, 0.95, 0.90, and 0.75. Defining a relaxation
time as the half-life of the correlation function, we esti-
mate this time to be 0.15 at p=0. 95, for example. The
time falls sharply with density, as is evident from the
figure. In general the relaxation time agrees closely with
the corresponding Maxwell relaxation time (the ratio of
the shear viscosity to the shear modulus).

REMARKS AND CONCLUSIONS

%e conclude with three remarks.
(1) The order could well be related to the observation

that the density dependence of many thermophysical
properties of real liquid show a marked change at about

~p
of the freezing density —the density at which the order

parameter becomes measurable. This change is particu-
larly noticeable for the shear viscosity coefficient' which
increases strongly with density, and the diffusion
coefficient which has a corresponding decrease with den-
sity. "

(b)

(c)

FIG. 3. Frequency plots of the particle positions around the
midpoint of the vector connecting a given particle and its
nearest neighbor for the liquid at p=0. 95 evaluated from the
simulations that were used to obtain S(k) in Fig. 2. (a) corre-
sponds to Fig. 2(a) and (b) to Fig. 2 (b). Note the frequency
variation in both bands.

FIG. 4. Structure factor for the 3584-particle liquid at
p=0.9238. (a) displays the S(k) from exposing the whole sam-
ple, (b) from various segments of area.
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FIG. 5. Plot of lng vs density including that of the solid
(square). The value at p=0.9238 for the 3584-particle system
(611ed diamond) is essentially superimposed on its equivalent
from the 896-particle system. The parameter goes effectively to
zero for p &0.7.

(2) The work has strong points of similarity with a re-
cent investigation of a real two-dimensional colloidal
liquid. ' Reference 14 reports that an aqueous collodial
suspension at a nominal liquid density was constrained
between two flat plates and a laser light Debye-Scherrer
pattern observed as a function of plate separation; at a
separation of the order of the Debye-Scherrer ring width
an observer could see the appearance and disappearance
of a six-spot pattern similiar to that from the crystalline
phase. ' ' The fluctuating patterns appeared at random
orientation and lasted for tens of milliseconds. Further-
more, the Maxwell relaxation time for the colloidal sus-
pension is of the order of tens of milliseconds. Hence our
simulated liquid and the suspension are under equivalent
experimental conditions by this criterion. (We make use
of this equivalence in a previous study of a model liquid
under shear. " )

(3) Our method probes the equilibrium liquid away
from the freezing transition and thus has a different em-
phasis from complimentary investigations on supercool-
ing and metastability, nevertheless the method is well-
suited to such studies. In fact we investigated briefly how

FIG. 6. Plot of C&(t) vs time at four representative densities:
p=0. 98, 0.95, 0.90, and 0.75.

g and C&(t) depended on the initial conditions of the
simulation at densities close to melting and freezing. As
an example, the curve for p =0.98 in Fig. 6 was evaluated
after equilibration from a previous simulation at
p =0.975. The equivalent curve after apparent equilibra-
tion from the solid gave quite a different appearance, with
an initial decay to t =0. 1, C&(t) increased and then be-
came essentially constant. This behavior was consistent
with the metastability reported in Ref. 9.

In summary, the existence of transient anisotropy or
local order in the liquid has been demonstrated, but it
should be stressed that the order reported here does not
represent a separate phase of matter characterized by
long-ranged long-lived hexagonal bond ordering, ' but
represents fluctuations in the normal liquid phase at high
density. ' The density range over which the structure
can be detected by means of an order parameter is large
and extends to well below the freezing density.
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