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Collective mechanism for atomic recombination in plasmas
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A new mechanism is proposed for atomic recombination in plasmas, whereby the binding energy
is carried away by a plasmon. It is suggested that this mechanism may compete with radiative and
three-body modes in the case of recombination to sufficiently highly excited and perturbed states of
hydrogen. A procedure for calculation of the transition rate is outlined in a model which treats the
plasma oscillations by the Bohm-Pines canonical transformation and the atomic bound states by a
second canonical transformation.

Two fundamental quantities in a classical plasma are
the Debye screening length A.D =(ktt T/Strne )'~ and the
(longitudinal) plasma frequency'

to =co&(1+—', A,Dq ), A,Dq &1

where co =(4ttne /m)' . The first term in (1) arises
from the long-range correlations between electrons and
the second term from their thermal motion. We consider
here only the simplest, one-component model; according-
ly, e and m are the electron charge and mass, respective-
ly. Quantization gives rise to plasmons, the longitudinal
analog of the usual (transverse) photons, with energies
approximately (4X 10 ")n '~ eV where n, the electron
number density, is in cm

In analogy with the case of Cherenkov photon emis-
sion, the condition for conservation of energy and
momentum in the emission of a real plasmon of momen-
turn Aq and energy Acoq by an electron of velocity v is

coq
——q v. Since there is a maximum plasmon wave vec-

tor' q, -AD ', there is a critical velocity v, -toyAD below
which real plasmon emission cannot occur. The purpose
of this Brief Report is to suggest and analyze briefly a
new collective mechanism for atomic recombination in
plasmas, whereby the binding energy is carried away by a
plasmon rather than a photon or a third particle. A
semiclassical picture of the process is shown in Fig. 1.
An electron in an unbound (hyperbolic) orbit with respect
to the given proton approaches it with a small enough
impact parameter that the speed of the electron near per-
ihelion exceeds the critical velocity v, mentioned above,
leading to emission of a real plasmon and capture of the
electron into an elliptic orbit.

Consider a hydrogen plasma with n —10' cm and

ks T-1 eV; then )(D —100a& (ao is the Bohr radius of the
unperturbed hydrogen atom) and A'co -4X 10 eV. In
zeroth approximation one may determine the perturbed
hydrogen levels and wave functions by solution of the
Schrodinger equation with the screened (Debye-Hiickel)
potential. One finds ' that the 8s level has binding ener-

gy -4X10 eV and the 9h level (the highest screened
Coulomb bound state for the given value of A, D)

-8)(10 eV. These binding energies are an order of
magnitude smaller than those of the unperturbed states,
so that plasmon-mediated recombination to these levels is
energetically allowed.

A correct calculation of the recombination cross sec-
tion requires a quantum-mechanical treatment of at least
the electrons. We shall use a simplified model consisting
of a single, fixed proton at the origin immersed in a medi-
um composed of the electrons and a uniform, immobile
positive background which crudely models the other pro-
tons ("jellium"). The interactions of the electrons with
each other, with the one chosen proton, and with the rig-
id positive background gives rise to collective plasma
modes which are crucial for this mechanism of recom-
bination. The Hamiltonian 0 in the Bohm-Pines repre-
sentation further transformed into Fock space is

L

FIG. 1. Semiclassical picture of recombination by plasmon
emission. The wavy line denotes the plasmon and the dashed
line the "post-collision" hyperbolic orbit which would have

been followed had the plasmon not been emitted.
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8=T",+8„+)I),, +V, ,+P', „+f',„+NS, free plasmons, V, , a screened electron-electron interac-
tion, P, the corresponding screened electron-proton
interaction, 0',

~, the electron-plasmon interaction
representing emission and absorption of single plasmons
by electrons in the field of the proton, fz &i

the absorp-
tion and emission of virtual plasrnons by the proton, and
5 a constant negative-energy shift which results from the
long-range correlations between the electrons.

A few remarks are in order: (a) If we had considered a
proton at ro with velocity vo & v„then P~ ~i, containing
a factor exp( —iq ro), would describe Cherenkov-like
emission of real plasmons by the fast proton. (In fact,
this was the original motivation of Pines .) In the present
case the proton is at rest and the proton emits and ab-
sorbs only virtual plasmons, which will be found to give a
negative-energy shift. (b) In the original work of Pines

i was neglected compared to the leading term giving
real plasmon emission by the proton. In the present case,
since Pz, gives only a constant energy shift, f',

i is the
leading term for the dynamics of real plasmon emission
by electrons in the field of the proton. (c) In coordinate
space P',

z can be represented to a good approxima-
tion ' by the potential

e r; e (4)

X(C qe k+k qek+H. c. ),

P~ ~i
———g (2qre fuu /q 0)' (c +c ),

q

q&q

g (2qre /q 0)= —qr 'e q, .
q

q&q

Here ek and e k annihilate and create electrons with
momentum Rk, c and c annihilate and create plasmons
with momentum Aq and energy %co, q, is a wave-vector
cutoff -A,D ', 0 is the volume of the system (periodic
boundary conditions), N =n 0 is the number of electrons,
and

where r; is the distance between the proton and the ith
electron. (d) The derivation of (2) and (3) is rather
lengthy and is given in the Bohm-Pines papers and a
forthcoming paper on the details of the plasmonic recom-
bination mechanism.

The demonstration that Pz zi gives rise to a negative-
energy shift proceeds as in other Bose quasiparticle
theories by carrying out a canonical transformation to
cancel the terms fz i linear in plasmon operators c and
c . The required (unitary) transformation is

S 'cqS =cq+(2qre /Qq fico )'~

S 'c S=(S 'c S)

and leads to a negative shift b, identical with (2)

jqkk (toq Aq k/m )
———' —[cvq (R/m )q (k+—k')] S '(Dpi+ Vp pi)S =Dpi+6 . (6)

(3)

In (3) we have neglected terms of order q for q &q„.
these represent pure quantum effects and are very small
(less than 1% of co for n —10' and kttT-I eV). In (2)
f', represents the free electron kinetic energy, 8 i thepl

As in similar fixed-source theories, this shift is interpret-
ed as the energy of virtual zero-point plasmons absorbed
and emitted by the proton. The only other term in the
Hamiltonian (2) affected by the transformation (5) is the
term P',

~i which is transformed into P', , + P",

where

V' =0 (2A)
q, k, k'

4m.e 4qre
kqkk'+0 —q, k+k' —q, —k' e k+k' —qek
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which can be regarded as a dynamical correction to the
static screened Coulomb proton-electron interaction

Inserting the explicit expression (3), one sees that
the summand tends to cancel between regions with oppo-
site alignments of the relevant vectors, whereas
(4m.e /q ) in f',

~ is isotropic. It is therefore within the
s irit of the random-phase-approximation to neglect

compared to P', , and we shall do so here.
Indeed, if one neglects q compared to k' (since

q & q„k'& q, ) and neglects (Aq /2m } compared to co as
was done in (3), then for fixed k and k' the summand is an
odd function of q, so that f", vanishes in this approxi-
mation.

At this point it is interesting to compare our result
with the Ecker-Weizel (EW) potential '

VEw(r) = —e [(1/r )e +(1/AD )] (8)

between electrons and protons in a plasma, which has
been used to interpret the plasma shifts of the discrete
and continuous spectra of hydrogen. If we use the
Debye-Huckel potential for the screened interaction

in coordinate space and add the negative shift 2h
[one b from the proton energy shift, Eq. (6), and another
b, from the energy shift of each electron, Eqs. (1) and (2)],
then we obtain an effective potential

V,s(r) = —e [(1/r )e +(0.7/AD )], (9)

which is very similar to (8).
Another change of representation is useful for extract-

ing from P',
i the term representing free-bound electron

transitions with plasmon emission. The required canoni-
cal transformation in the simplest case where the bound
state is a single-particle state (the proton being treated

here as a fixed force center) is effected by a unitary opera-
tor Ogivenby' '"

(10)

ek ~ k g ~kk'ek'+ g 0 (k@
k, k'

(12)

where hkk. is the bound-state kernel

bi, i, ——gP„(k}$„'(k'). (13)

Insertion of (12) into P', ~i, Eq. (2), yields several terms;
the one describing the plasmonic recombination and the
inverse ionization process is

where A, and A „are the (Fermi) annihilation and
creation operators for electrons bound in (here perturbed)
hydrogen orbitals centered on the proton at the origin:

A t= gP(k)e i„A=(A )

k

The index v stands for (nlm ) (and the spin z-component s,
which will be suppressed here); ((}, is the (perturbed) hy-
drogen momentum wave function, the Fourier transform
of the perturbed spatial wave function P,(x}. The new
bound-state Fermi annihilation and creation operators &„
and & ~ introduced by this transformation anticommute
with the original (plane-wave) electron operators el, and
e & (although the e& and A, do not anticommute) and
they commute with the plasmon operators c, and c
The canonical transformation effected by (10) is

f(electron —atom +plasmon)= g (c t& „(qv
~

V
~
k)ez+H. c. ),

k, q, v

q&q

(14)

with

1/2

3 /2
2m e ficoq

(qv
~

V
~

k)=Q
q

k'&q

4m.e

(k') P „'(k+k' q)g«„, gP „'—(k "+k'—q)g«.„h„-„—
k"

(15)

The effect of the subtraction term involving 6k-k is to or-
thogonalize the k dependence of the matrix element to
the bound electron subspace. This is physically correct
since ek annihilates an unbound electron. An equivalent
point of view is to regard ek as the annihilation operator
for an orthogonalized plane wave rather than a (Born-
approximation) free plane wave.

The physics of the emission in the matrix element (15)
is contained in g«i, Interpreting v& ——k/irim as the ran-
dom (classical) velocity of the electrons in the plasma,
one sees that the first term in (3) has a singularity at

co~ =q.[vi, + (A'k'/m ) ] . (16)

The term haik'/m represents the increase in velocity of the

co =q.vk. This is the previously mentioned condition for
real plasmon emission. Because of the constraint q &q,
only the few electrons in the high-velocity tail of the
Maxwellian distribution will be able to satisfy this condi-
tion. For this reason Bohm and Gross' neglected the
singularity in getting the dispersion relation (1); we con-
tinue using this approximation here. Things are different
for the second term in (3},where the singularity occurs at
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e/; fico +e„—(ttt' k /——2m),

k=e kek

=C C )q q

(19)

electrons produced by the short-range (k'& q, ) attractive
interaction with the proton; it is crucial for the mecha-
nism in which we are interested because now electrons
with any velocity in the field of the proton are potentially
able to produce real plasmon emission. The reason is
that the sum on k' appearing in (15) ensures that for any
vk there is always a k' such that (16}is satisfied. This is
consistent with the semiclassical picture of Fig. 1, accord-
ing to which an electron starting with a low velocity vt,
can increase its velocity until it emits a plasmon and be-
comes bound to the proton.

In zeroth approximation the wave functions P„(k)in
(15) can be taken to be the eigenstates of the screened
Coulomb potential satisfying

(A' k /2m )P„(k)—0 ' g (4rte /q )P„(k+q)

q&q

=e„P„(k). (17)

With the above choice one neglects the imaginary part of
the atomic self-energy, i.e., the finite lifetime of the per-
turbed atomic state. In particular, the simplified model
considered herein neglects the Stark broadening due to
the other positive ions' since they are treated as a uni-
form background. The Stark broadening due to the elec-
trons is, in principle, included if one uses the appropriate
generalized Schrodinger equation' and this broadening is
expected to be comparable' to that due to the positive
ions at the densities and temperatures considered herein
( n —10' cm, ks T-1 eV). We intend to generalize the
treatment to a two-component plasma (both protons and
electrons treated dynamically) in subsequent work.

The leading approximation to the transition rate for
plasmon-mediated recombination is

8'(qv
~

k)=(2tr/iri )
~
(qv

~

T
~

k)
~

x (8'k(1+8', )(1—8'„)&5(Ef, ), (18)

where

The expression (18) is the product of the standard expres-
sion for the transition rate of a reaction in vacuum by a
statistical factor ( . .

& expressing the effects of occu-
pancy of the initial and final states. In thermal equilibri-
um

( &=(& &(I+(&,&)(I—&&„&). (20)

This is the standard statistical factor for a transition in a
medium. Since the model only allows formation of a sin-
gle atom (only one proton at the origin, all others a
"smeared background") and (8'„&is the mean occupa-
tion of level v before formation of an atom in this state,
we may take (8„&=0 and replace the Fermi blocking
factor (1—(8'„&)by unity. The mean number (8'

& of
plasmons at each given q is also &&1 in the density-
teinperature regime under consideration (nondegenerate
plasmon gas). Then (18) reduces to

Wqv
I
k }=(2ir/&}

I
(qv

I

T
I
k }

I
'fk&(ef »

where fk is the electron distribution function (Ek & of
the plasma, nearly Maxwellian in the given regime. In
leading order the T matrix (qv

~

T
~

k) reduces to the
Hamiltonian matrix element (qv

~
V

~

k) for the given re-
action. Although this has the appearance of a Born ap-
proximation, it is expected to be much better than the
usual "bare Born" approximation. In the first place, the
atomic wave function is the screened Coulomb one,
which takes into account in zeroth order the strong per-
turbation due to the plasma environment. In the second
place, the matrix element (15}includes the orthogonaliza-
tion correction which is neglected in the usual Born ap-
proximation. A similar orthogonalization term has been
proposed previously as a correction to Born-
approximation photoionization matrix elements. ' In the
present formulation this term arises naturally as a conse-
quence of the canonical transformation (12).

The numerical evaluation of the plasmonic recombina-
tion rate and a comparison with the radiative rate is un-

derway; this, together with a more detailed description of
the representations used herein, will be given in a subse-
quent publication. We also plan to generalize the theory
to the more realistic two-component plasma case.
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