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Radiation pressure from the vacuum: Physical interpretation of the Casimir force
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We calculate the vacuum-field radiation pressure on two parallel, perfectly conducting plates.
The modes outside the plates push the plates together, those confined between the plates push them

apart, and the net effect is the well-known Casimir force. Implications of this result for the form of
the Poynting vector in quantum electrodynamics are discussed.

The Casimir force between two perfectly conducting
plates is one of the most frequently cited examples of
physical effects attributable to the vacuum electromag-
netic field. ' This force may be regarded as a macroscopic
manifestation of the retarded van der Waals force be-
tween two neutral polarizable particles. Although
different viewpoints are possible, it is most often derived
by the consideration of the vacuum electromagnetic ener-

gy —,'Ace per mode of frequency co: the difference between

the vacuum electromagnetic energy for infinite plate sep-
aration and a finite plate separation d is the interaction
energy between the plates, from which the force is calcu-
lated.

The fact that the free energy depends on the plate sepa-
ration accounts for the force due to the vacuum field.
However, beyond this observation it does not appear that
any more direct physical interpretation of the force has
been proposed, nor has any intuitive explanation been
given for why the force is attractive. In this paper we
present an extremely simple explanation of the Casimir
force using the classically familiar concept of radiation
pressure. This approach makes it obvious why there
should be a force due to the vacuum field, and further-
more has more general implications for the form of the
Poynting vector in quantum electrodynamics (QED).

Consider the radiation pressure exerted by a plane
wave incident normally on one of the plates. This pres-
sure is equal to twice the energy per unit volume E of the
incident field; the factor of 2 is due to the perfect
reflectivity assumed for the plates. If the wave has an an-
gle of incidence 8, however, the radiation pressure is

P =F/A =2E cos 0 .

Two factors of cos8 appear because (l) the normal com-
ponent of the linear momentum imparted to the plate is
proportional to cos8, and (2) the element of area A is in-
creased by (cos8) ' compared with the case of normal in-
cidence.

Consider now the vacuum field between the plates.

The modes formed by reflections off the plates obviously
act to push the plates apart. A mode of frequency co con-
tributes a pressure

P =2( —,
' )( —,'%co) V ' cos 8=(A'co/2V)k~/k (2)

P,„,=(Pic/n d)

x dk„dk ( n a/d)' [k„'+k'+(n~/d )']'"
(3)

on each plate. In writing this expression a factor of two
has been inserted to allow for the two independent polar-
izations.

The vacuum-field modes outside the "resonator"
formed by the plates have a continuum of allowed fre-
quencies. These modes obviously act to push the plates
together by reflection off the plates. The total inward
pressure exerted by these modes may be obtained from (3)
by replacing g„by (d /m)f dk„.

2

P (Ac/n )f dk f dkyf dk
o

"
o o '(k+k+k )'~

(4)

Both P,„, and P;„are infinite, but it is only the
difference that is physically meaningful. After some sim-

ple algebra we can cast this difference in the form

where k =co/c and V is the quantization volume. A fac-
tor of —,

' has been inserted because the zero-point energy
of a mode, —,'Ace, is divided equally between waves propa-
gating toward and away from each of the plates. For
large plates k and k take on a continuum of values,
whereas k, =nn/d, with n a positive integer. Summing

up the contributions from all the modes of the space be-
tween the plates, we have the total outward pressure
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P,„, P—;„=(7rPic/4d ) where & '~ is the Maxwell stress tensor

() ( ~ 2)1/2

dx
u u

p p ( +u 2)1/2 (5)

Various techniques may be employed to "regularize" (5)
and extract the finite, physical result. For instance, a for-
mal application of the Euler-Maclaurin summation for-
mula yields

P „I P;„=——77hc /480d (6)

obeys the equation of continuity

ag 'pat —ae ~pa~~=o, (8)

which is the well-known expression for the Casimir force
per unit area.

We conclude, therefore, that the Casimir force between
the plates is simply a consequence of the radiation pres-
sure associated with the QED vacuum field with zero-
point energy —,'Ace per mode of the field. From this point
of view it may be no surprise that the Casimir force in
this case is attractive: since the modes in the space out-
side the plate form a continuum, whereas those inside are
restricted to discrete values of k„ there are "more"
modes outside to push the plates together by radiation
pressure than there are modes between the plates to push
them apart. However, this intuitive argument is
superficial in that both the inward and outward radiation
pressures on the plates are infinite. In the case of a spher-
ically conducting shell, for instance, the effect of the vac-
uum field is to produce a radially outward force, as first
shown by Boyer. The fact that the net radiation pres-
sure is repulsive in this case emerges only after taking
into account certain properties of the zeros of spherical
Bessel functions, based again on the work of Boyer.

It is obvious, of course, that there is a radiation pres-
sure on the plates in the presence of real photons. The
siinple analysis leading to Eq. (6) shows that the Casimir
effect is just the zero-temperature limit of this classical
radiation force. This is analogous to regarding the nonre-
lativistic portion of the Lamb shift as a quadratic Stark
shift for an atom in a broadband field: the Lamb shift is
just the Stark shift in the limit where the field has energy

,'fico per mode. Vario—us other vacuum QED effects may
be interpreted similarly as zero-temperature limits of
purely classical or well-known quantum effects. Al-
though the derivation above makes this obvious in the
case of the Casimir force between conducting plates,
there does not appear, in the vast literature on the sub-
ject, to be any calculation based on so simple a classical
concept as radiation pressure.

The notion that Casimir forces result from the radia-
tion pressure of the vacuum has a general mathematical
formulation in terms of the Maxwell stress tensor for the
quantized field. It follows from the (operator) Maxwell
equations that the momentum density of the free field,

g=(1/87rc )(EX8—BXE), (7)

(T
' =(1/87r)[E 'E +E E '+8 'B +8 8 '

(E 2+g 2)fi~

[We use the caret symbol ( ) to denote quantum-
mechanical operators. ] Equation (8) describes the local
conservation of field momentum. By integrating (8) over
a volume V and using the divergence theorem, we find
that the rate of change of the moinentum in V (i.e., the
force on that volume) equals the integral of & '~ over the
surface X bounding V. The expectation value of this
force is found to be

F' = J ( o '' ) n Jda, (10}

S=(c/8~)(Ex B—Bx E), (12)

which follows from the momentum density (7), the nor-
mally ordered form

S&——(c/47r):EX B: (13)

which is S less the vacuum expectation value of S, and
the "quantum-optical form"

(c/4~)(E( —)xB(+) B(—)xE(+)) (14)

where (+) and ( —) indicate the positive-frequency
(photon-annihilation) and negative-frequency (photon-
creation} parts of the field, respectively. With S)v and S&
are associated momentum densities g~ and g&, and from
these and the Maxwell equations one readily derives
equations of continuity, analogous to (8), which involve
stress tensors & g and & $, respectively. In this way the
Poynting vector determines the stress tensor. Converse-
ly, the existence of Casimir forces places constraints on
the form of the Poynting vector. The expressions (13)
and (14} for the Poynting vector lead to stress tensors

where n~ is the unit outward normal to the surface and
da is the element of surface area. If X is the surface of a
conductor, then (10) gives the radiation force on the con-
ductor for any state of the field. In particular, when the
field is in the vacuum state, Eq. (10) gives the Casimir
force (6) on parallel, perfectly conducting plates when the
field modes are chosen to satisfy the electromagnetic
boundary conditions on the surfaces of the plates.

We wish to point out that the stress-tensor formalism
carries with it certain implications concerning the form
of the Poynting vector in quantum electrodynamics. For
any relativistic theory the energy fiux density S (in our
case the Poynting vector) is related to the momentum
density g by a factor c,

S=c g. (11)

Several different expressions for the Poynting vector of
the quantized field can be found in the literature. Among
these are the vector
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which are in normal form and therefore have vanishing
expectation values. The existence of Casimir forces thus
rules out these forms as completely general expressions
for the Poynting vector of quantum electrodynamics.
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