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Approximate analytical approaches to nonlinear pulse propagation
in optical fibers: A comparison
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A comparison is made of two recently suggested approximate analytical methods for the investi-
gation of nonlinear pulse propagation in optical fibers, as described by the nonlinear Schrodinger
(NLS) equation. One approach is based on a variational procedure involving Ritz's optimization
while the other makes use of invariants of the NLS equation. Despite their different character the
approximation schemes are shown to lead to identical results for the evolution of the pulse ampli-
tude and pulse width.

where x denotes the distance of propagation, ~ the retard-
ed time, and a and ~ are coefficients determined by
dispersion and nonlinearity, respectively. In the varia-
tional approach' the NLS equation is restated as a vari-
ational problem in terms of the Lagrangian L, given by
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The trial function to be used in the optimization pro-
cedure is

g(x, r}=A (x) exp — +ib (x)r
2a (x}

(3)

The form of the ansatz function has been chosen so as to
incorporate features which are known to be inherent
parts of the pulse evolution ' ' changing amplitude

The analysis of nonlinear pulse propagation in optical
fibers has been based primarily on numerical investiga-
tions of the nonlinear Schrodinger (NLS) equation, which
determines the evolution of the slowly varying envelope
of the optical wave pulse. Additional information has
been provided by various analytical methods, the most
important being the inverse scattering theory, which pro-
vides exact analytical results. However, the set of prob-
lems which can be solved to give explicit analytical solu-
tions is disconcertingly small. For example, for nonsoli-
ton initial conditions the evolution of the pulse is charac-
terized by a complicated nonperiodic oscillatory behavior
involving a soliton part and a radiation part which is
difficult to describe analytically. Consequently, there is a
need for approximate analytical descriptions of the pulse
evolution. Several different approximation approaches
have been suggested, e.g., variational methods, '
methods making use of the invariants of the NLS, and
moment methods.

The characteristic equation determining the evolution
of the slowly varying pulse envelope g is the nonlinear
Schrodinger equation (NLS), which reads

+~
I
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and LG denote the result of inserting the ansatz, Eq. (3),
into the Lagrangian given by Eq. (2}. The reduced varia-
tional problem, expressed by Eq. (4), results in a set of
coupled ordinary differential equations for the Gaussian
parameter functions A (x), A '(x), a (x), and b (x), which
together determine the pulse evolution. ' The set of
differential equations can be reduced to a single equation
for the pulse width parameter, viz. ,

2
1 da +m(a)=0, (6)
2 dx

where the potential function n.(a) is given by

m(a) =2a — att&2E&—1 1 — 1 1

a ao a a,

Eo denotes the pulse energy [Eo=
i

A (x)
i
2a(x)

=
i Ao i ao], which is a constant of motion. The varia-

tional equations also determine the frequency-chirp pa-
rameter b (x) in terms of the pulse-width parameter as
follows:

1 1dab(x)=- 4aadx
Finally, the phase P(x) of the complex amplitude
A (x)=

i
A (x )

i exp[i P(x ) ] is determined by

tci A i'.dP
dx

a
a

Recently a new alternative analytical approach was sug-
gested which is based on the invariants of the NLS equa-
tion. This approach could provide a shortcut to the

~

A i, pulse width a(x), frequency chirping effects b(x),
and a variable wave-number shift arg A.

The variational problem can now be reduced to the
form

SJ &L, )dx =0,
where
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I3 —— 2a —«/4/ dr. (10c)

The first invariant I& implies energy conservation and is
given by

I, =
) A)(x}

~

a(x}&m.

if the trial function of Eq. (3) is inserted into Eq. (10a).
The second invariant I2 is trivially satisfied by the trial
function given by Eq. (3}.

It is crucial that the ansatz used in the third invariant
I3 to obtain a characteristic equation for the pulse-width
variation does not violate the lower-order invariants. In
the work of Sodha and Kumar the ansatz is deficient by
violating the first invariant I, and their analysis conse-
quently leads to unphysical results, e.g., predicts pulse-
width collapse at a finite distance of propagation.

If the amplitude A (x) is eliminated by means of the
first invariant I

&
and the chirp parameter b (x } is ex-

pressed in terms of the pulse width a (x) according to Eq.
(8), the third invariant I3 will yield an evolution equation
for a (x) after substitution of the ansatz given by Eq. (3)
into I3 [Eq. (10c)]. One finds

a 1 da
I3 ——I ) +a2 4a dx aV2n

which can be recast into the potential form of Eqs. (6)
and (7) when I, and I3 are calculated from the initial
conditions.

The comparison can be extended to include the e6'ect
of a damping term iygP, in wh—ich case the NLS equa-
tion becomes

(12)

A variational reformulation of the damped NLS equa-
tion, Eq. (12), can be accomplished as follows: introduce
the transformation

determination of the evolution of the pulse envelope, but
involves the use of an ansatz function for the evolving
complex pulse envelope. Obviously, the quality of the re-
sult depends on how well the ansatz models the actual
pulse evolution. In this respect the invariant approach is
similar to the variational approach. In order to compare
the invariant and the variational methods we will there-
fore use the same trial function [Eq. (3)].

The NLS equation possesses an infinite set of invari-
ants. However, some additional information is required
concerning the functional form of the frequency chirp if
one is to base the invariant method on the three leading
invariants of the NLS equation only. These invariants
are given by

I, = f ~4(x, r) [ dr, (10a)

I2 —— [g'(x, r) (x, r) %(x,—r) (x,r)]dr,Bg Bg'
—oo 3'r r

(lob)

g(x, ~)=y(x, r)exp( —yx) .

Then Eq. (12) becomes

i =a +~exp( —2yx)
) y) ~p,

clx 81
(13)

I& (x)=I& (0) exp( —2yx),

I2(x) =Iz(0) exp( —2yx),
dI3

( 2y )I3+2y.fdx —oo

Using the ansatz given by Eqs. (3) and (8) yields

da 4a Ep&2—a«(x)
dx a a

(isa)

(15b)

(15c)

(16)

Equation (16) is identical to the corresponding approxi-
mate solution Eq. (14) for the damped NLS equation ob-
tained using the variational approach above.

Equations (6), (7), and (16) correctly reproduce the
characteristic qualitative features of nonlinear pulse
propagation, including the nonlinear oscillatory behavior
of the pulse width in strongly nonlinear situations, cf.
Refs. 1 and 2. On the other hand, an ansatz of the form
given by Eq. (3), irrespective of whether it is used in con-
nection with a variational or an invariant approach, is
not flexible enough to describe quantitatively all the
characteristic features of the nonlinear pulse evolution,
e.g., the damped oscillatory behavior of the pulse ampli-
tude and pulse width in the case of nonsoliton initial con-
ditions. In such situations the solution consists of a soli-
ton part and a dispersive decaying radiative part. By
combining the advantages of the variational and the in-
variant approaches, we have recently been able to deter-
mine the parameters of the emerging soliton as well as
the asymptotic properties of the dispersive tail.

A comparison between the variationa1 and invariant
methods reveals the following features: Both are based

i.e., a NLS equation with a decreasing nonlinear coupling
coeScient

«(x)—:«exp( —2yx) .

Equation (13) can be expressed as a variational problem
in terms of the Lagrangian L of Eq. (2), although with
«~«(x}. The subsequent analysis is analogous to the
case of the undamped NLS equation, Eq. (1). Reducing
the variational ordinary differential equations for A (x),
A '(x), a (x), and b (x), a single nonlinear oscillator equa-
tion for the pulse width a (x) emerges, viz. ,

2g 4a2 Ep~2
z

—a«(x) (14)
dx a a

We emphasize that no assumptions regarding the length
scale for the variation of «(x) has been made in the calcu-
lations leading to Eq. (14).

In the presence of damping, the integrals of Eqs. (10)
which define I&, Iz, and I3 are no longer invariant but
vary with x. Denote these integrals by I&(x), I2(x) and
I3(x), respectively. Their change with distance is given
by
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on an ansatz function in terms of four parameter func-

tions. In the variational approach the variational equa-

tions give rise to the proper relations between the param-
eters, including the constant of motion
a(x)

~

A(x)
~

=const. In the invariant approach the
first invariant gives the information corresponding to this
constant of motion. However, the dynamic relation be-

tween the chirp parameter b(x) and the pulse width a (x)
has to be introduced a priori and does not follow natural-

ly as in the variational approach. In addition, the varia-
tional approach consistently determines the variation of
the phase of the amplitude A (x), an information which is
lost in the invariant approach.

The variational method can be modified to apply to re-
lated pulse propagation problems, e.g., mutual pulse in-
teractions. It can also be extended to higher accuracy by
using a more flexible ansatz in terms of additional param-
eter functions, although this usually means that the cor-

responding system of variational equations has to be in-
vestigated numerically.

It is not clear how to extend the invariant method to
higher accuracy or to provide further dynamic relations
between the parameters. For example, using the ansatz
in the fifth invariant only gives rise to an algebraic rela-
tion between b (x) and the other parameters and does not
lead to a dynamic consistent relation between b(x) and
a (x) as in Eq. (8).

Thus we conclude that the variational and invariant
methods give the same characteristic equation for the
variation of the pulse width. The variational approach is
algebraically more complicated than the invariant ap-
proach but is also more flexible and in particular con-
sistently determines the relation between the parameter
functions where the invariant approach has to introduce
independent a priori information.
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