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Comparison of 1/N expansion and shifted 1/N expansion for eigenenergies of an atomic potentia&
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Eigenenergies are calculated for the potential V(r)= —(a/r)[1+(1+br)e '] by the shifted 1/N
expansion method and the results are compared with those obtained by Sever and Tezcan for the
same potential by the 1/N method. The shifted 1/N expansion results show a large improvement
over the 1/N expansion results.

The large-N expansion, where N is the number of spa-
tial dimensions, has been applied by a number of authors
for solving the Schrodinger equation. ' For spherically
symmetric potentials, the method has been improved by
Sukhatme et al. ' '" by using the quantity I/k as an ex-
pansion parameter, where k =N+21 —a, 1 being the or-
bital angular momentum quantum number and "a" is a
suitable shift. This modified method is known as the
shifted 1/N expansion and has proved to be useful for a
number of potentials. ' ' A modified 1/N expansion
has also been proposed. '

Recently Sever and Tezcan (ST) have applied the
large-N expansion to the following potential:

V(r) = —(a/r)[1+(1+br)e '] .

With appropriate values of a and b, Eq. (1) represents the
potential experienced by the second electron in a helium
atom, due to the nucleus and the first electron. Earlier
Gerry and Laub had studied this potential by the
dynamical-group method. Besides its importance for the
helium problem, the potential (1) is of special interest be-
ing the prototype of more general potentials used in
atomic problems. Potential (1) is a special case of
the corresponding potential in the case of heliumlike
ions:

V(r) = — +—(1+Zr)e(Z —1) 1 —2ZT (2)
7" T

where Z is the nuclear charge.
In the present note we present the eigenvalue results

obtained from the shifted 1/N expansion method for the
potential (1) and compare them with those obtained by
the 1/N expansion method. This enables us to draw
inferences as to the improvement possible by the shifted
1/N expansion as also the limitations of the two methods.

ST have expressed their results in terms of P, where
P=b/a As w.e wish to compare our results with those of
ST, we shall find it convenient to express the potential (1)
in terms of P:

U(x) = = —(1/x)[1+(1+Px )e ~"], (3)
V(r) —2 x

Q
2

where x =ar.
Imbo et al. " have discussed the method for obtaining

eigenvalues by the shifted 1/N expansion. Here we only
quote the final expressions obtained using their method.
We shall use atomic units (fi=m =1) in obtaining the
formulas.

The potential is replaced by an e6'ective potential and
the energy eigenvalues are obtained in terms of the posi-
tion of the minimum of this potential, xp ~ The expression
which determines xp is as follows:

(21 +1)+(2n„+ 1)
1+y +2Pxoy+2P xoy —4P xny

=2[xo(1+y +2Pxoy+2P xoy )]'
1+y +2Pxoy+2P xay

(4)

—2pxo
where n„ is the radial quantum number and y =e

The energy is given by an expansion in powers of 1/k, where

k =2[xo(1+y+2Pxoy+2P xuy)]'

Thus we have

E k 1

a2 ~2 80

Z =e, /(2~)J'2, 8 =n. /(2w)J'2,

1+y+2Pxoy+2P xoy —4P xoy

2 1+y+2/3xoy+2P xoy

1+y+Pxoy (]) (2)

, +O(1/k') (6)
4(1+y+2Pxoy+2)33 xoy) k 2 k 3

The expressions for y'" and y( ' appearing in the corrections to the leading order of the energy expansion are given
in Ref. 18. The various quantities occurring in these expressions can be expressed as follows for the potential (1):
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a =2—2(2n„+ 1)co,

5, = ——,'5, = —(1—a)(3—a)/4,

53 g54 2E] 3ez ——2—a

3+3y+6Pxoy+6P xoy+4P xiiy+4P'x4~
E'3 = — +

2 12(1+y+2Pxoy+2P x~~)

3+3y+6Pxoy+6P xiiy+4P xiiy+2g'xiiy+2P5x~~

8 12(1+y+2Pxoy+2P xoy)

15+ 15y+30Pxoy+30P xiiy+20P xiiy+10P xiiy+4P xiiy+4P xoy
5= ——+

60(1+y +2Pxoy+2P xoy )

45+45y+90Pxoy+90P xiiy+60P xoy+30g'xiiy+12P'xcy+4P xoy+4P xoy

8 180(1+y+2Pxoy+2P xoy)

The calculated values of E/a by the shifted 1/N ex-
pansion are compared with those obtained by 1/N expan-
sion and also with the "exact" values obtained from a nu-

merical intergration of the Schrodinger equation in
Tables I and II for 1s and 2s states, respectively. ST have
given expressions for E/a to the order P for both the
states. In order to see the effect of higher-order terms,
the coefficients of P and P terms were calculated for the
1s state from the equations given by ST. The final result
to the order P for the Is state (by the 1/N expansion) is
as follows:

E/a = 2+P ,'P—'+ 5g'—/8—1781P'/1—0 240

+74 879P /163 840 .

We may note here one minor misprint in one of the
relevant equations in ST's paper: In Eq. (21), in the ex-
pression for Eo ', the second term should be 36D /a. We
further note that the calculations of ST were carried out
with the correct expression and their numerical results
are correct.

ST have given eigenvalues obtained from a numerical
solution of the Schrodinger equation for P&1. As we
wanted to go to higher values of P and also to improve
the accuracy of some of the values for P & 1, new calcula-
tions were carried out and the results obtained are shown
in Tables I and II. Numerov's method with a logarithmic
mesh was used.

Next we consider the individual states in detail. The

TABLE I. Comparison of energy eigenvalues for the 1s state of potential (1) as calculated from the
1/N expansion method, the shifted 1/N expansion method, and numerical intergration of the
Schrodinger equation.

0.02
0.04
0.06
0.08
0.1

0.3
0.5
0.7
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

E/a
1/N expansion
(to order Ii )

—1.98000
—1.96003
—1.940 10
—1.920 23
—1.90044
—1.708 44
—1.5234
—1.3214
—0.8750
—0.3680

0.4290
1.648
3.445
6.000
9.517

14.224

E/a
1/N expansion
{to order P )

—1.98000
—1.96003
—1.940 10
—1.920 23
—1.90044
—1.708 53
—1 ~ 5217
—1.2969
—0.5919
+0.5639

2.9348
7.492

15.70
29.68
52.37
87.71

E/a
Shifted 1/N

expansion

—1.98000
—1.960 03
—1.940 10
—1.920 23
—1.900 44
—1.709 56
—1.5363
—1.3836
—1.1921
—1.0871
—0.9978
—0.9230
—0.8636
—0.8244
—0.8163
—0.8564
—0.9598
—1 ~ 1114
—1.1952
—0.9032

E/a
Exact

—1.98000
—1.96003
—1.940 10
—1.920 23
—1.90044
—1.709 59
—1.536 55
—1.384 22
—1 ~ 19420
—1.091 00
—1.004 20
—0.931 61
—0.871 09
—0.820 70
—0.778 70
—0.743 61
—0.714 19
—0.689 42
—0.668 46
—0.650 62
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0.02
0.04
0.06
0.08
0.1

0.3
0.5
0.7
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

E/a
1/N expansion
(to order P')

—0.48005
—0.460 38
—0.441 16
—0.422 46
—0.404 25
—0.16625

0.8437
4.4017

21.000
45.628
87.336

152.65

E/a
Shifted 1/N

expansion

—0.48005
—0.460 38
—0.441 21
—0.422 67
—0.404 88
—0.275 46
—0.2295
—0.2735
—0.3164
—0.2156
—0.1734
—0.1501
—0.1370
—0.1303
—0.1272
—0.1258

E/a
Exact

—0.48005
—0.460 38
—0.441 21
—0.422 67
—0.404 87
—0.273 83
—0.212 94
—0.187 53
—0.172 17
—0.166 75
—0.162 61
—0.15908
—0.155 93
—0.15306
—0.15045
—0.148 09

1/N expansion technique that has been used by ST is
based on the series expansion in terms of P in the calcula-
tion. It is convergent for /3&1. The agreement between
the 1/N expansion values and the exact values is quite
good for both the states when P is close to zero. Next we
consider the individual states in detail. First the 1s state.
For the 1/N expansion, the calculated values are shown,
both to order g' and to P . It will be noticed from Table
I that for the 1/N expansion the results to order P are
equal to or better than those to order 13 for P(0.3 but
above this the situation is reversed and the P results be-
come rapidly much poorer than the g' results. The shift-
ed 1/N expansion results show a significant improvement
over the 1/N expansion results for P) 0.3. However, a
comparison of the shifted 1/N expansion results with the
exact values shows that the former values show an in-

TABLE II. Comparison of energy eigenvalues for the 2s state
of potential (1) as calculated from the 1/N expansion method,
the shifted 1/N expansion method, and numerical integration of
the Schrodinger equation.

creasing error with increase in P. At P=2.0, the error
has reached 0.45% and above this value of P the error in-
creases rather rapidly, reaching 79% at P=3. In this re-
gion the correction terms (involving y'" and y' ') are
rather large, and of opposite sign.

Next we consider the 2s state. The 1/N expansion re-
sults show a rapid divergence from the exact results for
P) 0. 1. The shifted 1/N expansion results start showing
an improvement over the 1/N expansion results from a
much smaller value of P, as compared to the Is case.
However, as compared to the exact results, the shifted
1/N results show substantial errors as P increases beyond
0.5. The error continues to increase to P= 1 but, interest-
ingly enough, then it drops. The numerical magnitude of
the calculated energy from the shifted 1/N expansion
remains greater than the exact value to about P= l. 5, but
then it becomes smaller. Beyond this point the error in-
creases at first rapidly but then it settles at about 15%.
For simple screened potentials, like the Yukawa poten-
tial, the results from the shifted 1/N expansion' show a
slow and monotonous increase in error with the increase
in the screening parameter. Potential (2) consists of three
types of terms: a Coulomb term, a screened Coulomb
term, and an exponential term, and the foregoing results
show that for such a potential a much more complicated
pattern is observed in the errors.

For the helium atom, P=2 and for this value of P the
agreement between the calculated value by the shifted
1/N expansion and the exact value for the Is state is
quite satisfactory, but for the 2s state, the error is rather
large, being 14.9%. The 1/N expansion values are of the
wrong sign and have very large errors.

In conclusion, we find that the shifted 1/N expansion
offers a large improvement over the 1/N expansion for ei-
genvalues of the potential (2). It is highly likely that a
similar situation will exist for other similar potentials.
However, even with the shifted 1/N expansion, caution is
necessary, and large errors are possible.
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