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A simple definition of Berry phases based on the Pancharatnam phase convention is stated in the
language of ordinary quantum mechanics. It is shown to be equivalent to previous definitions for a
cycle of transformations built continuously from infinitesimal transformations. It also applies to
discrete transformations and partial cycles. The phase for a partial cycle can be the same as for the
complete cycle. This suggests possibilities for simpler experiments. In an example considered here,
each part of a split beam of light is put through two half-wave plates. The light is not brought back
to the original polarization state, but interference produced by the Berry phase can be observed be-

cause the different parts of the beam are brought to the same polarization state.

A new manifestation of Berry phases has been found'
in Pancharatnam's work with polarized light. Transfor-
mations of photon polarization states give the same Berry
phases as rotations generated by Pauli matrices. This
has led to new measurements of these phases. There is
clear physical motivation for the phase convention used
by Pancharatnam for polarization states. It provides the
basis for a new definition of Berry phases that extends to
a more general setting. This has been elaborated in the
language of differential geometry.

Here the language of ordinary quantum mechanics is
used to give a simple definition of Berry phases based on
the Pancharatnam phase convention. It is shown to be
equivalent to previous definitions ' for a cycle of trans-
formations built continuously from infinitesimal transfoi-
mations. It also applies to discrete transformations and
partial cycles. The phase for a partial cycle can be the
same as for the complete cycle. This suggests possibilities
for simpler experiments. In an example considered here,
each part of a split beam of light is put through two half-
wave plates. The light is not brought back to the original
polarization state, but interference produced by the Berry
phase can be observed because the different parts of the
beam are brought to the same Anal polarization state.
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Following Pancharatnam and Berry, we call y ( U) the
phase of U
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m ) relative to
~

m ). We say U
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m ) and
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m ) have the same phase if y ( U) is zero. To see the
motivation for this, imagine a superposition of

~

m ) and

The interference term is proportional to cos[y (U)] and
is maximum when y ( U) is zero.

The phase can remain unchanged. The rotation opera-
tors for spin —,

' provide an important example. Let S be
the Pauli spin operators. Consider the unitary operator

S =e ' 's=cos( —,'8) —i sin( —,'8)(8.2S) (3)

for a rotation through the angle 8 around the axis in the
direction 8. Let

~

m ) be an eigenvector of k S with k
perpendicular to 8. Then ( m

~

8 S
~

m ) is zero, so
(m

~

S
~

m ) is just cos( —,'8), and y (S}is zero.
A Berry phase is a change of phase produced by a se-

quence of transformations in which each transformation
by itself does not change the phase. Let S, ,S2, . . . , S&
be unitary operators, let U(0) be 1,

U(q}=S . . S2S) (4)

for q =1,2, . . . , Q, let U be U(Q) and
~

m ) a state vec-
tor. Suppose

(m
~

U '(q)S +,U(q)
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m )

for q =0, 1,2, . . . , Q are all real and positive. Then we
can call y ( U) a Berry phase.

This is the same as previous definitions for transforma-
tions that are built continuously as products of
infinitesimal transformations. Suppose

U
~

m ) and consider

II Im&+U Im & II'=2+2 I (m
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U Im & Icosly (U}l.
(2)
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U(q+bq)=e ' '~' ~U(q), (6)

(m
I

U '(q)G(q)U(q)
I

m ) =0 . (8)

This is the basis of previous definitions of Berry phases '

which are equivalent to the more traditional and
geometric definitions.

For example, consider Berry phases for spin. ' As
the unit vector k changes from k(q) to k(q+hq), the
operator k S for the projection of the spin in the direc-
tion of k can be changed from k(q) S to k(q+bq) S by
using the unitary operator for a rotation that takes k(q)
to k(q +b,q). There are many rotations that do this. The
Berry phases are obtained ' from the product of the uni-
tary rotation operators if the rotation from k(q) to
k(q *b,q) is always around the axis perpendicular to k(q)
and k(q+ b,q). This choice of rotations is equivalent to
the condition (8) for the rotation operators.

Whenever it can be used, the definition given here is
equivalent to other definitions of Berry phases. It cannot
be used when (m

I
U

I

m ) is zero. Other definitions are
not so restricted.

Suppose
I

m ) is an eigenvector of U. Then

UIm&=e" Im&. (9)

This is how Berry phases normally appear. The sequence
of transformations with S&,S2, . . . , S& takes the state
represented by

I
m ) around a closed loop back to the

same state. The state represented by
I

m ) is not changed
by U. The state vector is changed only by a phase factor.
That is the Berry phase.

The definition given here also applies to a partial cycle,
a sequence of transformations that does not form a closed
loop. The phase for a partial cycle can actually be the
same as the phase obtained when the cycle is completed.
Suppose the cycle is completed by one more unitary
operator S&+,. That means ( m

I
U 'S&+

&
U

I
m ) is

real and positive and
I

m ) is an eigenvector of S&+,U.
The sequence of transformations with S&,S2, . . . ,
Sg Sg + &

forms a closed loop. We have

S&,UIm&=e ™Im) . (10)

We write —0 for the phase y (S&+ &
U). It is the Ber-

ry phase calculated for the closed loop. For examp1e, for
rotations it is obtained from the solid angle enclosed by
the loop. We get

(m
I

U
I
m&=e "&m ISg+'i Im&

=e "(m ISg, Im)*.

with the G(q) Hermitian operators. Then the matrix ele-
ments (5) are
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to first order in Aq. The condition that they are real and
positive is

If ( m
I S&+, m ) is not zero, the Berry phase y ( U) for

the partial cycle can be obtained from 0 and the phase
of (m

I S~+I I
m ). In particular, if (m

I S&+, I
m ) is

real and positive, y (U) is just —0; the Berry phase
for the partial cycle is the same as for the completed cy-
cle. For example, Sg+& could be the rotation operator
(3).

Measuring a Berry phase may not require a complete
cycle of transformations. Using partial cycles may make
experiments simpler.

All this can be illustrated with an example using pho-
ton polarization states. Let

I
+ ) and

I

—) represent the
states for photons with right and left circular polariza-
tion. Pauli spin operators S are defined by

2S, I+)=
I
+), 2S2 +)=+i

(12)
2S3 I+)=+ I+) .

Let k be the unit vector with spherical coordinates (8,P).
Using the spin operators S to make a rotation through
the angle 8 around the axis with spherical coordinates
m/2 and P+ m./2, we obtain the state vector

—i 0( —S l sing+ S2cosg)
I+&

=cos( —,'8)
I
+ )+sin( —,'8)e'~

I

—), (13)

which is an eigenvector of k S for the eigenvalue —,'. All

the photon polarization states are of this form with 8 be-

tween 0 and m and P between 0 and 2'. The sphere with
coordinates 8,$ that label these different polarization
states is called the Poincare sphere. In particular, 0=0
and O=n. are for right and left circular polarization and
8=m/2 is for linear polarization. For two orthogonal
linear polarization states, the two values of P differ by n..

A change of polarization state can be described by
moving the point that represents the state on the Poin-
care sphere. Suppose the point is moved by rotating the
sphere through the angle 5 around the axis with spherical
coordinates 8=m/2 and p=p. That describes how the
polarization state changes when light goes through a
birefringent material that puts a phase difference 6 be-
tween the components in the orthogonal states for linear
polarizations represented by 8=vr/2, p =p and
8=m/2, p=p+m. . The point moving on the Poincare
sphere is the tip of the vector k. The state is represented
by an eigenvector of k S. Each step in the change of
state can be made with the unitary operator for a rotation
that moves k. To get the Berry phase we choose the rota-
tion around the axis perpendicular to the moving k. The
Berry phase is obtained from the product of these rota-
tion operators for the sequence of steps. These rotations
are generally not the same as the rotation of the Poincare
sphere; they are around different axes. They are the same
when the point representing the state moves along a great
circle; then the rotation of the Poincare sphere is around
the axis perpendicular to the moving k.

When light goes through a polarizing filter, the point
on the Poincare sphere that represents the polarization
state is moved along the great circle connecting the two
opposite points that represent the orthogonal states for
the linear polarizations that are passed and stopped by
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3~/2+ ~
l=0

the filter. Then the rotations we use to get the Berry
phase are around the axis perpendicular to the plane of
the great circle. The state is always represented by an
eigenvector of k $ with k perpendicular to the axis of ro-
tation. The rotation operators, like the operator (3), do
not change the phase. If the transformation describing
light going though a polarizing filter is used to complete a
cycle of transformations, the phase for the partial cycle
will be the same as for the completed cycle.

When light goes through a polarizing filter, the physi-
cal process is not reversible, but the Berry phase is still
obtained from unitary operators. A nonunitary operator
could be used to describe the process, and the definition
of the Berry phase could be extended naturally to ac-
commodate a nonunitary operator U, but that is not
necessary.

A Berry phase could be measured by putting each part
of a split beam of light through a partial cycle of transfor-
mations made by two half-wave plates. Each time the
light goes through a plate, the point on the Poincare

FIG. 1. View of the Poincare sphere from the 8=0 direction.
The point that represents the polarization state for one part of
the beam is moved from /=0 to $=2a by a rotation halfway
around the axis along P=n+a and then to $=4a by a rotation
halfway around the axis along P = m +3a. For the other part of
the beam it is moved from / =0 to P =m+ 2a by a rotation half-

way around the axis along P = 3m /2+ a and then to $=4a by a
rotation halfway around the axis along P=n/2+3a The ph. ase
difference is half the solid angle enclosed by the paths.

0=2m'(cosa+sina —1) . (14)

Since the spin eigenvalue is —„the phase difference is 0/2.

sphere that represents the polarization state is moved by
rotating the sphere m radians around an axis with 8 coor-
dinate n/2 and P coordinate determined by the orienta-
tion of the birefringent plate. Suppose the light is initial-
ly in the state of linear polarization represented by
0=m/2 and /=0. Each plate takes it to another state of
linear polarization at 8=rr/2. Suppose the two
birefringent plates for one part of the beam are oriented
so the rotations of the Poincare sphere are around axes at
P=n+a and P=n+3a with a between 0 and m/4. The
polarization state is changed from / =0 to $=2a by the
first plate and then to $=4a by the second plate. Sup-
pose the two birefringent plates for the other part of the
beam are oriented so the rotations of the Poincare sphere
are around axes at /=3m/2+a and P=m/2+3a. In
that part of the beam the polarization state is changed
from /=0 to P=tr+2a by the first plate and then to
$=4a by the second plate. (See Fig. 1.)

The final polarization state is the same for both parts
of the beam. If both parts are treated exactly the same
except for the orientations of the birefringent plates, the
phase difference between the two parts will be just the
difference between the Berry phases for the two partial
cycles made by the transformations between the initial
and final polarization states for the two parts of the
beam. Both partial cycles can be completed by the trans-
formation that takes the final state back to the initial
state along the great circle on the Poincare sphere. This
transformation is made by the unitary operator for a ro-
tation around the axis perpendicular to the plane of the
great circle. During the transformation, the state is
represented by an eigenvector of an operator k S with k
perpendicular to the axis of the rotation. The rotation
operator, like the operator (3) again, does not change the
phase. The phase of each partial cycle is the same as the
phase of the completed cycle. It is the Berry phase calcu-
lated from the solid angle enclosed by the completed cy-
cle on the Poincare sphere. The phase difference between
the two parts of the beam is the Berry phase calculated
from the combination of the two solid angles, that is the
solid angle 0 enclosed by the loop on the Poincare sphere
formed by the two partial cycles, one forward and one
backwards, which is
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