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Direct measurement of orientation correlations in a two-dimensional liquid-crystal system
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The behavior of a two-dimensional orientation field has been studied directly in space and time.
In a freely suspended thin film of tilted smectic liquid crystal the local projection onto the film plane
of the molecular orientation averaged through the film forms a two-dimensional (2D) vector field

C(x,y) with local orientation 4(x,y). This orientation field was imaged in real space by depolarized
reflection microscopy. By probing the light at two distinct (x,y) locations in the image and employ-

ing cross-correlation intensity-fluctuation spectroscopy, we have measured the space-time behavior
of o (p, r) = (~ 4—(0,0)—4(p, r)

~

~). At large r, o increases logarithmically with r, consistent with

the expected diffusional dynamics and thermally excited fluctuation spectrum of 4. This logarith-
mic (Landau-Peierls) divergence confirms that this 2D orientational system is at its lower marginal
dimensionality. In addition, by fitting the behavior of 0 (p, v), we extract the 2D orientational
diffusion constants for splay and bend in both the smectic-C and smectic-I phases.

I. INTRODUCTION

A. Freely suspended liquid-crystal films (FSLCF's)

In 1922 Friedel reported that stable smectic liquid-
crystal films could be suspended in air across a hole. '

During the early 1970s Clark and Meyer showed that
such freely suspended smectic films as thin as two molec-
ular layers could be formed and remain stable for many
months. They suggested and demonstrated that these
very thin films could be useful systems for the study of
surface interactions and the effects of reduced dimen-
sionality on liquid-crystal phase transitions. The rich-
ness of bulk liquid-crystal phase diagrams is enhanced in
FSLCF's by the additional variable of film thickness,
which suggests the possibility of observing three- to two-
dimensional (3D-2D) crossover in the phase diagram in
thin enough films. Also, it has been proposed that in a
2D system the crystal-liquid phase transition includes an
intermediate bond orientationally ordered "hexatic"
phase. Evidence consistent with the existence of a hex-
atic phase has been obtained in x-ray scattering studies of
FSLCF's. Recently a number of elegant experiments
probing the observable consequences of bond-
orientational order in the srnectic-I phase have ap-
peared. Another interesting fundamental property of
2D systems is that certain kinds of order will diverge log-
arithmically with system size; one example is positional
order in a crystal. This is the so-called Landau-Peierls
divergence of order in a system at its lower critical di-
mension. For a FSLCF in a tilted phase, the projection
of the molecular long axis in the plane of the film forms a
2D orientation field which should exhibit this logarithmic
divergence in order. We report here an investigation of
such a system at its lower critical dimension using a new
experimental technique to directly observe the Landau-

Peierls divergence in space and time.
To study the 2D orientation field we constructed a po-

larized reflection microscope using an argon-ion laser as
the illuminator, forming a real in-plane image of the tilt-
ed smectic FSLCF. In this image, light intensity is deter-
mined by molecular orientation. Thus, information
about the behavior of molecular-orientational order (not
bond-orientational order) may be obtained by observing
the spatial and temporal characteristics of the depolar-
ized reflected light. Light from two spatially separated
regions in the image is transmitted to photon detecting
and counting electronics by fiber optics. The intensity-
intensity time cross-correlation function is obtained by
sequential summation of the product of the intensity at
the first probe and the intensity at the second probe at de-
layed times. The mean-square orientation difference be-
tween the two regions is then calculated from the correla-
tion function.

Our results verify the dimensionality of the 2D orienta-
tion field and accentuate some consequences of the low
dimensionality. The Landau-Peierls divergence in order
is observed as a logarithmic increase with time of the
mean-square orientation difference at the two probes at
extremely long time delays and large spatial separations.
We also observed contributions to the cross-correlation
function which would probably not be noticed in an auto-
correlation experiment, either in real space or in the re-
ciprocal space of a scattering experiment. There is a non-
linear dependence of the reflected intensity on director
orientation. The amplitude of orientation fluctuations in
this 2D system is so large that a scattering or imaging
geometry for which the intensity fluctuates only linearly
with the orientation cannot be found. Two modes of elas-
tic relaxation exist for orientation fluctuations, and the
particular modes available are energetically quite aniso-
tropic. ' Cross-correlation functions obtained for these
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separate modes appear to be qualitatively different,

though we propose an explanation involving fourth-order
coupling of orientation fluctuations to the reflected inten-

sity which satisfactorily explains the data.

SPREADING DIRECTION

B. Tilted phase FSLCF's

For a FSLCF in a tilted smectic phase there will be a
projection of the molecular director n(r) in the film (x,y)
plane, which defines the unit vector C director, C(x,y, z).
The orientation of C(x,y, z) is specified by the angle
4(x,y, z), the azimuthal orientation of n(r). Our experi-
ment probes 4(x,y), the z average of 4(x,y, z):

4(x,y)—:f dz 4(x,y, z), (1)—L/2

where L is the thickness of the film and the origin of the
coordinate system is chosen to be the film center. Figure
1 shows this geometry for a three-layer film. The order
parameter for a smectic-C phase incorporates both the
tilt angle OT and the azimuthal orientation, as
=HTexp(i4). Thermal fiuctuations in 4 contribute to
the free energy via a term in

~

4
~

associated with tilt-
angle fiuctuations and terms in (V%') associated with az-
imuthal orientation fluctuations. The free energy of the

term is

ZJi

INCIDENT
LIGHT

I' —Fo ——[—,'Ks(VXC ) + ,'Es(V C ) ], — (3)

where the bend orientational elastic constant E~ is asso-
ciated with the curl of the orientation field defined by C,
and the splay elastic constant Kz is associated with the
divergence of C. A characteristic of a nematic is that
n(r) is equivalent to —n(r), whereas in the tilted smectic
FSLCF C(x,y) is not equivalent to —C(x,y). The
significant consequence of this distinction is a restriction
on strength of allowed disclinations in the orientation
field.

Most of the measurements reported here were on a ra-
cemic mixture of DOBAMBC, a chiral molecule. In a
five-layer liquid-crystal film, DOBAMBC has the follow-
ing phase diagram:

Except very near the smectic- A -to-smectic-C
(Sm A -SmQ transition at which 8r ~0 continuously in a
second-order phase transition, the elastic constant 8 is of
order ks T/(molecule rad ). Since our experiment is opti-
cal, the minimum area probed is =1 pm and contains
=10 molecules. Hence, fiuctuations in 8& averaged over
the minimuin probed area are of order (10 )' rad and
can be ignored. By contrast, fluctuations in the azimu-
thal angle 4 are suppressed only by V+ and are
significant.

We examine the dynamics of 4(x,y) and explain fiuc-
tuations in 4 using a 2D model of orientational order.
To the extent that the experiment conceived probes only
the z average orientation 4(x,y), the FSLCF models a
2D system and C(x,y) approximates a 2D nematic direc-
tor field. The free energy of a 2D nematic in the absence
of external fields is

FIG. 1. A FSLCF is formed by placing a smectic liquid crys-
tal between a substrate and spreader then drawing the hole in
the substrate past the spreader. The geometry of the tilted
smectic film is shown. The molecules are tilted an angle 8T
from perpendicular to the film. The projection of the ci rector
n(r) in the film plane is C(x,y) and has azimuthal orieri ation
4(x,y). The cross-hatched regions represent fiber-optic probes
in the image separated by p. The angle between C(x,y) and p
defines g.

76'C 120'C
Crystal = SmC ~ SmA ~Isotropic .

65 'C

SmI

DOBAMBC was the first liquid crystal discovered to be
ferroelectric and was synthesized at Universite de
Paris —Sud (France) in the early 1970s.' It is fundamen-
tally interesting as a ferroelectric liquid crystal, but in
our experiment the racemic mixture gives zero net polar-
ization, hence it is not ferroelectric. We use DOBAMBC
because independent measurements of the orientational
elastic properties of FSLCF's of DOBAMBC are avail-
able.

C. XYmodel

The 2D XY model was initially developed to describe a
2D ferromagnet with degenerate energy upon a uniform
rotation of the spins. " The Hamiltonian for the 2D XY
model is

I=fd'p J[V'4(p)],

where J is a coupling constant, 4 labels the orientation of
the spins, and p is the space variable. This model has
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proved applicable to 2D superfluid He, ' superconduc-
tor, ' and Coulomb gas' systems. The FSLCF is slightly
more complex since the coupling constants K& and K&
are different. However, if K=K& ——Kz and q is the
momentum space wave vector in the (x,y) plane, the
characteristic energy for the FSLCF, L qK, reduces to
the energy L qJ characteristic of the XY model. The
long-wavelength fluctuations in molecular orientation we
study are the so-called spin waves of the XYmodel.

D. Landau-Peierls divergence

One aspect of a system displaying order in one or two
dimensions is the Landau-Peierls (LP) divergence of that
order with system size. Landau and Peierls independent-
ly showed that infinite one- or two-dimensional systems
could exhibit long-range order only at zero temperature.
If 4 defines a fluctuating variable, then as q~0 the
mean-square fluctuation in 4, (4 4 ), does not
diverge in 3D, diverges as ln(q) in 2D, and as 1/q in one
dimension. ' In 2D a quasi-long-range-order (QLRO) re-
gime can be defined, bounded by a correlation length g.
For lengths greater than g, fluctuations are larger than
the characteristic periodicity of 4, destroying long-range
order. In the XY model, /=a exp(m J/ks P, where a is a
small-length characteristic of the system. "

II. ORIENTATION FLUCTUATIONS IN TILTED
SMECTIC FSLCF'S

A. Two dimensionality

FSLCF's are 3D systems. We now discuss the condi-
tions under which they behave as 2D systems. Examine
the 3D orientation field described by n(r) in the limit of a
thin tilted smectic slab with free surfaces and layers
parallel to the (X, Y) plane. The short axis of the slab is
along the z axis. The director fluctuates azimuthally
about z with orientation 4(r, z), where r=(x,y) are pla-
nar coordinates in the slab. There will exist fluctuations
in 4 with wave vectors having a continuous distribution

I

o (p,z„z)=(
i
4(O, z, ) —4(p, z )

i
)

of x and y components [between a molecular size (a)
cutoff 2m. /a and a system size (R) cutoff 2n. /R]. Wave
vectors along the z axis are quantized and have free sur-
face boundary conditions. The zero surface torque im-
plies z behavior of the form sin[(2/+1)mz/L] and
cos(2/nz/L), where l. is the thickness of the slab, the ori-
gin is chosen in the center of the slab, and l is an integer
reflecting quantization of modes of fluctuation available
perpendicular to the film plane. The orientation field as a
function of position in the slab is

4(r, z)= g f e'~'[4, (q, /)sinqiz
I =0 2m/R 4

+4,(q, /)cosqiz], (5)

where q is the wave-vector component in the (X, Y) plane
and qi is the discrete wave-vector component along z, and
the usual inverse relations hold, e.g.,

4, (q, /)= f dz f d r 4(r, z)e '~'sin(qiz),
—L/2 A

with A the slab area. The 4,(q, /) are defined similarly.
We make the one constant approximation K=K& ——K2
—K 3 which is not strictly correct, but the error will not
affect this discussion. The free energy associated with
orientation fluctuations in the slab for the one constant
approximation F= r K 2 4 becomes under

Fourier transformation

F=—g g [ (
4, (q, /)

)
+ ( 4,(q, /)

( ]&q +qi ),
I q

and from equipartition the thermal average of mean-
square fluctuations (

~
4(q, /)

~
) =2k& T/K(q +qi ).

Now we calculate for two distinct points in the slab
separated by p = r& —r2 the mean-square orientation
difference o (p,z„zz):

4m f d'q g[( ~
4, (q, /)

~
) [sin (qiz, )+sin (qiz2) —2e'~'i'sin(q, z, )sin(q, z2)]

+( ~4, (q, /)
~

)[cos (q, z, )+cos (qizz) —2e cos(qizi)cos(qiz2)])

In our experiments the average orientation of 4(p, z)
along the z axis is probed [cf. Eq. (1)]. For this case the
integrations over z involving sin (qlz; ) and cos (q&z; )

(i =1,2) yield constants. All terms now are proportional
to [1—exp(iq p)](

~

4
~

) and the resulting mean-square
orientation difference is

I

This is exactly o (p) for separate points in a strictly 2D
nematic-orientation field. This equivalence is the basis of
the claim that the reported experiments probe a 2D sys-
tem. Equation (9) was first obtained for a 2D nematic
phase by de Gennes, whose calculation is not readily
available in the literature and which we therefore now re-
view.

o (p)=(
~

4(0)—4(p)
~

)

2k~ T d2q
(1—e''i i') .

KL 4m. q
(9)

B. de Gennes's model

de Gennes described the static and dynamic orienta-
tional order of a hypothetical 2D nematic phase of long
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molecules on a fluid surface. ' The free energy of the 2D
nematic phase, given in Eq. (3), accounts for the spin-
wave distortions in C(x,y), in the absence of disclina-
tions. de Gennes used the one constant approximation,
where K =Ks K——~ and Eq. (3} reduces to exactly the
Hamiltonian for the XY model, given in Eq. (4) with the
2D Frank constant K replacing 2J. Using this model de
Gennes calculated

o' (p, r)=(
~
4(0,0)—4(p, q)

~
),

the mean-square orientation difference for a pair of dis-
tinct space-time points where the origin is redefined at
one of the points. The time-dependent orientation
4(p, r) may be written as a sum over independent modes
in reciprocal space as follows:

L2
Cr(p, q.)= fd q e'q't'4 (r}

and, taking the continuum limit,

2kqT g qo (p, q.)= (1—e'~'~e q ') .
4m2q2

(14)

C. Logarithmic divergence

To explicitly see the logarithmic increase of cr charac-
teristic of a 2D system the integral in Eq. (14) is calculat-
ed by differentiating and integrating with respect to time:

The p dependence of Eq. (14) is the same as obtained in

Eq. (9) for the thin liquid-crystal slab with K=KL and

g=gL. That is, in an experiment which integrates over
the orientation of 4 along the z axis the diffusive orienta-
tional dynamics of the smectic film should behave exactly
as the orientational dynamics of de Gennes's hypothetical
2D nematic.

= g4 (r)e'q'r .
q

(10)
2k' TD

o (p, r)= f 'dt f e'~ te'
o E

Writing the free energy in terms of these Fourier
coefficients gives

2

The q-space integral is qr/(4Dt)exp( p /4Dt), —the
Green's function of 2D diffusion. ' Integrating this over
time yields an exponential integral

F Fo ——f d —p g— [4 (r)e'q't']
2 Bx

q

2

kqT
cr (p, q.)= [A, + —,'E, (p /4Dq)] . (16)

[4 (r)e'q't']

cr (p, r)=2+ ( ~4
~

)(1—e' e '),
q

(13}

Doing the spatial derivatives introduces a factor of q and
the thermal average free energy is

&F—Fo) =(K/2) gq'&
~ @,(q. )

~

'&,
q

with (
~

4
~

) =ks T/Kq for all q. We have implicitly
assumed 4(p, r) is a Gaussian random variable, therefore

&=& ~+(p, q) ~'& s«h«
o (p, q)=2([

~

4(0,0)
~

—
~
4(0,0)4(p, q. )

~
]) . (12)

The dynamic behavior of a nematic-orientation field in-
volves both coupling of fluid flow to orientation and
torques derived from thermal distortions of the elastic
free energy as described by Eq. (3). As in three dimen-
sions the viscous relaxations are orders of magnitude fas-
ter than orientation relaxations and effectively decou-
ple, ' leaving a single orientational diffusion process
characterized by a diffusion constant D =K/rt, where rt
is the isotropic orientational viscosity in the one constant
approximation. The time correlation function of a mode
of wave vector q has the form

(+q(0)@q(r)) =(
~ 4q ~

)exp( Dq v) . —

Estimating D =K/ t=r10 cm /sec and probing wave
vectors q = 10 cm ' and smaller yields minimum expect-
ed decay times of ~=10 sec and larger for N. Writing
the mean-square orientation difference as an expansion in
the Fourier modes of 4 gives

A, is the integration constant obtained from the static
terms and in the case of de Gennes's model 2D nematic
with p &&a, A, = lnp/a. ' The dynamic term E~ (p /4Dr)
is an exponential integral which can be expanded:

00
( 1)nxn

E, (x)= —y —ln(x) —g
I (2n+ 1)!

where y is Euler's constant y=0. 577. . . . For x ~0. 1

the polynomial sum is negligible with respect to ln(x).
For x =p /4Dr at small r, x will necessarily be large, but
for increasing r, the regime x &0. 1 will occur and ln(x}
will dominate. In the limit x ~0. 1,

E&(x)= —y —In(x) = —y —2 lnp+ln(4Dr) .

This logarithmic increase in cr with increasing p and ~ is
characteristic of the Landau-Peierls divergence in 2D.

The QLRO regime is that region in (p, r) for which
o (p, q ) & 1. Solution of rJ(p, r) = 1 gives the time-
dependent correlation range p (q ) or separation-
dependent correlation time r (p } which bound the
QLRO regime. For small r,

p (=a exp(qrK/2k' T)

and for small p,

(0)= (p /4D)exp(qrK /2ks T) .

The correlation parameters g and r (0) increase ex-
tremely rapidly with decreasing temperature, with
becoming of the order of the size of the earth at 15'C
below the SmC-Sm A transition.
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III. ANALYSIS OF EXPERIMENTS

A. Experimental setup and initial observations
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FIG. 2. The 4480-A wavelength incident laser light is spatial-

ly filtered and collimated. It passes a vertically oriented polariz-

er and a long focal length achromatic lens (F=25 cm) and beam

splitter I (BS I). The incident light split off here is dumped to
the room. The light then passes through the 5X objective and

onto the FSLCF. The achromat is positioned such that a 500-

pm-diam region of the film is illuminated when the objective is

forming an image 100 cm from the film. Half the reflected light

is sent by BS I to the analyzer which passes only the light depo-
larized by the film. A second beam splitter BS II is placed to
form two image planes. In one image plane are placed the
fiber-optic probes which illuminate the PMT's. Pulse-shaping

electronics collect the signals from the PMT's and send them on

to the correlator, which computes the cross-correlation func-

tion. The FSLCF may be observed through an eyepiece focused
on the second image plane.

The experiment we report is the first cross-correlation
intensity-fluctuation spectroscopy (CCIFS) study in real
space. Previous CCIFS studies have involved scattering
studies in reciprocal space and have been found useful for
studying local anisotropies in the probed system.
The time correlation function for intensity fluctuations
from two spatially separated points in the real image of
the tilted smectic FSLCF is calculated. To obtain the im-
age a polarized reflection microscope was designed using
an Ar+-ion laser as the light source. The 488.0-nm wave-
length beam is spatially filtered to choose the TEMOO
mode, and collimated. As Fig. 2 shows, a polarizer
oriented collinearly with the laser polarization (P) is in
the beam path, followed by a long focal length lens and
microscope objective adjusted to illuminate a 500-pm-
diam region on the film with the beam s Gaussian intensi-
ty profile. The optical power density incident on the film
is about 5 W/cm, small enough that molecular reorien-
tations due to the electric field of the laser are negligible.
Light reflected from the film passes through the same ob-

jective and part is split off by a beam splitter (50%%uo front
surface reflection, 0.05%%uo back surface reflection). This
reflected light ~asses through an analyzer (A) crossed
with respect to P and a 40-times-magnified image of this
500-pm-diam illuminated region is formed. Figure 3 is a
photograph (exposure=0. 1 sec) of a typical image with
the average orientation field C(x,y) illustrated.

The four-stage thermostat used to stabilize the FSLCF
is illustrated in Fig. 4. Heaters are attached to the outer-
most stage and covered by a layer of aluminized Mylar, 2
cm of fiberglass insulation, and another layer of alumin-
ized Mylar. Although the cell was designed for extreme-
ly high-precision temperature control, the temperature
uniformity obtained by controlling the outermost stage to
= 1 mK was found to be sufficient for the experiment re-
ported here. The millikelvin temperature control was ob-
tained using a Handschy designed dc bridge controller.
The temperature near the film was found to be stable to
+1 mK, though it was typically monitored with an elec-
tronic digital thermometer with 0.1 K sensitivity.

Adjustment of the orientation and location of the im-
aged portion of the FSLCF was through a series of rota-
tion and translation stages. The cell is offset by 1-in
spacers from an XY translation stage attached to a
machine bed rotation table. The optical path is centered
on the axis of rotation of the rotation table. By adjusting
the XY translators the cell is then centered on the optical
path allowing observation of the FSLCF while rotating it
relative to fixed polarizer and analyzer. The inset in Fig.
4 illustrates the film holder's translation screws and
springs which enable translation of the FSI CF in the op-
tical path.

The microscopic objective used to obtain the 40-times-
magnified image was a single lens 5X objective. The use
of this objective introduces aberration in the image, but
data are typically obtained only from the central portion
of the image where the aberration is least. A higher
power objective was not used since there would have been
insufficient clearance for the spreader assembly to pass
between objective and film holder and multiple reflections
of comparable intensity as the depolarized film reflections
from the additional glass-air interfaces in a multilens ob-
jective would have been introduced. The objective is fo-
cused by turning a reduction gear attached to the thread-
ed holder. Rotation of this gear as well as the spreader
and the film translation screws is by hexagonal head
drivers, which are inserted from outside the cell when
necessary. Using the rotation and translation stages and
adjusting the microscope objective focus we were able to
study any region of particular interest on the film.

The depolarized reflected intensity as a function of
orientation I(4) is proportional to sin (24). In a regu-
lated environment fluctuations in 4 are predominantly
due to thermal excitation of elastically relaxed orienta-
tion variations on the continuum of lengths between
molecular size and the film size. The method developed
to sample the intensities at a pair of separated points in
the film image is to place two 400-pm-diam monofilament
fiber-optic probes in the image plane. This yields an
effective resolution on the film of 12.5 pm. The intensity
at each probe is measured by separate photomultipliers
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FIG. 3. A +1 dischnation pair is illustrated. A photograph of the depolarized reflected image of a FSLCF of racemic DOBAMBC
in its SmC phase illuminated with 488.0 nm light from an Ar-ion laser is shown. The film is young" and disclination pairs formed in
the spreading are still relaxing away, with this a photo of one those pairs. The film will thin to a uniform thickness and disclination
pairs will annihilate, leaving a single s =+1 defect, within about an hour. The molecular orientation illustrating the disturbance of
local order by the disclinations and the undisturbed region at the boundary is also shown.
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FIG 4. The sample cell is shown in cross section. The longest horizontal distance across the bottom of the cell is 6.75 in. The op-
tical path is indicated. The FSLCF is spread across the hole in the sample holder A by sweeping the spreader C across the hole. The
microscope objective B focus is adjusted by driving gear D, rotating the objective holder on its concentric threads. Light transmitted
through the film reflects off the tilted black glass E and is absorbed into the walls of the black anodized interior chamber G. The
b1ack glass chip F is used as a reference reflected intensity monitor for film thickness measurements. The two interior cylindrical heat
shields H are thermally connected to the outer chamber body I. Heaters are affixed to the exterior of chamber I. A circular heater is
on the bottom plate, an annular heater on the top plate, and 36-gauge wire wrapped around the cylindrical body with a 1-cm pitch.
Referring to the inset, a schematic top view, the sample is translated on the optical axis by rotating the drive screws J which oppose
spring loaded pins K.



38 DIRECT MEASUREMENT OF ORIENTATION CORRELATIONS. . . 1579

which provide photopulse sequences n~(t) and n2(t) to
equivalent pulse-shaping electronics. These photopulse
sequences are sent to the two inputs of a Langley-Ford
1096 correlator, which computes (n&(t)n2(t+r)). The
line joining the fiber-optic probes may be rotated in the
image plane and the distance between probe centers may
be adjusted continuously between the effective fiber diam-
eter of 12.5- and 250-pm separation. Figure 1 shows the
geometry of two fiber-optic-probe faces occluding regions
in the orientation field C(x,y). The angle X is the angle
between p and the average orientation of C(x,y).

The correlation function obtained is

R(r„)=(n,(t)n2(t+r„))~ (I,(t)Iz(t+r„)). (18)

I& and I2 represent the intensities at separate points r&

and r2. R (r) will therefore be a function of the distance
p=

~
r, —r2

~

between the two points, as well as a func-
tion of the orientation of the axis separating the probes
relative to (C(x,y)), so it is appropriate to write
R (p, r„)~ (I(0,0)I (p, r„)), to represent the correlation
function recorded. It is necessary to find the dependence
of R (p, r„)on 54, the fluctuations in 4(x,y}. To do this,
we restrict consideration to regions in the sin (24) inten-
sity profile where the intensity is on average one-half the
maximum intensity. This condition may be achieved by
appropriate choice of orientation of p relative to C and
maximizes dI/d4. If the x axis is chosen along a polar-
izer axis, the average intensity will be half maximum at
4o——(4 ) =~/8 (mod n /4) To fir. st approximation,
I(4)~4O+54, thus

R (p, ~„)~ ( [CO+54(0,0)][CO+54(p,r„)])
cc ( [4O+4O[54(0, 0)+54(p, r„)]

+54(0,0)54(p, r„)I) . (19)

The thermal average of terms linear in 54 is zero, that is,
on average 54 is symmetric about 4o, leaving

R(p, ~„)~ ([Co+54(0,0)54(p, r„)]).
From Eq. (12) R ceo and thus o (p, r) may be directly
studied using CCIFS. A new function S(p, r„)is defined
which eliminates dependence on absolute intensity:

:-(p,r, ,r„)
S(p, r„)—=

—p~ +1~+A

where N is the total number of time intervals in the corre-
lation function. The function S(p, r„)is independent of
the direction of p, characteristic of the isotropy of the 2D
XYmodel.

Figure 5 shows two representative measurements of
S(p,r„}for fixed p; Fig. 5(a) is a typical data set for
7=m. /2 and Fig. 5(b) is typical data for X=O. The pre-
dicted isotropy of S(p,r„)as a function of X does not ap-
pear. For X=n /2, S(p,r„)is monotonic and may be fit

using Eq. (21). For +=0, on the other hand, the non-
monotonic S(p,r„)shown in Fig. 5(b) cannot be obtained
using Eq. (21). We found that, for the X=O geometry,
the depth of the minimum in S(p, r„)was negligible at
90'C on all observable time scales and increases with de-
creasing temperature. When p was varied at a single
temperature the scaling o ~ r was observed, as expected
for diffusional dynamics.

The failure of the XY model to account for the X=O
data led to a variety of experiments to search for the ori-
gin of the discrepancy. The data were found to be quali-
tatively independent of the relative orientation of the
earth s gravitational field, the density and composition of
the vapor surrounding the film, or even the particular
liquid crystal studied. Films of the liquid crystals 8S.5
and HOBACPC' have qualitatively the same anisotropic
cross correlation behavior as observed in DOBAMBC.
These observations indicate the anisotropy is not a pecu-
liarity of using the mixture of both racemates of the in-
herently chiral DOBAMBC molecule since 8S.5,

H)qCs —0—8—CH2—S—8—CSH))

is not a chiral molecule, and the HOBACPC',

2

E P
4D~]

2

E P
4D&)

p
' 4D.

—E] p
4DvN

R(p, ri) —R(p, r„)
R (p, r, ) —R (p, ~y )

From Eq. (16) this yields

o (p, r, ) o(p,r„)—
S(p, r„)=

~'(S»ri) ~'(S»r~)

(20)

(21)

0 140
DELAY TIME, g „(CHANNEL NUMBER)

FIG. 5. These data are correlation functions scaled using Eq.
(20). The last eight channels are delayed an extra 64 sample
times (64~&), and the break in the data reflects this extra delay.
Plotting the data in this way causes the initial n =1 point and
the Anal n =136 point to appear at fixed locations. The data la-
beled (a) are for g =m. /2, while the data labeled (b) are for g =0.
The dip in (b) reflects an anticorrelation in the intensities at the
two detectors. This anticorrelation decays away being dominat-
ed by correlations at long times.
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H, 3C6—0—8—CH =N—S—CH =CH—CO—0—CH2—(CHC1CH3 }

used was dominated by the left-handed enantiomorph.

B.Outline of theoretical analysis

To assist in understanding the information contained
in the observed cross-correlation functions the following
points are emphasized. (i} The XY model predicts that
the decay of the cross-correlation function will be loga-
rithmic in time. Usual methods of correlation-function
analysis of dynamic scattering involve obtaining single-
or multiexponential relaxation to some finite background.
Inherent in a logarithmic time decay is the absence of a
background cutoff and scaling with time. In addition,
fluctuations of wavelength shorter than the probe size are
averaged, providing a short-time cutoff. (ii) The finite
sample size limits the smallest wave vector which may
affect S(p, r„),introducing a cutoff with a characteristic
time of 50 to 5000 sec depending on D, so that there is a
background on a very long time scale. (iii) Since we are
probing the cross correlation of intensities between re-
gions in real space rather than points, a resolution func-
tion associated with finite probe size must be folded with
the I(4) dependence (discussed in Sec. IIIC). (iv) To
calculate R(p, r„)used in Eq. (20) we assumed I(4)
cc40+54. We will show that to account for the an-
ticorrelation exhibited in Fig. 5(b) it is necessary to in-
clude terms to order (54) in the I(4) proportionality
(discussed in Sec. III D). (v) The data presented in Fig. 5

clearly show anisotropy as a function of P. This anisotro-

py is explained by the anisotropic elastic constants for
splay and bend in 2D previously observed in smectic films
and requires that the 2D XY model be modified to de-
scribe our data (discussed in Sec. IIIE). (vi) At long
enough times that x =p /4Dt g0. 1, the exponential in-
tegral in Eq. (21) will exhibit the logarithmically increas-
ing time dependence characteristic of the Landau-Peierls
divergence. This logarithmic divergence is observed at
very long times independent of spatial separation (data
are presented in Sec. IV A). Items (iii), (iv), and (v) dis-
cussed above only significantly modify the shape of the
observed cross-correlation function from that predicted
by Eq. (21), in the p, r regime x & 0. 1.

C. Finite probe size

For
~ p ~

significantly larger than the fiber-optic-probe
diameter, Eq. (21) seems to fit the data for X=n. /2 per-
fectly, when the fitting parameter D is allowed to vary.
For

~ p ~
comparable to the probe diameter the decay of

S(p,r„)deviates from the calculated dependence even for
7=~/2. This deviation is due to the finite size of the
probes. The calculation of cr (p, r) in Eq. (16) was based
on orientation correlations between two points. The
fiber-optic probes occlude regions of nonzero area rather
than points, therefore a resolution function cutting off the
integration at large wave vector should be folded into the
integration in Eq. (14). For simplicity of calculation as-
sume that the light transmitted by the probes has a
Gaussian intensity profile about the center of the probes.

Then the transmitted intensity is proportional to
exp(2vrr /a), where a depends on the cross-sectional area
of the fiber. The probe profile is accounted for by includ-

ing the factor exp( —aq ) in the integrand of Eq. (14).
This manifests itself in the argument of the exponential
integral included in Eq. (16) as follows:

kqT
o'(p, r)= I A, + ,'E, [p—'/4(Dr+a) j I . (22)

The arguments of all four exponential integrals in Eq.
(21) are modified by the addition of this finite-probe-size
contribution. This is effectively a constant displacement
along the time axis due to the shortest time (largest wave
vector) fluctuations averaged over by the probes. We find
that fits with a=36 p,m work well as an empirical
correction for all data.

D. Anticorrelation

&s=1-12X10 (T*—T) erg/K,

Ks ——1.52X10 ' (T*—T) erg/K,
(23)

where T ranges from 90 to 115 C in the SmC phase
below T* (for splay T' = 116'C, for bend T*= 118.5 'C}.
T* is not the Sm A-SmC phase transition temperature in
the FSLCF, TCA =115 'C, because there is a discontinui-
ty in the linear decrease of both elastic constants very
close to the transition (the transition is weakly first or-
der). If these values are assumed to represent indepen-

The time correlation of a random process as probed by
photon spectroscopy decays from (n; ) to ( n; ), where
n,. is the number of photons detected in the ith time inter-
val and the average is taken over many intervals. By the
triangle inequality ( n; ) & ( n; ), therefore an autocorre-
lation function may not exhibit data which behave as that
shown in Fig. 5(b). Anticorrelation is defined as an in-
crease with time of a cross-correlation function (n; n ).

At least two CCIFS experiments reporting anticorrela-
tion are in the literature. (1) Clark, Ackerson, and
Hurd and Ruth, Clark, and Ackerson have reported
the detection of an anticorrelation in a monolayer col-
loidal solution near the order-disorder transition, in
which the correlation coeScient decays up to its back-
ground value with time. (2) Griffin and Pusey have re-
ported cross-correlation data very similar in appearance
to that shown in Fig. 5(b}. Their experiment involved
cross correlating the scattering from a dilute solution of
tobacco mosaic virus at n. /2 and 3m. /2 rad relative to the
incident laser direction. Anticorrelation was due to
differential interference of the scattering from the aniso-
tropic particles at the two detectors.

The anticorrelation observed here is a consequence of
the small elastic-restoring forces in this 2D system allow-
ing large-amplitude orientation fluctuations. Rosenblatt
et al. found values for Kz and E~ for a three-layer film of
DOBAMBC. The values found increased linearly
with decreasing temperature from the SmC-SmA phase
transition and are fit to within experimental error by
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E(4)=ED[sin(240)+2(54) cos(240) —2(54) sin(240)

——43(54) cos(240)+ —',(54) sin(240)] . (24)

.Squaring E(4) to obtain I(4) to fourth order in 54 and
simplifying gives

dent elastic constants for splay and bend fluctuations in

C(x,y), the resulting predicted values for 0 (p, r) are an-
isotropic. For the experimentally accessible regimes, cr is
calculated to range up to about 7' for the splay case and
about 20 for the bend case. The S(p,r„)dependence on
54 leading to Eq. (21) was based on I(4) fluctuating only
linearly in 54. Since I(@)~ sin (24), for C&0 vr——/8 and
the average bend fluctuation of 20', it is necessary to in-
clude terms to third order in 54. The linear approxima-
tion should be more accurate for the average splay fluc-
tuation.

To understand the anticorrelation we will expand the
depolarized reflected electric field of the laser E(4) in a
Taylor series about an average director orientation 40,
including terms to fourth order in fluctuations about that
average. We then calculate the intensity E(4)E'(4) to
fourth order and simplify for our geometry. There are
two nonzero contributions to S (p, r„),the linear-linear

54 54 —= ( [ 54(0,0)[54(p, , ) —54(p, „)] ) )

terms which led to Eq. (21) and linear-cubic (5454
defined subsequently) terms, the inclusion of which ex-
plains the observed anticorrelation. We obtain
:-(p,r„r„)and substitute this result into S(p,r„)in Eq.
(21). Good fits to the data may be obtained by varying
both the diffusion constant D and the elastic constant K.
The diffusion constants obtained from these fits con-
sistently vary by a factor of 6 or 7 when P is varied from
0 to m/2. This is consistent with the splay-bend anisotro-

py in elastic constants observed by Rosenblatt (discussion
in Sec. III E).

A Taylor expansion of the depolarized reflected elec-
tric field E(4)=E sOi n24 around some 40 gives, to
fourth order in 54:

I(4)
z

——sin (24o)+2(54)sin(4@o)+4(54) cos(44&0)2

E2

——,6(54) sin(44o) ——6(54) cos(440) . (25)

——", ( [54(0,0)[54(p, r ) ]

+[54(0,0)]'54(p, r)) ) .

(26)

The data presented here were taken in the @0=m /8 re-
gion. =(p, r, ,r„)contains the only time-dependent terms
of S(p,r„)and to fourth order in 54 becomes

The correlation function developed in the lab is
((I(0,0)I(p, r) ), which we now calculate to fourth order
in 54, realizing that the thermal average of any term of
odd order in 54 is zero. The film may be translated and
rotated in the (X, 7) plane allowing choice of any 40.
Three limiting cases exist 4O ——0 mod n /2, 40=m /8 mod
m /4, and 40——m /4 mod n /2 For. 4O ——0 (the middle of a
dark brush, I,„,=I;„)terms with sin 40 or sin 40 as a
factor are zero, and the first two nonzero terms are fourth
and sixth order in 54. For 40——m/4 (the middle of a
bright region, I,„,=I,„)terms with sin @o as a factor
are zero. The cross-correlation function has the same
fourth- and sixth-order terms as for the 40——0 case, as
well as terms of the form (54 ) and (54 ). Since 54 is
assumed to be a stationary random variable, (54 ) and
(54 ) are constants. Fluctuations in the brightest re-
gion and in the darkest region are given by the same aver-
ages, but with different relative amplitudes. For
40——m /8 (between a bright and dark region, I,„,= —,'I,„)
terms with cos 40 as a factor are zero, therefore to fourth
order:

1 (I(0,0)I(p, )) =—'+4(M(0, 0)M (p, ) )
0

:-(p,r„r„)~ (54(0,0}[54(p,r, ) —54(p, r„)])
—

—,'(54(0, 0)I [54(p, r))] [54(p,r„)]—]+[54(0,0)] [ 45(p, r)) 54(p, r„)])—. (27)

The quartic terms in Eq. (27) define the 54(54) terms. The 5454 term is the term which leads to the exponential in-
tegral dependence for S(p,r„)in Eq. (21). As an example of the type of term obtained from the quartic contribution
(54(0,0)[54(p, r)] ) will be calculated in the one elastic constant approximation and S(p,r„)will then be presented.
Fourier expanding this fourth-order term and integrating over all wave vectors gives

(54(00)[54(p r)] )= fd fd fd fd (4 4 4 4 )e ' ' ' e (28)

Note that the (54(p, r}[54(0,0}] ) term is similar to Eq. (28) but the exponentials contain only the wave vector q, .
The thermal average of the Fourier coefficients in Eq. (28) is zero except when the coefficients form conjugate pairs and
(

~ @~ ~
) =kz T/Kq, leaving a simpler integration over two variables:

(29)
q,

The integral over q& yields A, + ,'E, (p /4Dr). The in—tegral over q may easily be manipulated into the basic form of
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the exponential integral and yields E&(2Dq r) E—&(2Dq„r),where q and q„are,respectively, the minimum and max-

imum wave vectors probed in the experiment. The rnaximurn wave vector probed is associated with the area occluded

by the detector, which corresponds to a diameter on the film of d =12.5 pm. Therefore, q„=2m./12. 5 pm=4500 cm

is chosen. The minimum wave vector probed is associated with the time the experiment was allowed to run, decreasing
with increasing run time until it is cut off by the size of the sample, resulting in q =10—100 cm . Integrating with

these limits yields

3(ks T)
(54(0,0)[54(p,~)] ) = [A, + ,'E, (—p /4Dr))[E, (2Dq ~} E,—(2Dq„r)) .

(2m) E
(30)

The ([54(0,0)] 54(p, ~)) term is calculated similarly,
yielding the same expression except that the difference in
exponential integrals in Eq. (30} is replaced by ln(q„/q ).
Including terms to fourth order in 54 for 4o=n/8 in.

:-(p,~, ,~„)yields

=(p, ~»~„)~ Q„—Q, —A4(C, —Cz —C3+C4),

where

4k~ T
Q„=EI(p —/4Dr„), A4 ——

(31)

i —D=A+f drfd2q, De ' e—(32)

C, = A, [E,(2Dq' r, ) —E, (2Dq,' r)],
Cz —Q, [E,(2Dq v, ) —E, (2Dq„~,) —lnq +lnq„],
C3 l42[E~(2Dq r„) E, ( D2q„'—r)]

C4 Q„[E,(2D—q2 r„) E, (2Dq„r—„)—lnq +lnq„] .

Equation (31) includes the functional dependence
necessary to qualitatively explain the anticorrelation ob-
served. The first two terms QI and Q„are the second-
order terms which appear in Eq. (21). The leading factor
for the fourth-order terms A4 depends inversely on the
effective orientational elastic constant probed. Recall
that Rosenblatt et ol. found Ks =7K' [Eq. (23)], there-
fore a geometry in which the experiment probed only
bend fluctuations would have almost an order of magni-
tude larger fourth-order contribution than the corre-
sponding splay geometry. A comparison of the relative
magnitudes of the 54(54) terms shows that the terms
involving E, (2D~q„) are negligible by many orders of
magnitude with respect to the corresponding terms in-
volving E~(2Dwq ). The terms involving ln(q„/q ) arise
from the [54(0,0)] 54(p, v) term and range from 4% to
6% of the 5454 terms, depending on the magnitude of
q . The finite probe size effects have been ignored in this
calculation of:-(p, r» ~„).

An accurate determination of the integration constant
A, is required to determine the relative magnitudes of the
5@54and the 54(54) terms. The determination of A,
is somewhat subtle. It arises in the integration over q, in
Eq. (29) and may not be approximated by ln(p/a ) as in
Eq. (16). When differentiated and integrated from 0 to ~,
the q, integration becomes

df iq, -p —a q, ~
1 ~ 1

where A, = d q q exp iq p . Including the finite

probe size Gaussian contribution and integrating A, over

the angular coordinate yields

q„
A, =2m f dq —Jo(qp)e

q
'

which must be integrated from the minimum to max-
irnum wave vector numerically. The effects of including
exp( —aq ) in this development are to modify the argu-
ments of the exponential integrals:

(33)

E, (p /4Dr):E, [p /4(D~+a)),

E, (2 Dqr2) =E, [(2Dr +a)q ] .
(34)

We may now attempt to fit the data using Eq. (31) with
the arguments of the exponential integrals so modified.
In order to fit the data we must determine q, a, A„A4,
and D. The other quantities (p, r„)are determined by the
instrumentation. The minimum wave vector probed q
is chosen as (m /Dt, „„)'~or 10 cm ', whichever is
larger, to reflect the decrease in the minimum wave vec-
tor probed with increasing run time until a cutoff associ-
ated with the finite-system size is reached. The choice of
c is made as discussed in Sec. III C and is unchanged for
fitting all the data (a=3.6X10 cm ). The value of A,
is determined by numerical integration of Eq. (33), with
the same choice of minimum wave vector as just dis-
cussed and maximum wave vector chosen associated with
the detector size. The temperature is monitored using a
thermistor near the sample connected to a digital
thermistor thermometer which displays the absolute tem-
perature +0.1'C. The effective elastic constant is un-
known, though an estimate of the magnitude is possible
from Eq. (23). A4(K) is allowed to vary for best fit, as is
the diffusion constant D. If these two parameters are al-
lowed to vary freely, good fits to all the data may be ob-
tained. For X=O the best fit to the data is sensitive to
variation of K by about 50%. The fit to the data is most
sensitive to choice of diffusion constant D and in allowing
variation for best fit we may determine D to about 10%%uo

for all geometries.
Using Eq. (31) with the finite probe size modifications

of Eq. (34} both monotonic and nonmonotonic data may
be fit well. This model was obtained upon realizing that
the large amplitude of the fluctuations causes the probed
intensity to vary nonlinearly. Bend fluctuations are large
enough to exhibit this nonlinearity. The anisotropy in
the orientational dynamics is related to the elastic con-
stant anisotropy, and we now explore this anisotropy in
detail.
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E. Anisotropic elastic constants

To understand the significance of the values of D and E
obtained by fitting the data, we must consider the
modifications to our model needed to account for the an-
isotropy in elastic constants. The orientational elastic
free energy of a 2D nematic is given in Eq. (3}. Recalling
that 4(x,y) is the orientation of C(x,y) relative to the x
axis we expand this free energy in x and y coordinates:

namics of these linear terms are given by

(4 (0)4 (r)) = ( i
4 (0)i )exp[ D—(q)q r] .

In general we may write

D(q)q =Dttq„'+Dsq'

and the dynamic contribution becomes

exp[ (D—ttq„'+Dsqy )r] .

F —Fo ——

'2
+s 8 cos4 8 sin%
2 Bx By

+
2

&a 8 sin@ 8 cos4
2 Bx Bp

(35)

Thus the 5454 contribution to ™(p,r&,r„)becomes

kqT
54 54=g, e'~'t'

q E&q„+I(~q

Choosing the x axis along (4)=40 and expanding
B@/Bx and B4/By in their Fourier components gives the
energy per mode (

~

4
~

) =ktt T/(Kttq„+Ksq~). The
contribution to =(p,7„r„)due to the 5454 terms with

Ks&Ks will now be calculated to illustrate the approxi-
mations required to deal with this anisotropy. The dy-

B'4+ s&y ~+I B t. +&se, ~!
}X e " ' —e

(36)

In the continuum limit and differentiating and integrating
with respect to time,

'n 4m (Keq„+Ksq2)
(37)

k~T

27rrtt QDtt Ds
2 2—1 Px Py

&(exp +4t D~ Ds

5454= f "dt
TI

(38)

The time integral may now be done, it being a form of the
exponential integral. The correct point-point correlation
function involving terms linear in the orientation Auctua-
tlons, with Ks@KB 1s

k~T
t

2m QKeKs

2 2
1 Px Py

2 2
1 Px P37

(39)

In the case that either p„orp is zero [for the probes

The integrals over q„and q in Eq. (37) are not obtainable
in analytic form in general. The diffusion constants are,
in general, D(q)=K(q)/rt(q). The functional depen-
dence of K(q) is a splitting into independent splay and
bend relaxational modes with a large anisotropy in ener-
gy. The functional dependence exhibited by rl(q) is much
less anisotropic, with Rosenblatt measuring about a 5%
difference in the magnitudes of g& and gz, and qualita-
tively the same temperature dependence. If the approxi-
rnation g =qz ——gz is made, the integrations over q and

q separate resulting in

Xexp[ p l4(Dt + a) ]—, (40)

where there exist (i) the bend case p =p„,D =Dtt,
D'=Ds, and (ii) the splay case p=p, D=Ds, and
D'=Dtt. Substituting p=(Dt+a) ', Eq. (40) is amen-
able to numerical integration:

k~ T P„dp5454= f exp( —p p/4)
2m"I/KsKe ~ ~ P.

1/2
D1+pa, —1

(41)

where p„=(Dr„+a ) '. Note, if a =0, Eq. (41) is
equivalent to Eq. (39}with p„orp equal to zero. Con-
sidering finite probe size (a&0) in the square root in (41)

separated perpendicular or parallel to the average ori-
entation of C(x,y)] the only modification to the one con-
stant approximation is the replacement of E by
(KsKe)'~ .

Since the probes are symmetric in X and Y while the
fluctuations are not, including exp( —aq ) terms in Eq.
(36) changes terms of the form Dt in Eq. (38) to Dt +a.
Then, even for p„orp equal to zero, the time integra-
tion is not analytic. Numerical integration is possible
though. Choosing either p„orp equal to zero, Eq. (38)
becomes

k~T 154 54= dt
2&'g " v Dt+a+D't+a
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requires increasing Ds for best fit in the splay case, and
reducing D~ for best fit in the bend case. This is
exemplified in Fig. 6, where

54,54„(54(0,0)[5@(p,r&) —54(p, r„)])
54)54s, ( 54(0,0)[54(p, r ) ) —54(p, r~ ) ] )

(42)

is calculated by numerical integration (using a simple tra-
pezoidal method), for the three cases: (1) the splay case,
D =Ds, D'=Dtt=Ds/7; (2) the bend case D =Ds,
D'=Ds 7D&,' ——and (3) the one constant approximation
DD'=DsD&, with the pa term in the square root absent.
Also plotted in Fig. 6(a) is the curve for 54,54„ascalcu-
lated in Eq. (39) for a=0. The arbitrary choice of
D =2.3 X 10 cm /sec was made for all three cases plot-
ted. The integral in Eq. (41) may be scaled by any con-
stant and the calculation of Eq. (42) will be unchanged.
The separation of the a&0 curves plotted is due to fluc-
tuations perpendicular to p mixing with the fluctuations
parallel to p. For the a&0 cases shown in Fig. 6(a) p =20
pm and the initial slope in all three cases is much larger
than for the a=0 case. This may be interpreted as an
averaging over the short-time fluctuations of wavelength
smaller than the probe diameter. Because ~ scales as p,
for probe separations as large as a few times probe diame-
ter the effect of including exp( —aq ) becomes
insignificant. For p=50 ILtm [shown in Fig. 6(b)] the sep-
aration of the three curves exemplifies the decreasing
influence of probe size.

To understand the values for the diffusion constants
obtained from best fit of the data we must calculate

l40
TIME ( CHANNEL NUMBER )

FIG. 6. The effect of including the circular probe profile in
the calculation of the second-order contribution to S(p,~„)us-
ing anisotropic elastic constants is illustrated. The quantity
54,54„/54&54N as expressed in Eq. (42) is calculated for two
choices of p and ~l, (a) for p=20 pm, ~&

——1.8 msec and (b)
p=50 pm, ~& ——11 msec. For p=20 pm the point-point cross
correlation is shown (labeled a=0). For both (a) and (b) the
three cases (1) splay, (2) bend, and (3) the one constant approxi-
mation are calculated and shown.

:-(p,r&, r„)to fourth order in 54 for the case of aniso-
tropic elastic constants and including the probe profile.
The 5454 terms are shown in Eq. (41). The general ex-
pression for the 54(54) contribution is

(5@(0,t, )[5@(p,t, )]')= f d'q '
(

4m K~q) +Ksq)

x fd' 8 'q2'P —aq 2
—2t2 (D~ 92„+DS0 2y

2 2t 2 2

q.
K~q 2„+Ksq ~y

(43)

Ett Ks
A, —

2
5454,

4~k T
(44)

where the 54 54 term is that shown in Eq. (41) with lim-
its of integration from p„=(Dr+a) ' to p&

——1/a. In-
tegration over q2 in polar coordinates yields the term

2 +[(Aq' ) —&~(Aq„')

icos 8+Kssin 6I

with A different for the two cases. For case (i)

(45)

A=a+2r(D&cos 8+Dssin 8),

where there are two cases: (i) t
&

——0, t2 ——r and (ii) t
&

r, ——
t2 ——0. For both cases the integration over q, yields a
term

sk, r
&&aX's

Ks
arctan [F., (Aq ) —E,(Aq„)]. (46)

Incorporating the results necessary for a detailed un-
derstanding of data fits [from Eqs. (41), (43), (45), and
(46)] we find the final form of:-(p,r„r„):

I

solution. Realizing that only a small error is made, we
replace (Dttcos 8+Dssin 8) in A with (DttDs)'~, obtain-
ing a tractable expression for the integration. This sub-
stitution replaces the elliptical limits of integration at
minimum wave vector with circular limits of radius
(DttDs)'~ . This is justifiable when the integrand is near
l at the minimum wave vector, which is indeed true for
our experiment. The contribution to the 54(54) terms
for the integration over q2 are terms of the form

' 1/2

while for case (ii) A =a. For case (ii) the angular integra-
tion is analytic while for case (i) the 8 dependence in the
argument of the exponential integral prevents an analytic

:-(p,r„r„)~ Q„—Qi —A4(Ci —Cz —C3+C4),
where

(47)



38 DIRECT MEASUREMENT OF ORIENTATION CORRELATIONS. . . 1585

Q„=f e ~i 1+pa, —1
(1/D7+ a) P D'

4k T
34 ——

m.+KsKs

' 1/2
S

arctan
B

C, = A, [E,(q A, ) —E,(q„A,)],
C2 —Q, [Ei(q Ai) —E,(q„A,)+E,(q a) —E,(q„a)],
Cq ——A, [E,(q A„) E, (—q„A„)],
C4 ——Q„[E,(q A„)—E,(q„A„)+E, (q a ) —E,(q„a)],

A, = Joqpe

A„=a+2r„VDsDs .

Using Eq. (47) to obtain

S(p,r„)=:-(p,ri, r„)/:-(p, ri, rz )

we are able to fit the data by using values for Kz and j'B
extrapolated from Rosenblatt's data and obtain very
reasonable consistency in the determination of the
diff'usion constants. Note that in spite of its rather com-
plicated appearance, Eq. (47) is still a two-parameter fit

involving the appropriate splay or bend elastic and
di6'usion constants. As mentioned previously the best fit
to the data is sensitive to change in K of 50% and change
in D of 10%%uo. These uncertainties remain when Eq. (47) is
used to fit the data. The additional understanding we
have achieved in calculating Eq. (47) is accurate deter-
mination of Dz and DB. Compared with those values ob-
tained using the one constant approximation, the best-fit
diffusion constant for the splay case increases about 15%
for small values of

I p I

. For the Pend case at small
I p I

the best-fit Ds decreases about 50%. We believe that Eq.
(47) enables determination of Ds and Ds independently
for an arbitrary choice of p and w. We now present data
illustrating these points.

IV. EXPERIMENTAL RESULTS

A. Temporal variation

The original aim of this work was to study the dynam-
ics of a real two-dimensional orientation field in the
QLRO regime. The ubiquitous feature of a system exhib-
iting the Landau-Peierls instability in the QLRO regime
is a logarithmic divergence of order in both space and
time. The experiment probes directly the time correla-
tions of orientational order, and the QLRO regiine is
bounded by long correlation times. When the liquid crys-
tal is more than a few degrees below the SmC-Sm A phase
transition temperature (away from kii T =a.K) we should
see this logarithmic decay with ease. Figure 7 shows data
for the two cases probing predominantly splay fluctua-
tions and predominantly bend fluctuations spanning a
range of time scales.

0 140 0
DELAY TIME, g „(CHANNEL NUMBER)

FIGo 7o Plots of S(p, ~„)=:-(p,~» ~„)/:"(p, ~» ~z) with

N =136 are shown. The data (a), (b), and (c) are the splay case
g=m/2 at 74.8'C fit with Dz ——1.3)&10 cm /sec. The time

delays between first and last data points ~& are (a) 50 sec, (b) 6
sec, and (c) 1.5 sec. A fit of (a) to ln(n)/ln(N) is indistinguish-

able from the fit using Eq. (31) shown. The data (d), (e), and (f)

are the bend case 7=0 at 66.5 'C and are fit with

Dz ——1.1)&10 ' cm'/sec. The values of ~& are (d) 40 sec, (e) 10
sec, and (f) 2.5 sec. Including the 54(54)' terms has enabled

good fits to the anticorrelation observed especially in (e) and (f).

ln(n )

ln(N)
S(p,r„)= (48)

—ln P
4D&)

+ln
+N

where n ranges from 1 to N. Since A' is the same for all
data the norinalized correlation function S(p, r„)ap-
proaches an asymptotic logarithmic form which is scale
invariant (independent of ri). This scale-invariant diver-
gence is distinctive of the Landau-Peierls instability. For
the longest time scale splay data shown in Fig. 7(a),
u i r, /ri =0. 12 and ——fitting ln(n)/ln(N) to the data is in-

distinguishable from fitting with Eqs. (31) or (47). The
data shown in Fig. 7(a) are the result of accumulating the
correlation function for 4 h. The slowest time scales
probed are fluctuations of 50-sec duration. In the illus-
tration of splay data on shorter time scales shown in Figs.
7(b) and 7(c), the time scales are too short to observe sole-
ly logarithmic decay. To extract D& in this experiment
data must be obtained on short enough time scale to ob-
serve the exponential integral's polynomial departure
from logarithmic decay.

Figures 7(a) —7(c) show S(p, r„)for the splay case
Q'= m. /2) for a fixed probe separation (p =47.2 pm) and
for three delay time ranges, respectively, ~~=1140m„
~z ——140~„and vz ——35~„where ~, =p /4D& ——4. 3
)(10 sec is obtained as a fitting parameter. Here, since
we are considering particularly the long-time behavior of
S(p, r„),we ignore corrections due to finite probe size
and the 54(54) terms. The 5454 terms yielded ex-
ponential integrals with arguments of the form u =r, /r„.
For small u, E, (u)= —y —ln(u)+u —O(u ). For u

&0.1, to very good approximation,
2 2

—ln P +ln
4D~, 4D ~„
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For the bend case, rms fluctuations in 4 are larger
than for the splay case and these large-amplitude fluctua-
tions affect the data in a number of ways. Figures
7(d) —7(f) show S(p,r„)for the bend case (X=O) for
p=47. 2 pm and r& ——78m„19~„and4.8v„respectively,
with 7;=p /4D& ——5. 1X10 ' sec. As in Fig. 5(b), the
data in Fig. 7(Q exhibit the initial decrease in S(p,r„)de-
scribed as anticorrelation and understood as the contri-
bution of the 54(54) terms to the intensity fluctuations.
The fit to the data shown is one demonstration of the suc-
cess of this idea. The anticorrelation may be understood
realizing that orientation fluctuations of all wavelengths
between the probe size and the sample size contribute to
the cross-correlation function obtained. This continuum
of lengths probed means both large-amplitude slow fluc-
tuations and small-amplitude faster fluctuations are im-
portant. The slow fluctuations establish on average an in-
itial anticorrelation of the intensity at the two detectors
while the faster fluctuations are positively correlated
eventually overwhelming the initial anticorrelation. As
the time scale is increased [Figs. 7(e) and 7(d)] the relative
effect of the 54(54) contribution decreases. There is no
plot for the bend case of the scale-invariant logarithmic
limit as was shown in Fig. 7(a) for the splay case. In the
bend case to obtain ~~=1140~, as was obtained for the
splay case the delay time per channel would need to be 4
sec and ~z ——580 sec. To obtain comparable statistical
accuracy as was obtained in 4 h for the data shown in
Fig. 7(a), the correlator would have to accumulate for
two days and have a modified sample time clock (the lim-
it on the Langley Ford is r, =0.99 sec). The data shown
in Fig. 7(d) were obtained for r, =0.28 sec and were accu-
mulated for 12 h. Even in this case a long-wavelength
fluctuation caused a deviation from theoretical fit.

Though we have concentrated on the value of
~, =p /4D in this discussion of time dependence of the
cross correlation function, ~, is not the only parameter
characterizing S(p, ~„).That is, even for the same value
of v., data obtained probing predominantly splay fluctua-
tions will not superimpose with data probing predom-
inantly bend fluctuations. This distinction is preserved
fortnally in the integral Q„asdefined in Eq. (47). For the
splay case D/D'=7, while for the bend case D/D'= —,'.
This difference manifests itself for the 5454 terms as
shown in Fig. 6, reflecting the =7 amplitude of splay
fluctuations compared with the =20' amplitude of bend
fluctuations. The logarithmic decay in order characteris-
tic of a 2D Landau-Peierls system has been explicitly ob-
served in the splay case, and is implicitly observed in the
fits for all data, even with u &0. 1. The temporal behav-
ior of the data has been presented by comparing different
time scales for a single choice of

~ p ~

. Next we will ex-
amine the effect of changing the magnitude of p.

B. Spatial variation

Changing the separation of the probes in the image en-
ables study of the decay in order as a function of dis-
tance. Orientational order in this 2D system should de-
cay logarithmically and thermally driven fluctuations of
all length scales from the effective probe diameter to the

CHANNEL NUMBER
140

FIG. 8. Plots of S(p, ~„)for the splay case (7=m/2) at
76.2 C. From top to bottom the fibers center to center separa-
tion

~ p ~

is 13.7, 17.1, 20.8, 24.0, 27.8, 31.3, 48.6, 66.1, 83, 118,
and 153 pm. The time scale is determined by the delay per
channel. The delay for channel No. 1 r, increases as

~ p ~

' from
0.9 msec to 0.11 sec from top to bottom. All runs show the fit
for Dz ——1.4X10 cm /sec. The bottom run

~ p ~

=153 pm
also shows the fit for D& ——1.5&(10 cm /sec which does not fit
the data nearly so well as Dz ——1.4&(10 cm /sec.

size of the sample should exist. The logarithmic spatial
dependence and diffusive orientational dynamics lead to
the theoretical scaling of the characteristic time as
r, cc p . This scaling is modified when

~ p ~

is comparable
to the fiber-optic-probe diameter, though this effect is in-
cluded in Eq. (47). We expect, for a single temperature,
that data for arbitrary

~ p ~
may be fit using Eq. (47),

without variation of D or K. Figures 8 and 9 show data
for a sequence of probe separations for the splay and
bend cases, respectively. For both cases the effect of
finite probe size at small

~ p ~

is observed as a deviation
from the uniform scaling ~ ~p seen at larger separations.
All the data shown in Figs. 8 and 9 were obtained at
76.2'C. The probe separation ranges from 14 to 150 pm.
This range in separation means we are studying correlat-
ed fluctuations of about 10 to 10' molecules for the
five-layer film used.

Obtaining data on index of refraction fluctuations at
these very large spatial separations involves novel experi-
mental diSculties. The laser was used primarily to pro-
vide high-intensity illumination. Interference patterns
are ubiquitous due to the use of monochromatic light,
therefore the number of glass interfaces in the beam path
should be minimized. The illumination area was limited
by the optics used to an =50-pm-diam spot with a
Gaussian beam profile, limiting the probe separation to
=250 pm to obtain signals of similar average intensity at
the two probes. Obtaining data at large separations
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the data. We believe the noise in the large
~ p ~

data is
due to slow changes in +o. A mixing of bend into splay
when 7 =m/2 has negligible efFect on the resulting best-fit
diffusion constant because D&=7D&. In spite of these
diSculties reasonable values for the diffusion constants
are found and the temperature dependences of Dz and

D are obtained.

C. DifFusion constants

44

CHANNEL NUMBER
140

FIG. 9. Plots of S(p,~„)for the bend case Q'=0) at 76.2'C.
~ p ~

and r, vary exactly as for Fig. 6 from top to bottom. The
fits are all using Eq. (49) with Ds ——2.3 X 10 ' cm /sec. Note, in
the bend case ~, =p'/4D is about six times v; in the splay case;
data for equivalent

~ p ~

and r, must be accumulated for six
times longer in the bend case than the splay case to obtain the
same signal-to-noise ratio. The data for

~ p ~

=153 pm shown
here were accumulated for 12 h and have a poor signal-to-noise
ratio. Also, the last channel in the

~ p ~

=153 y,m data is

Tl X 137= 15 sec delayed from the first channel.

necessitates long data acquisition times due to the v ~ p
scaling. For p=50 pm, a good signal-to-noise ratio is at-
tained for each data set in about an hour. Increasing p to
500 pm would necessitate collecting data for approxi-
mately four days to obtain similar statistical resolution.

The data are fit with Eq. (47) to obtain the diffusion
and elastic constants. As shown in Eq. (48), when ri is
chosen large enough all sensitivity to the physical param-
eters of the system is lost, since ln(n)/In(N) fits the data.
When not in the limit of S(p,r„)~ln(n), that is, for
r/r, & 10, the shape of the curve defined by the data is
sensitive to the value of D chosen for the fit to better than
10%. In particular, in fitting the nonmonotonic behav-
ior, the choice of D affects primarily the value of ~;„,the
time for which BS(p,r„)/Br=0. Decreasing D causesr;„to increase The choic. e of A4 4k&T/m+K+Ks-—
affects primarily the depth of the minimum, therefore
minimizing ~, maximizes the sensitivity to the actual
value of QKsKs. Since orientation fiuctuations of long
enough wavelength to change the average orientation
probed do exist 7 may change during a run. This is par-
ticularly disturbing in the bend case since even if g =0 is
chosen at the beginning of a run, 7 may be nonzero dur-
ing some parts of the run, allowing a mixing of splay con-
tributions to the bend data. This may increase the ap-
parent best-fit diffusion constant. Usually when splay
mixing occurs it is obvious as a discontinuous decay in

One characteristic which makes liquid crystals interest-
ing systems to study is the richness of the phase diagrams
associated with them. In the five-layer racemic
DOBAMBC FSLCF the smectic- A phase is above 115 'C,
the smectic-C phase between 66 and 115'C, and the
smectic-I phase below 66'C. The SmC-Sm A phase tran-
sition is quite interesting to study, being weakly first or-
der. There is a continuous decrease in the tilt angle Hr as
the transition is approached from below. Unfortunately,
this decrease is accompanied by a continuous reduction
in the contrast observed in the depolarized image, mak-
ing meaningful study using depolarized microscopy im-
possible for T—T~„&2 K. On the other hand, we easily
and clearly observe the SmC-SmI phase transition. Ob-
serving the SmC phase by eye we see large-amplitude
orientation fluctuations appearing as a random flickering
of bright and dark regions. These regions are geometri-
cally anisotropic and seem to have characteristic dimen-
sions of 10'50 pm with the extended region perpendicu-
lar to C(x,y). We interpret this as the size of the fluctua-
tions which have a characteristic lifetime equal to the in-
tegration time of the human imaging system. As the tem-
perature of the FSLCF is lowered through the SmC-SmI
transition the characteristic dimension of the fluctuating
regions decreases by about an order of magnitude. Con-
tinuing to decrease the temperature seems to produce lit-
tle change in the fluctuations and at about 30'C the film
breaks on solidification. The cross correlation data show
characteristic changes as a function of temperature which
are not obvious from the form of Eq. (47). As tempera-
ture is increased, keeping fixed probe separation and sam-
ple time, the amplitude of the anticorrelation in the bend
case decreases continuously and for T & 90'C the data be-
come monotonic. As T is raised above 100'C the signal
becomes too small relative to the noise to fit the data. As
T is lowered the amplitude of anticorrelation in the bend
case increases steadily in the SmC phase. At 66'C, the
Smc-SmI transition, the amplitude of anticorrelation and

~;„increase very rapidly and continue to increase as T is
lowered in the SmI phase. Splay fluctuations exhibit less
dramatic changes across the transition. There is essen-
tially no qualitative change as a function of T in the SmC
phase, while in the SmI phase the noise in the correlation
data increases rapidly. An understanding of these effects
is obtained through analysis of the diffusion constants ob-
tained from best fit.

The existence of an anisotropy in the diffusion con-
stants determined from the data has been the subject of
considerable discussion to this point. It has been experi-
mentally established that this anisotroyy is a function of
7 reflecting the relative orientation of C and p. In partic-
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ular, the smallest values of D are obtained when +=0.
The largest values of D are obtained when X=m. /2. The
existence of two modes of relaxation for orientation fluc-
tuations, splay and bend, has also been discussed. The
conclusion drawn based on these observations is that
there are characteristic diffusion constants for splay and
bend of the director. These have been designated D& and

Dz, and their values are experimentally determined from
fits to Eq. (47). If they are separable as was assumed in
the anisotropic correction to the 2D XY model then
Ds Ks/——r) and Ds=Ks!i). Estimates of Ds and Da
may be extrapolated from Rosenblatt's measurements of
E& and I( z, and g. This consistency with earlier experi-
mental results, and agreement with theoretical predic-
tions, suggests conclusions might be drawn based on the
temperature dependence of the experimentally deter-
mined diffusion constants.

We have demonstrated in Figs. 7—9 that good fits to
data in the SmC phase are possible and we believe that
the values of the diffusion constants obtained by fitting
Eq. (47) to the data are the actual splay and bend orienta-
tional diffusion constants. Attempting to use the same
theory to fit data in the SmI phase becomes less and less
satisfying with decreasing temperature. Smectic-I data
near the SmC-SmI transition temperature are shown in
Fig. 10. We observed visually that Quctuations of a par-
ticular wave vector are much slower in the SmI phase
than in the SmC phase. These slow Auctuations have
been quantified by CCIFS, but the signal-to-noise ratio
becomes so small that the functional form is unresolved
and the decay time becomes too slow to observe with the
correlator. As the temperature decreases the decay in the
splay case become almost linear. In the bend case obtain-
ing reproducible values of v;„and the anticorrelation
amplitude becomes impossible. A "best" fit to any par-
ticular data set is possible though, and values for D& and
Dz are extracted.

The best fit values of diffusion constants for splay and
bend vs temperature are shown in Fig. 11. The data were

t
fci
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0 1400 140
CHANNEL NUMBER CHANNEL NUMBER

FIG. 10. Splay data (on the left) and bend data are shown for
the smectic-I phase of DOBAMBC. For all runs, p=47. 2 pm.
From top run to bottom the splay data are obtained at
( T, ~& ) =66.0'C, 44 ms; 64.4'C, 70 ms; and 61.8 'C, 140 ms. The
fits shown for these runs are with Dz ——1.1)& 10, 7)& 10,and
3.5)& 10 cm /sec, respectively. The bend data shown are for
{T,~&) =64.4 C, 72 ms and 57.1'C, 140 ms. The best-fit diffusion
constants are D& ——1.4)(10 and 4.5 X 10 cm /sec.
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FIG. 11. The temperature dependence of D =K/g is shown
for the splay and bend cases. The abrupt decrease in both D&
and D& at 66'C is associated with the quenching of orientation
fluctuations at the Smc-SrnI phase transition. Each datum is
the result of a best fit for a different experimental run. All data
were obtained from the same five-layer film.

V. CONCLUSIONS

Freely suspended liquid-crystal films are unique and
fundamentally very interesting systems to study. They
exhibit the highest free surface-to-volume ratio attainable
in a stable system. This encourages study of surface
properties and suggests the possibility of observing 2D
effects. Also, as for all liquid-crystalline systems, the
study of phase transition behavior in the films is interest-

obtained over the course of two months from a single
five-layer DOBAMBC film. Both diffusion constants de-
crease by a factor of 2 as temperature is lowered from 100
to 66'C while remaining in the SmC phase. In the tem-
perature interval he explored, Rosenblatt's data ' pre-
dicts temperature-independent diffusion constants. He
found that Kz, I( z, gz, and gz all increased linearly with
decreasing temperature in the range 115 to 90'C for a
three-layer DOBAMBC film. Since D=K/i), we would
expect that if E and g remain linear functions of T down
to 66'C the corresponding diffusion constants would be
independent of T. There is an abrupt decrease, by an or-
der of magnitude for both Dz and D~, at 66'C, the SmC-
SmI transition temperature. The Sml phase is dis-
tinguished from the SmC by an increase in local orienta-
tional order. In both the SmC and the SmI translational
order is short range. We would expect this enhanced
orientational order in the SmI to be accompanied by an
increase in both the elastic constants and viscosities. Our
observation of a decrease in the diffusion constants indi-
cates the orientational viscosity is increasing faster than
the increase in orientational elastic constants. It would
be quite interesting to study the behavior of the elastic
constants and viscosities in more detail across the SmC-
SmI transition.
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ing. We have studied the fluctuation dynamics of the
orientation field defined by C(x,y) in a thin tilted smectic
FSLCF. Orientational order is observed to decay loga-
rithmically as expected in the quasi-long-range-order re-

gime of a real 2D system. In addition, we have observed
the change in order across the SmC-SmI phase transition
in the film.

This study was made using cross-correlation intensity-
fluctuation spectroscopy to study the decay in order in

real space and time. It is easy to observe fluctuations of
very long length scale in the depolarized real image of the
tilted smectic film. The nature of these thermally-driven
long-wavelength fluctuations was quantified by cross
correlating in real time the intensities at spatially separat-
ed probes in the depolarized image of the film. The data
obtained verified the two dimensionality of the system by
exhibiting directly the logarithmic decay in order at long
times and over large distances. The spatial scale of fluc-
tuations studied by this method is longer than can be
studied in light-scattering experiments.

In studying these very long-wavelength fluctuations,
effects not normally important in scattering experiments
affect the data. The elastic constants associated with

splay, bend, and twist of n(r) in a 3D nematic are of
about the same magnitude, and fluctuations about (n(r) )
are of small amplitude and limited extent. In the FSLCF
twist is eliminated, at least for lengths longer than the
film thickness, and the bend elastic constant is almost an
order of magnitude smaller than the splay constant. The
amplitude of long-wavelength thermally-driven bend fluc-
tuations is so large that the intensity of depolarized light

reflected from the film cannot be assumed to fluctuate
only linearly with orientation fluctuations. This is dis-
tinct from the typical light-scattering experiment in
which the scattered intensity is assumed to fluctuate
linearly with the fluctuations in the index of refraction of
the probed system. The nonlinear contribution leads to
many complications in the analysis. In order to account
for the anisotropy in elastic constants and the nonlinear
contribution to the cross-correlation data some detailed
analysis was required. We showed how this nonlinear
contribution to the fluctuating intensity arises in the case
of large enough amplitude orientation fluctuations. We
also included the anisotropy in elastic energies to calcu-
late the dynamics observed, so as to understand the
values of the diffusion constants extracted from fitting the
data. The consistency with which we were able to obtain
splay and bend diffusion constants allowed a temperature
profile of Dz and Dz in the SmC, and to a limited extent
in the SmI, phase to be obtained. We found that the
splay and bend orientational diffusion constants decrease
with decreasing temperature in the SmC phase. As the
SmC-SmI transition is crossed from above both Dz and

Dz decrease by an order of magnitude accompanying the
optically observed quenching of fluctuations.
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