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Director orientation at the nematic-phase —isotropic-phase interface
for the model of hard spherocylinders
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A fluid of hard spherocylinders is studied in the Onsager model adapted to a nonuniform system.
The interfacial properties at nematic-phase —isotropic-phase coexistence are considered. It is found
that the angle between the director and the normal to the interface is approximately 60' and does
not depend on the length-to-width ratio L/D of the spherocylinder. The nematic-phase —isotropic-
phase surface tension, however, tends linearly to zero as D/L ~0. It is also argued that the aniso-

tropic hard-core repulsion favors the perpendicular alignment at the nematic free surface. The re-
sults concerning the tilt angle are in good agreement with experimental studies for nCB
(n =5, 6, 7, 8)[(4-n-alkyl-4'-cyano)biphenyl].

I. INTRODUCTION

It was shown by Onsager' in 1949 that a system of a
hard elongated particles can undergo a first-order phase
transition from the disordered (isotropic) phase to the
orientationally ordered (nematic) phase. The density
change is responsible for the transition, as for hard in-
teractions temperature is an irrelevant variable.

At the other extreme, there exists the Maier-Saupe
theory which entirely neglects the hard-core anisotropic
repulsion but instead takes into account long-range at-
tractive anisotropic interactions in a mean-field fashion.
Modern theories of liquid crystals ' try to deal with both
anisotropic hard-core repulsions and long-range attrac-
tions. Although the attractive forces acting between
liquid-crystal molecules should not be underestimated
(they provide the temperature dependence of physical
quantities), recent computer simulations have con-
vinced us that anisotropic hard-core interactions alone
explain the essential physics of liquid crystals. Not only
has the formation of the nematic phase been observed in
those simulations but also the smectic and columnar
phases have been observed.

In the present paper we study the problem of the direc-
tor orientation at the nematic-phase-isotropic-phase in-
terface using the Onsager model of a nematogen adapted
to a nonuniform system. When the nematic and isotropic
phases coexist, the interface breaks both translational and
orientational symmetry. Though the bulk free energy of
the nematic phase is independent of the director n, the
surface tension does depend on n. The system will adopt
the orientation for which the surface tension is mini-
mized.

The problem of the preferred orientation near liquid-
crystal surfaces has received much attention during the
last few years. We quickly review the main results.

Telo da Gama has assumed that outside the effective
spherical hard core of radius R the liquid-crystal parti-
cles interact via long-range attractive potential of the
Maier-Saupe type:

—A(R Ir) B(R Ir—) P (c» c» )
A A

V„,(r, r», , c»2) = for r gR
0 for r&R,

where A and 8 are constants and u, and u2 are the orien-
tations of the interacting molecules. This model exhibits
no preferred orientation at the nematic-phase-isotropic-
phase interface, due to the lack of coupling between the
orientational and translational degrees of freedom in the
potential. This result is contradicted by experiments
which show that n is obliquely tilted at the nematic-
phase-isotropic-phase interface. ' " The tilt angle, mea-
sured from the normal to the interface, has been found
for different substances (nCB, n=5, 6, 78) to lie in the
range of 50' —70'.

The problem in this theory has been remedied' ' by
the inclusion of quadrupolar interactions and anisotropic
repulsions. This leads to an obliquely tilted director, as
was shown by Sullivan. ' However, the Sullivan calcula-
tions are based on an expansion in spherical harmonics
which converges slowly for hard-core interactions, so
neglecting terms higher than P4 in the surface tension
seems unjustified. Kimura and Nakano' have found that
hard-core interactions should favor parallel alignment of
the molecules relative to the interface. Their result is not
very convincing, however, because of geometrical
oversimplifications concerning excluded-volume effects.
On the other hand, those authors do take into account
the anisotropic attractive potential which can produce a
tilted director at the interface.

In this paper we provide evidence that a system of hard
spherocylinders exhibits an obliquely tilted director at the
nematic-phase —isotropic-phase interface, with a tilt angle
of 8, =—60'. This angle turns out to be insensitive, within
the numerical accuracy of our computations, to changes
in the length-to-width ratio of the spherocylinder in the
range L/D =5—100.

The paper is organized as follows. In Sec. II we specify
the model and the applied approximations. In Sec. III we
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present the main results of calculations for the nematic-
phase —isotropic-phase interface and also make some
comments concerning the role of hard-core interactions
in the case of the free nematic surface. And finally, Sec.
IV is devoted to the discussion. All details of analytical
calculations have been relegated to the Appendix.

II. THE MODEL

To study the nematic-phase —isotropic-phase interface
we employ the grand potential 0 in a form applicable to
inhomogeneous systems' ' and use a lowest-order virial
expansion of its nonideal part. Then

Q[p(r, co) j /ks T=Jdr1dco1p(r1, co1)[in[A p(r1, co1)]—I )
——,

' f dr1dco1dr2dco2f 2(r12, co1,co2)p(r1, co1)p(r2, co2)

—(p/k21T} Jdr, dco,p(r„co, }, (2)

p, /41r for z&0
p(r, co)=p(z, co)= '

f( ) f 0 (3)

where pz and pz are the densities of the isotropic and
nematic phases, respectively. f(co) stands for the orienta-
tional distribution function of the bulk nematic phase at
the coexistence conditions. It is understood that f(co) de-
pends on n, which is uniform throughout the nematic
phase. Substitution of (3) into (2) and subtraction of the
bulk terms results in the following expression for the sur-
face tension, which is equal to the surface grand potential
per unit area

y(n) =y1(n)+ y2(n)+ y3

where

y1(n)/k&T=(pzpz/4m) Jdco1dco2V1(co1, co2)f(co1), (5)

y 2(n ) /kg T= ——
2' p~ Jd co1d co2 V1 ( co1, co2 )f ( co1)f (co 2 ), (6)

3/kg T= 2(pc /41r) J—dco1dco2 V1 ( co1,co2 )

QO

Vl(~1 ~2) z12dz12 d 12f2(r12 ~1 ~2)
0

(7)

(8)

and r, 2 is the projection of r&2
——rz —r, onto the plane

parallel to the interface. Equations (4)—(8) appear in

where p(r, co) stands for the one-particle distribution
function, r, ~ denoting the positional and orientational
coordinates; p is the chemical potential and A comes
from the kinetic energy of the system. We model the
nematogen by a system of hard spherocylinders for which
the Mayer function f2 equals —1 if two spherocylinders
overlap and 0 otherwise. It was shown by Onsager that
the truncation of the virial expansion (2) is justified at low
density and when the higher virial coefficients are small,
as is the case for large L/D. To find the equilibrium
p(r, co) we should minimize 0 and then solve the resulting
integral equation with the proper boundary conditions.
This would be a rather difficult numerical problem; thus
we seek an alternative approach. We follow Sullivan'
and assume the interface to be a sharp, flat surface locat-
ed at z =0 and dividing the uniform isotropic (z &0) and
nematic (z&0) phases. In this approximation p(r, co)

reads as follows:

Sullivan's paper' but we outline the derivation in the
Appendix. The dependence of y, and y2 on n follows
from the fact that V, (co1,co2) does not have full rotational
symmetry and y3 is independent of n as it contains only
the isotropic-phase distribution function I/42r. Having y
as a function of n we can find the tilt angle 8, at the
nematic-phase-isotropic-phase interface by a minimiza-
tion procedure. We interpret the contributions to y as
follows. y2 and y3 are due to the increase of the transla-
tional entropy of rnolecules at the surface if only a half
space is filled with either the nematic or the isotropic
phase and the other half space is empty. A molecule at
the surface enjoys greater translational freedom than the
molecules in the bulk because of the lack of near neigh-
bors on the other side of the surface. At least qualitative-
ly, these terms can be considered as the contribution of
hard-core interactions to the nematic-phase —vapor and
the isotropic-phase-vapor surface tension, respectively.
The negative contributions of yz and y3 to y are compen-
sated by the positive term y&. The latter comes from the
direct interaction between molecules of the isotropic and
nematic phases. To calculate V, (co„co2) one has to per-
form the integration of z&2 over a half of the solid of ex-
cluded volume, defined by —f2(r, 2,co„co2), for fixed co,
and co2 (see Fig. 1). The orientation of the solid with
respect to the interface is determined by co& and co2. The
calculation of V& for the whole solid would be a rather
tedious task; thus we make some approximation to per-
form the integral. One can easily see from Fig. 1 that for
large L/D the contribution of the cylindrical and spheri-
cal parts of the solid of excluded volume to V& is negligi-
ble unless the angle 8,2 between the long axes of two
spherocylinders is very small. If 0,2 is close to zero these
parts give the main contribution to V, . These cases are
rather rare, however, unless the orientational distribution
function f(co) is sharply peaked around n. Thus in our
calculations we take into account only the inside part of
the solid of excluded volume which is a rectangular prism
with a rhombus in its base [see the unshadowed area in
Fig. 1(a)]. It is worth noting that making this approxima-
tion, we do not lose any symmetries of the full solid of ex-
cluded volume. Moreover, it is consistent with the On-
sager low-density approximation for the free energy
which is justified in the large L /D limit. The calculation
of V& is presented in the Appendix.
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FIG. 1. Perpendicular projection of the solid of excluded
volume onto the plane parallel to its base. 8» is the angle be-
tween the long axes of two spherocylinders of length L and
width D. The hatched area represents the projection of spheri-
cal and cylindircal parts. (b) The rectangular prism with the
rhombus in its base, obtained from the solid of excluded volume
after rejection of the spherical and cylindrical parts.
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FIG. 2. Nematic-phase —isotropic-phase surface tension y (in
units of kz T/D ) as a function of the angle 0 between the direc-
tor and the normal to the interface for L/D=5, 8,10,20. y is
minimal for 8=0, =60' for all L/D.

III. RESULTS

The integrals (5)—(7) over the angular variables co& and

~z have been calculated numerically by the Monte Carlo
method. The explicit form of V, (co„co&) is given in the
Appendix and the orientational distribution function

f(c0) and the densities pi, pN at nematic-
p!iase-isotropic-phase coexistence have been taken from
Lasher's paper. ' The function f(co), obtained by Lasher,
is par ameterized by the dimensionless parameter
A, =2p~DL . At nematic-phase —isotropic-phase coex-
istence, 1,=10.6 and pz/pl ——1.26. f(co) is given in the
form of an expansion in Legendre polynomials P&,

1=2,4, . . . , , 14

f(co)= 1+1

4m. 1=2,4, . . . , 14
aIPI(n cu) (9)

where co is the unit vector along the long axis of a sphero-
cylinder. The calculations have been done for
I /D=5, 8,10,15,20,25, 100. Figure 2 shows the depen-
dence of the nernatic-phase —isotropic-phase surface ten-
sion y on the angle 0 between n and the normal to the in-
terface for L/D=5, 8,10,20. The equilibrium value of y
corresponds to the minimum which occurs at
0=0, =60+4' for all values of L/D, including L/D=15,

25 and 100 not shown in Fig. 2. The minimum is rather
fiat, especially for large values of L/D, and this is the
reason of the large uncertainty in the location of the tilt
angle 0, . In Fig. 3 we show the equilibrium value of the
surface tension y ( 8, ) as a function of D /L. For
D /L & 0. 1 the dependence is practically linear and
y(8, )~0 as D/L ~0. This is not surprising as the den-
sity measured in units of the volume of a spherocylinder,
p'=pLD = —,'XD/L, tends to zero with D/L ~0 as A, is
constant at the coexistence. The two contributions to the
surface tension, yl and yz, are presented in Figs. 4 and 5,
respectively, as functions of 0 for L/D =5,8, 10,20. The
positive contribution y I, describing the direct interaction
between molecules belonging to the different phases, has
a minimum at 8=90' for all values of L /D. On the con-
trary, yz is minimal for 0=0', also for all L/D. This be-
havior can be explained as follows. When one half space
is empty and the other is filled with the nematic phase
(see yz), then the more freedom of translation the mole-
cules at the surface have, the more they stick out from
the surface. Thus on entropic grounds yz prefers the per-
pendicular (8=0 ) alignment. On the other hand, when
the other half space is filled with the isotropic phase,
greater freedom of translation is admitted to those mole-
cules of the nematic phase that keep close to the surface
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FIG. 3. Equilibrium nematic-phase-isotropic-phase surface
tension y (0=60'j as a function of the width-to-length ratio
D/L. For D/L (0.1 the dependence is linear and y~0 as
D/L ~0.

-0.3

and do not stick out. This means that y, is minimal for
the parallel alignment (0=90'). These opposite tenden-
cies lead to the obliquely tilted director at the
nematic —phase-isotropic-phase interface.

As we have already mentioned, y2 can be considered as
the main contribution of hard-core interactions to the

FIG. 5. y, [see Eq. (6)] as a function of the angle 8 for
L /D =5,8,10,20.
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nematic-phase —vapor surface tension ywv because

pv((pN [see Eqs. (5)—(7) with pl replaced by p~ (Ref.
12)]. Of course, the free nematic-phase surface can exist
only if the attractive forces are taken into account; never-
theless it would be useful to have some hints concerning
the hard-core contribution. First of all we expect that
the hard-core interactions will favor the perpendicular
alignment (8=0') at the free surface. Indeed, this behav-
ior has been observed for 8CB [(4-n-octy(-4'-
cyano)biphenyl], 5CB [(4-n-pentyl-4'-cyano) biphenyl]
(Ref. 18), and also for MBBA [N-(4-n-
methoxy)benzylidene-4'-(n-butyl) airiline] and EBBA [N
(4-n-ethoxy)benzylidene-4'-(n-butyl) airiline] at tempera-
tures close to the nernatic-phase —isotropic-phase transi-
tion temperature. ' ' Secondly, we can estimate from
our model the jump in the liquid-vapor surface tension,
AyLv ——yNv —y&v, at the nematic-phase —isotropic-phase
transition. For the hard-core contribution to hyLv we
have AyLv =y2 y3, and we find that hyLv (0 for the
perpendicular alignment (0=0'), which is in agreement
with the experiment for 8CB, 5CB, and MBBA. ' Final-
ly we note that Kimura and Nakano ' also concluded
that hard-core interactions should favor the perpendicu-
lar alignment at the nematic free surface.

IV. DISCUSSION
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600 900

FIG. 4. y, [see Eq. (5)] as a function of the angle 8 for
L /D =5,8, 10,20.

In this paper we have studied the nematic-
phase —isotropic-phase interface using the Onsager model
of the nematogen. We conclude that hard-core interac-
tions alone are capable of explaining the tilt of the direc-
tor at the interface. The tilt angle obtained, 0, =60, is in
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a very good agreement with the experimental results for
many liquid crystals. In our model, 8, does not depend
on L /D but this may be the result of our approximations.
The neglect of the round parts in the solid of excluded
volume is justified in the limit of large L/D. Therefore,
for smaller L/D, the inclusion of those parts could
change 0, but this remains to be investigated. Our calcu-
lations were also based on the sharp-interface approxima-
tion which disagrees with both experiment' and theoreti-
cal studies. It has been found that the interface is far
from being sharp; its thickness varies for different sub-
stances from 400 to 750 A, while the typical length of a
liquid-crystal molecule is around 20 A. The diffusive na-
ture of the interface is due to the fact that the nematic-
phase —isotropic-phase transition is weakly first order. It
would be interesting to investigate the effect of the inter-
facial thickness on the average orientation of the director
in the interface.

We would like also to mention some other factors that
have not been studied in this paper but could affect the
tilt angle at the nematic-phase —isotropic-phase interface
and at the nematic free surface. These are as follows: an-
isotropic attractive forces, ' ' ' ' polar ordering,

t

biaxiality, and Aexible chains. Finally we note that be-
cause hard-core interactions favor the perpendicular
alignment at the nematic free surface, it may result in the
formation of smectic order near the surface, which has
been recently observed in experiment. ' '
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APPENDIX

1. Derivation of the expression for y {I )

Because of the sharp-interface approximation, only the
nonideal part of the grand potential, 0, contributes to the
surface tension. Thus after subtracting the bulk terms we
find from (2) that

(Al)

where

0 + 00

y/kz1T= —,
' dz1 dzzdco1dcozV(

~ z12 ~, co»coz)p(z»co1)p(zz, coz) —f dco1dcozVo(co1, coz)p( —oc,co1)p( —~,coz)

+oo +oo+ —,
' dz, dzzdco, dcozV(

l Z12 ~col~coz)p(Z1~co1)p(zz&coz)
0 —00

den)dcoqVO co, , ~q p + ac, cu) p + ~, cuq

~1 coz)= —f«lzfz(rlz ~1 ~2)

VO(~1 ~2) f dr12f2(r12 ~1 ~2)

Using (3) we transform (Al) as follows:

0
'

0y/k~T= ,' f dco, dcoz —(pl/4n) dz, dZ2V(
l Z12 l

col~coz) Vo(co1~coz)

+0o +oo—
p1v dz1 dzz V(

~
z12 l, col, coz) —Vo(co»coz) f(co1)f(coz)

0 0

0 + 0O

+2p~(pi/4') dz1 dzz V(
~
z12 ~, co1,coz)f(co1)—00 0

(A2)

(A3)

(A4)

All integrals over z1 and zz appearing in (A4) transform
to

V, (co, , coz)= fdr, z(k r1z)8(k r, z)X(r, z, co, ,coz), (A6)

f + 00 + 00

dz1 dz1z V(
~
z1z ~, u1, mz)

0 2 ]

dz&&z&& V z&& ~co
0

= V, (co, , coz), (A5)

and we recover Eqs. (4)—(7).

2. Derivation of the expression for V& {co&, co&)

To calculate the function V, (co„coz) in the approxima-
tion neglecting the cylindrical and spherical parts in the
solid of excluded volume, we rewrite Eq. (8) as follows: r, z

——ra+sb+ tc, (A7)

where X(r,z,co, , coz) is the characteristic function of the
rhomboidal prism (X=1 inside and X=O outside the
prism), 8(k.r, z) stands here for the Heaviside step func-
tion, and k denotes the vector normal to the interface
cutting the prism through its center at r&z ——0. The prism
can be defined by three vectors: a=Leo, /2, b=Lcoz/2,
and c=Dco1Xcozl

~
co1Xcoz ~, where co1,coz are the unit

vectors along the symmetry axes of two spherocylinders.
Each vector r, z belonging to the prism has the following
form:
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with —1 (r, s, t (+ 1. It is convenient to change the in-

tegration variable r12 to r, s, t, which gives

V, (co, , co )=—,
' V f ds f dt f dr 6(rA+sB+tc)

—1 —1 —1

X(rA+sB+rc),

(0 and A +sB+tC & A —B—C & 0; hence

Vi ——Vo(3A +8 +C )/12A .

Case 2

(A10)

(A8}

where Vo ——2L Dsin0, 2 is the volume of the prism and
A =a k, 8 =b k, and C=c k. Without loss of generali-
ty we can assume that A & B & C & 0. Then we find that

V&
——( Vo/8A ) f ds f dt f dz z6(z), (A9)

—1 —1 —A+sB+tC

where z=rA+sB+tC. Two separate cases have to be
considered: 1, A &B+Cand 2, A (B+C.

Case 1

When A &B+Cwe calculate the integral over z as fol-
lows:

f dz z6(z) = —,'( A +sB+tc ) 6( A +sB+ tc )—A+sB+tC

—
—,'( —A +sB+tc )'

X6( —A+sB+tc) . (All)

In this case the integration over z in (A9) is from z =0
to z= A+sB+tC because —A+sB+tC (—A+B+C

I

To integrate the first term in (Al 1) over s and t we substi-
tute y = A +sB + tc, ds =dy /8, hence

(A12)

,' f' —drf' ds(A+sB+tC)'6(A+sB+rC)= ' f' dr f"" dyy 6(y)—1 —1 2B —1 3 —B+tC

dt( A+8+ re )' f dt( A—8+re )'6—( A 8+ tC )—
6B —1

6BC . ~+B—c ~ —B —c

[( A +8+C)' —( A +8 —C)' —( A 8+C—)']
24BC

because A —B —C &0. One easily finds that the second
term in (Al 1) gives

'
s —A+sB+tC 'e —A+sB+tC—1 —1

= —( —A+8+C}'/248C . (A13)

Substitution of (A12) and (A13) into (A9) leads to the ex-
pression for V, . For arbitrary signs and relations be-
tween A, B,C we can summarize the two cases as follows:

if
I

A I, I

8 I, I
C

I
do not satisfy the triangle inequality

and

Vi =—Vo[(! A
I + I

8
I
+

I
C

I
)

—(I A I+ IB
I

—
I
C

I

}'
—(

I

A
I

—
I
8

I +
I
c

I

)'

—( —I" I+ IB I+ ICI)'l/I A
I IB

I
Ic

I2[max(
I

A I, IB I, I
C

I )] +A +8 +C j
max(

I
A I, I

8 I, I
C

I
)

(A14) if
I

A I, I
8 I, I

C
I

satisfy the triangle inequality.

(A15)
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