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We use the set of all periodic points of Henon-type mappings to develop a theory of the topologi-
cal and metric properties of their attractors. The topology of a Henon-type attractor is convenient-

ly represented by a two-dimensional symbol plane, with the allowed and disallowed orbits cleanly
separated by the "pruning front. " The pruning front is a function discontinuous on every binary ra-
tional number, but for maps with finite dissipation

~

b
~

& 1, it is well approximated by a few steps,
or, in the symbolic dynamics language, by a finite grammar. Thus equipped with the complete list

of allowed periodic points, we reconstruct (to resolution of order b") the physical attractor by piec-
ing together the linearized neighborhoods of all periodic points of cycle length n, . We use this repre-
sentation to compute the singularity spectrum f(a). The description in terms of periodic points
works very well in the "hyperbolic phase, "for a larger than some a„where a, is the value of a cor-
responding to the (conjectured) phase transition.

I. INTRODUCTION

The aim of this paper is a quantitative understanding
of strange attractors of Henon type. The Henon map-
ping' is given by

x =y+a —x

y'=bx .

Henon has conjectured that for a =1.4 and b =0.3 the
limit cycle of this mapping is a strange attractor. This at-
tractor' is the prototypical strange attractor, and
Henon's enlargements of it are some of the most fre-
quently reproduced figures in reviews of topics in the field
of nonlinear dynamics. ' Understanding of the Henon-
type strange attractors is a central problem of nonlinear
dynamics because such attractors are believed to be gen-
eric for low-dimensional dynamical systems observed ei-
ther experimentally or modeled by equations such as the
Lorenz equations.

To the naked eye, the Henon attractor looks locally
self-similar. It is our goal here to construct a scheme
which encodes this self-similarity, and yields both a quali-
tative and a quantitative description of such strange sets.
By the qualitative understanding of the attractor we
mean the complete enumeration of all possible motions;
quantitative understanding requires also inclusion of the
length scales associated with a particular physical realiza-
tion.

Our strategy is the following: we first construct a two-
dimensional representation of the symbolic dynamics of
the map. This is a "road map" in which the various

sheets of the stable and unstable manifolds are represent-
ed by straight sections, and the topology is preserved:
the nearby periodic points in the symbol plane represent
nearby periodic points in the physical space. This repre-
sentation enables us to separate the allowed and the for-
bidden orbits by means of a "pruning front, " a boundary
between the two kinds of orbits. The pruning front is a
function, which calls for infinite number of parameters
for its specification. However, we shall show that this
function is discontinuous on a countable number of
points (binary rational numbers) and that the size of the
discontinuity decreases exponentially for maps with finite
dissipation. This will allow us to specify to high pre-
cision the allowed orbits with a finite grammar.

The above results specify the symbolic dynamics of any
map of Henon type. The particular physical attractor is
then reconstructed by piecing together the linear approx-
imations to the small neighborhoods of periodic points.
As we know all allowed orbits and their eigenvalues, we
are able to systematically and uniformly cover the attrac-
tor, and extract the corresponding thermodynamic func-
tions to unprecedented accuracy.

There are three main ingredients that make the sys-
tematic description feasible. The first two are quite gen-
eral: a strange attractor is densely covered by periodic
points, and these points are hierarchically ordered ac-
cording to the length of the corresponding cycles. The
third ingredient is particular to the Henon-type map-
pings: the periodic points lie on binary trees.

Intuitively it is clear that a strange attractor should be
dense with periodic points: by its definition, ' a strange
attractor is ergodic, strongly mixing and connected, so
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FIG. 1. Successive iterations of the plane by the Henon map
(x,y)~(y+a —x', bx) with a =1.4, b =0.3. The circles are the
periodic points of increasing order.

the orbit of any typical point P passes arbitrarily close to
P. But if the trajectory returns close to the starting point
after n iterations, generally one can gently readjust the
starting point in such a way that the orbit exactly returns
to it after n iterations. Conversely, if we know the loca-
tion and the stability of a periodic point, we also know
the structure of the strange attractor in its neighborhood.

The next important insight is the realization that the
cycle points naturally separate into a hierarchy whose
nth level consists of all the cycles of length n. Consider
how a strange attractor unfolds itself if we iterate its
basin of attraction (cf. Fig. 1). If the process is stopped
after one iteration, we have the coarsest outline of the at-
tractor. The thickness will be an indication of the con-
traction rate of the mapping, and if it has a fixed point,
this thickness will roughly be the contracting eigenvalue
at that fixed point. After two iterations, the attractor
contracts further but also folds upon itself. The thickness
of the strips will be of the order of the square of the fixed
point eigenvalue and of the contracting eigenvalues of the
period-2 cycles which live on these strips. After n time
steps, the attractor takes a shape that contains all the n

cycles, and its local scale will be characterized by the ei-
genvalue of the neighboring n cycle. So what is experi-
mentally attainable is a hierarchy of scales, finer scales
corresponding to longer cycles, and this is precisely the
hierarchy which will be the basis for our metric descrip-
tion of the strange attractor.

This description of a strange attractor is analogous to
the description of real numbers in terms of the rational
numbers. The periodic orbits correspond to rational
numbers, and aperiodic orbits (trajectories that wander
ergodically across the attractor) to irrational numbers.
To any finite resolution, one can bracket an ergodic orbit
by nearby periodic points, and even though the periodic
points are a set of measure zero, they provide a good

description of all points on the attractor. In particular,
since locally the map can be approximated by a linear
transformation, the local structure of the attractor can be
deduced from the Jacobian of the (n times iterated) map
at the periodic point. Thus, if the periodic points are
dense on the attractor, the entire attractor can be de-
scribed by this scheme, and a variety of experimentally
relevant numbers can be extracted. As an example, we
shall evaluate the generalized dimensions and the singu-
larity spectra of the Lozi" and the Henon attractors.

The next ingredient, the binary structure, is particular
to the Henon-type mappings. A small segment of a
strange attractor is stretched by iteration; since the at-
tractor is contained within a finite region of space, it
must fold. A Henon-type attractor folds the plane back
into itself exactly once, and this is the reason why a
binary structure' ' can describe orbits on it. Other
dynamical systems, like maps of the annulus in their su-
percritical regime, ' ' will not be describable by binary
trees, since the mapping folds phase space more than
once. An analogous theory with ternary trees was shown
recently' to lead to a similar understanding of the
strange attractors of those systems as well.

However, even though every allowed orbit has a
unique binary label, the binary tree is not complete; disal-
lowed orbits are "pruned" from it. Finding the rules for
pruning is one central result in this paper, see Sec. II D.
As is already clear from the study of one-dimensional
(1D) maps, the form of the attractor varies with the pa-
rameter in a very complex fashion. In this paper we con-
centrate not on the attractor itself, but on the smoothly
varying envelope of the attractor, ' which is the union of
all periodic orbits of the map. Its closure always includes
the attractor, but is, in general, larger than the attractor.
As the parameters are varied, the attractor varies wildly:
it collapses to periodic orbits, develops small chaotic
bands, blows up at the crisis points. All the while the set
of periodic orbits, deforms gently, and as the attractor
goes through its extravagant gyrations, its outline van-
ishes and reappears.

The genesis of the visible attractor can be visualized as
a random walk on the union of all periodic points. A
physical trajectory is squeezed onto a nearby periodic
point by its contracting eigenvalue, and is thrown out
along the unstable direction, where it again lands close to
some other periodic point. If it reaches a stable orbit, the
trajectory remains in it forever; otherwise it continues its
wandering across the union of all periodic points, tracing
out a strange attractor. Whether one can go from period-
ic point A to the periodic point B depends on whether
the unstable manifold of A intersects the stable manifold
of 8: this defines a flow diagram on the union of all
periodic points, dividing it into a transient part, and the
asymptotically visible strange attractor. ' In practice,
the periodic orbits which belong to the visible attractor
can be extracted from a chaotic time series.

In Sec. II we review the symbolic dynamics of unimo-
dal maps in one dimension, ' and extend it to maps of
the plane of the Henon type. The iteration of a point by
the Henon map is equivalent to the application of an area
preserving transformation on a symbolic plane. The sym-
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bol plane is used to understand how to construct binary
trees with finite grammar that knocks off disallowed
branches to yield topological descriptions of the underly-
ing attractors. Explicit calculations are presented for the
Lozi map, and for the Henon map.

As we shall see, the binary tree that describes the to-
pology of the periodic orbits is not a complete tree. The
number of legs at its nth level grows slower than 2". In
fact its rate of growth is an estimate to topological entro-

py Eo of the map. This number can be calculated as

1
Ko ——lim —lnN„,

n~oo n
(1.2)

where N„ is the number of points belonging to periodic
orbits of length n.

We shall argue that the elucidation of the symbolic
representation of the periodic orbits and their organiza-
tion on a tree equipped with a local grammar allows sys-
tematic computations of the topological entropy. One
major result is that different maps have the same topolog-
ical entropy at analogous points of their parameter space
(to be defined below), and explicit calculations can be
done, at least to first order in a smallness parameter
which is the inverse of the dissipation.

In Sec. III we turn to the metric properties. The scal-
ing descriptions of the invariant measure in terms of the
spectrum of scaling indices (or singularities} is reviewed;
the relations between the local Jacobians and the scaling
exponents ' ' are used to calculate the scaling ex-
ponents and their rate of occurrence on the set [the f (a)
function]. Section IV offers a summary and conclusions.
In particular we discuss how the ideas developed in this
paper may be useful in the development of an ergodic
theory for chaotic systems.

II. TOPOLOGY OF HENON-TYPE MAPS

A. Symbolic dynamics of unimodal maps in one dimension

The simplest maps that stretch the domain D and fold
it are unimodal maps on the interval. The domain is par-
titioned in two at the (unique) turning point C (which
without loss of generality is assumed to be 0), and points
on the right of C are denoted by 1 (or R ), and those on its
left are denoted by 0 (or L). For a unimodal map f

f'(x) &0 if x &0

f'(x) &0 if x &0 .
(2.1)

With any point xED associate a sequence of symbols
I ak ] where

1 if f'" "(x)&0
a 0 otherwise . (2.2)

Here f ' ' denotes m compositions of the map,f ' '(x) =x. The sequence I al, I is called the itinerary of x
and represents its "symbolic future. " (The future in this
definition includes the present. ) Observe that the
itinerary of f' '(x) is Iaz+ ). The order (along the x
axis) of two points x and y can be determined from the
corresponding itineraries by converting their symbol se-

quences into binary numbers. Because of the continuous
refolding of the interval, the corresponding binary num-
ber is not a1a2a3, but the number given by the alternat-
ing binary tree (see Fig. 2). Algebraically the alternating
binary label is given by

y=O. c,cz. . . —g c„2—k

k=1

where

kc„=g a, (mod2)

(2.3)

(2.4)

(this is discussed in more detail in the Appendix A).
Thus the ordering of points on D is determined by its
symbolic future (i.e., the itinerary), the immediate future
being the most significant. For the tent map

T(x)=1—2
i
x

i
(2.5)

the point with a given itinerary is exactly evaluated from
(2.3), apart from a linear transformation.

8. Symbol plane

In this section we generalize the 1D ordering of Sec.
IIA to a 2D symbol plane. The relative ordering of
points in the symbol plane reAects the relative ordering of
the corresponding points in the physical space. As men-
tioned before, forward iterations of Henon-type mappings
produce an increasing number of folds. The fold to
which a point belongs is determined by its symbolic histo-
ry. Backward iterations of the map produce the stable
manifold folds, (generally} transverse to the forward
folds, so location along the fold is determined by the sym-
bolic future. The relation of the physical attractor to the
corresponding symbol plane is illustrated in Figs. 1, 3,
and 4. Use of the symbol plane simplifies considerably
the description of the union of all periodic points. In-
stead of looking directly at the physical stable and unsta-
ble manifolds of a particular Henon-type map, we study a
straight-grid representation of the symbolic dynamics
which preserves the topology of the set and which is at
the same time common to an entire class of Henon-type
maps.

Define a sequence Idk] and a number 5 analogous to
Ic„Iand y of Sec. II A. Just as y gave the ordering of
points on the axis of unimodal maps, 5 will give the or-
dering of points transversely on a Henon-type attractor.
The pair of points (y, 5) will then specify the coarse-
grained position of a point on the attractor. The results
developed in this section are valid for (1.1) with b & 0.

Let f:D~D be a unimodal map [Fig. 3(a)] defined
onto the interval D [e.g., f (x)=2—x ]. Without loss of
generality we assume that D = [—1, 1] and that the criti-
cal point C is at 0. Consider the action of f on D. An
iteration will stretch D by a factor of 2 and fold it once as
shown in Fig. 1(c}. For Henon-type maps with b & 0 the
folding is qualitatively the same. To see this we only
need to note that from the second equation of (1.1), those
points with x &0 are mapped to the half-plane y &0.
Thus after an iteration D was folded in such a way that
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FIG. 2. Alternating binary tree that gives the order of itineraries in one-hump maps. The order is increasing from left to right.

Thus 1&0, but 11&10,etc.

the points to the left of C mapped to the lower fold, and
those to the right mapped on to the upper fold. Hence
the immediate symbolic history of a point determines its
transversal position on the coarsest scale.

The next iteration off will stretch f (D) by a factor of
2 and fold it back on itself. The folding relevant for the
Henon attractor (with b &0) is the following. The point
0 of Fig. 3(c) corresponds to the left fixed point of the
Henon map, whose smaller eigenvalue is negative. Hence
f (A) and A should be on opposite sides of 0. The fold-
ing that provides this is given in Fig. 3(d). It is easily
checked that the symbolic history of points on a given
fold is as shown in Fig. 3(d). As Fig. 1 shows, the same
arguments are valid for the Henon attractor (but with a
slightly different partition of the plane, as will be de-
scribed later).

The effect of the next iteration is shown in Fig. 3(e),
and at this level of refinement the last three entries of the
symbolic past are needed to determine the folding on
which a point lies. The ordering of the folding can be
determined by defining a coordinate 6 analogous to y of
Sec. IIA. First define dk by

fix)

(a)

RR

LR

LL

RRR

LRR

LLR

RLR

RLL

LLL

(cj

k

dk ——g (1—a; ) (mod2), (2.6)

f(A) RL

LRL
RRL

(e)
where a „a2, . . . determines the symbolic past of a
point. Then it is easily seen that (1—O. di) is the vertical

FIG. 3. Process of folding and the ordering of the folds by
symbolic dynamics. See text for details.
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position of the folds of Fig. 3(c), where the fraction is ex-
panded in base 2. Similarly (1—O. d, d2) is the vertical
position of folds in Fig. 3(d), and (1 —O. d, d2d3) that of
folds in Fig. 3(e). In general, one defines

5=1—O. d, d2. . . =1—g dk2
k=1

(2.7)

and then 5(x) will have the same cross sectional ordering
as x.

Any point x on the attractor is thus represented by a
pair of numbers y(x) and 5(x) defined, respectively, by
the symbolic future and past of x. If b is negative, the at-
tractor folds the stretched domain in a orientation-
preserving way. The definition of 5 is different (but again
straightforward). Figure 4 shows how the y-5 plane is
constructed iteratively. This plane will be termed the
symbol plane.

The symbolic sequence of a periodic point of period N
has the form (a „az,. . . , az )". Thus all the symbolic in-
formation (i.e., its symbolic history and future) can be en-
coded in a finite string. This renders the periodic points
especially important for the description of the attractor.
In particular, note that in Eqs. (2.4) and (2.6), az+k ——al,
and a I, ——a~ k. Furthermore, the neighborhood of a
periodic point is described by the linearization of the N

times iterated map. Hence, as opposed to describing the
strange attractor as a whole, we break it into neighbor-
hoods of periodic points whose local structure is de-
scribed by eigenvalues and eigenvectors of the periodic
points. This is different from previous approaches ' for
estimating the size of the Henon attractor, based on only
two fixed points, and their unstable manifolds. The
description in terms of periodic points is more democrat-
ic; instead of globally continuing the unstable manifolds,
we piece the attractor together from small linear sections.

Iterating a point x by the map is (as will be shown in
Sec. II C) equivalent to the application of an area preserv-
ing transformation on the y-5 plane.

In the examples considered in the remainder of the pa-
per each allowed periodic point will be marked by a dot
in the symbol plane. The resulting picture will hence-
forth be called the symbol plane.

C. D transformation

The transformation D:[0, I ) )& [0, I )~ [0, I ) && [0, I )

(2x, —,'[1—y)] if x & —,
'

(2 —2, —,
' [1+y)] if ) —,

' (2.8)

is the simplest map whose dynamics is similar to that de-
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FIG. 4. Iterative construction of the symbol plane.
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scribed in Sec. II B. We will first prove that the applica-
tion of a Henon-type map is equivalent to the action of D
on the symbol plane. We will refer to this as the D trans-
formation. Consider a point x whose symbolic past and
future are

a . a 2a——i) and (ai a» . . a.
(2.9a)

Its abscissa on the symbol plane is

y= gc„2
k=1

where

k ck+, if a& ——0
ck ——g a, +,(mod2)= '1 'f

i=1 +

Hence

2y if a, =0
2 —2y ifa =1

k=1

(2.10)

(2.11)

(2.12)

which is the first component of (2.8). It can similarly be
shown that 5(x) maps as the second component of (2.8).

It follows that the coordinates of the periodic point of
D with a given symbolic sequence is (y, 5), where y and 5
are determined by (2.3) and (2.7). Thus D is the two-
dimensional analog of the tent map (2.5).

As an application, consider a unimodal map which is
Kupka-Smale complete (i.e., a map that is onto the in-
terval). For such a map all possible symbol sequences
correspond to allowed periodic points, and hence the al-
lowed points fill all of the symbol plane. If the map is not
onto the interval (i.e., not Kupka-Smale complete),
periodic points cannot have coordinates greater than the
maximum of the map. Hence for all allowed periodic
points

y &yp (2.13)

where yo is the coordinate evaluated from (2.3) and (2.4)
using the itinerary of the extremum Iak 'I. Thus the
strip Sp of the symbol plane for which y & yp will be emp-
ty. The set of disallowed regions S is the union of Sp and
all its images and preimages under D; see Fig. 5.

The strip Sp consists of those symbol sequences whose
itinerary begins with a subsequence whose y coordinate is
greater than yp, i.e., certain subsequences are prohibited
at the head of the itinerary for allowed periodic points.
Since S is the union of all these points and their shifts,
this means that the allowed periodic points cannot con-
tain certain subsequences in their itinerary. Alternately,
the disallowed orbits are determined by the inclusion of
symbol subsequences Iak] in their itineraries such that
y(a)) yo.

Note finally that if the y and 5 coordinates are evalu-

The symbolic past and future off (x) is

(. . . ,a „,. . . , a z, a „a,) and (a2, a3, . . . , a„.. . ) .

(2.9b)

ated for a point on the attractor, then (y, 5) should lie in-
side the allowed regions of Fig. 5.

D. The pruning front

The conclusion of Sec. II C is that in the one-
dimensional case a strip (and all its iterates) were re-
moved from the symbol plane. This simplicity arises
from the fact that a single parameter sufticed to deter-
mine the symbolic dynamics completely. In the two-
dimensional problem this line is replaced by what we
refer to as the "pruning front. "

A pruning front arises from the fact that the two-
dimensional attractor is not a single curve, but is mul-
tisheeted. There is no single "maximal point" as in the
one-dimensional case; each sheet defines a locally highest
allowed itinerary. The pruning front is computed there-
fore by determining the "primary" sequence of homoclin-
ic tangencies. The homoclinic tangencies are points
where the unstable manifold and the stable manifold are
tangent. "Primary" tangencies are those tangencies
which lie closest to the y axis in Fig. 1. The primary se-
quence is that sequence which will be used to define the
"good" partition in Sec. II D 2, and has arisen from the
two onto one folding of the plane to itself. The relation
between the physical plane (Fig. 1) and the symbol plane
(Fig. 4) is obtained by cutting the physical unstable mani-
fold at homoclinic tangencies and straightening out the
folds on the attractor. As parameters vary, the periodic
orbits are shed off the attractor by inverse bifurcations,
i.e., their unstable and stable manifolds lose their trans-
verse intersection as they hit a homoclinic tangency. The
picture that emerges therefore is that euery primary
homoclinic tangency cuts out a rectangle of forbidden
itineraries in the symbol plane. Due to the foliation of
the stable manifold, the rectangles so deleted build up a
front which is monotone across half the symbol plane.
What this means is that, in contradistinction to one-
dimensional maps, in two-dimensional maps the symbolic
dynamics is specified by infinity of parameters, one for
each homoclinic tangency. The pruning front is not a
line but a function with a discontinuity at every binary
rational number.

We conjecture that the pruning front specifies the al-
lowed symbolic dynamics (the union of all periodic
points) fully; there are no orbits which are pruned out by
other mechanisms. All the other disallowed regions of
the symbol plane are obtained by backward and forward
iterations of the primary pruned patch by the D transfor-
mation.

However, for a finite dissipation (b &1) the discon-
tinuities in the pruning front shrink exponentially like b",
where n is the length of the corresponding periodic or-
bits. On the coarsest scale the attractor consists of two
sheets, whose separation is of O(b), and on finer scales
the separations are of O(b"); see Fig. 1. Hence, even
though in principle there is infinity of parameters, to any
finite accuracy the symbolic dynamics is well described
by a finite number of rules. We shall illustrate this in Sec.
II E.

To illustrate the above discussion we examine the sym-
bolic planes of two maps, the Henon map, and the Lozi
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FIG. 5. Symbol plane for the map x'=a —x for a =1.9. 15 178 points belonging to periodic orbits of length 15 are plotted.

map given by

x'=y+(a —1)—a
~

x ~,
y'=bx .

(2.14)

We begin by considering the Lozi map, since its piecewise
linearity allows analytic calculations.

1. Lozi map

The iterates of (2.14) form a strange attractor for
a =1.7 and b =0.5 (Ref. 24). We will first show that a
partition of the plane by the y axis determines the period-
ic points uniquely through the symbolic sequences. We
will then determine the form of the symbol plane for the
attractor.

The partition of the plane by the y axis uniquely deter-
mines the periodic points; since (2.14} is linear for x &0
and for x & 0, given the symbolic sequence, one obtains a
linear equation that needs to be solved for the periodic
point, which hence leads to a unique solution. Thus the
symbolic dynamics will contain an L for x &0, R for
x & 0, and a C for x =0.

The two-dimensional analog of the Kupka-Smale com-
plete map is a map at the crisis point. It is the largest
value of a (b) for which a strange attractor exists. At the

crisis point there is a heteroclinic tangency of the unsta-
ble manifold of the 1" fixed point with the stable mani-
fold of the 0" fixed point. For the Lozi map it is given by
a =(2—

—,'b).
As b increases along the crisis line, some orbits disap-

pear through inverse tangent bifurcation. For the Lozi
attractor this is equivalent to a point in the orbit crossing
the y axis. As b increases from 0, the points that cross
the axis are those which were close (say within a distance
e) to it at b =0. But all such points need not cross the
axis since some of them may move away from the axis
with increasing b. It is shown in Appendix B that to
linear order in b the points that do cross the axis are
those whose preimages lie to the left of the critical point
and were closer than a distance e(b)-b from the axis.
Hence on the symbol plane the bottom half strip So about

y = —,
' whose width is e(b) will not contain periodic

points. Once again periodic points are disallowed inside
the images and preimages of So. In Fig. 6(b) we show the
symbol plane computed for a =1.75 and b =0.5 (which
is a crisis point}, and it indeed agrees with the theoretical
result. Note that the image D (So) of So is a half strip on
the right end, the periodic points inside of which will
have a tail LX where X is either L or R. Hence once
again the disallowed orbits are determined by the pres-
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2. Henon attractorence of certain subsequences. In this case the head Iak I

of points in D(SO) should have y(a) &yo and their tail
should have the form I.X. Thus the symbolic subse-
quence I.XI(Tk I is prohibited in any allowed periodic or-
bit.

For an attractor below crisis, additional periodic points
are missing, corresponding to those that were missing for
the incomplete unimodal map. The empty regions in the
symbol plane in this case will be approximately the super-
position of empty regions of the last two examples; see
Fig. 7. Notice that even for b values as high as b =0.5,
the largest discontinuity in the pruning front is clearly
visible, but the smaller ones are difficult to see. This fact
will be used to produce an efficient finite grammar for the
union of all periodic points in Sec. II E.
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E. Growing periodic orbits on well-pruned binary trees

0 02
1. The Grammar

For any b &0 and smaller than its crisis value, the
number of periodic points of period n is smaller than 2".
Thus although the orbits can be always put on a binary
tree, this tree is incomplete, and rules for its pruning
should be found. In this section we show how to find
such rules for well chosen points in parameter space. ' The
main result is that for such points, and b smal1 enough,
such trees are universal, predicting correctly the number
of periodic points for length n which is not too large in
all Henon-like mappings.

The fundamental ingredients that allow a construction
of a tree from local rules are the following.

(i) For b =0 the orbits are ordered along the a axis in a
b-a plane according to the value of the number y calcu-
lated from their itinerary according to Eq. (2.7). This
means that as () is decreased from its crisis value [a =2
for (1.1) and b =0], the orbits that are shed off the attrac-
tor are all those whose y & y(a), where y(a) is the maxi-
mal value.

(ii) For b ~ 0 some orbits disappear at values of a, a (b),
which are smaller than their a(0), and others at larger
values. The rules were derived in Sec. IID1, and are
correct for small b: orbits whose itineraries finishes with

(bj

0 0.2 0.4 0.6 0.8 I.O

FIG. 6. Symbol planes of Henon and Lozi maps at crisis. (a)
Henon map with a =1.803241. . . , b =0.1. (b) Lozi map with
a =1.9,b =0.2.

The results of Sec. II 0 1 carry over to the Henon at-
tractor. We first explain that for periodic points to be
determined uniquely by the symbolic sequences, the plane
has to be partitioned by the homoclinic tangencies. We
then show numerically that the symbol plane for the
Henon attractor has the same form as that for the Lozi
attractor, and finally use the results to organize the orbits
on well-ordered trees.

A partition of the plane by the y axis does not deter-
mine the periodic points uniquely. Numerically it ap-
pears that a line joining the homoclinic tangencies does in
fact partition the plane as needed. It is easy to see that
an unstable periodic point cannot cross this line. If one
did, then at the point of crossing its eigenvalues have to
be equal and hence (since their product b is smaller than
1) each has to be inside the unit disk; i.e., the orbit is
stable. Hence as long as the orbits are unstable, they can-
not cross the line of homoclinic tangencies, and we con-
jecture that this line partitions space so that the unstable
periodic points are uniquely described by symbolic se-
quences. Numerically the partition appears to determine
the periodic points uniquely for periods up to 20. The
partition again defines an I. for x to the left of the parti-
tion, R for an x to the right, and C if x falls on the parti-
tion.

The symbol plane for the crisis point at b =0. 1

(a = 1.803 241. . . ) is shown in Fig. 6(a) which is qualita-
tively identical to Fig. 6(b). For the parameters con-
sidered by Henon (a =1.4, b =0.3) the symbol plane is
shown in Fig. 8, which is similar to Fig. 7. We conclude
that the allowed and disallowed periodic orbits are well
described by the pruning front in the symbol plane.
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(RLL. . . LX)" (2.15)

are prohibited. We can satisfy this requirement by disal-
lowing the block of symbols LXRLL from any itinerary.
(We use the periodicity. )

LX survive until )2 =a(b) ~a(0), whereas orbits whose
itinerary finishes with RX disappear earlier, at
a =a (b) & a (0). For small b the b a-diagram looks as in
Fig. (9), where the value of (b, a) for which the orbits are
superstable is plotted. The essential property is that
there are no intersections among the lines with the same
slant, as long as b is small enough. Of course, lines with a
right slant can intersect lines with a left slant. In the vi-
cinity of these intersection points we can construct easily
the local rules for the topology.

Consider, for example, an intersection point of the
superstability line (more appropriately for b&0 the line
where the itinerary of the orbits contains a C) of a period
3 with itinerary RLC and a period 5 with itinerary
RLLRC. The lines with the intersection point are depict-
ed in Fig. 9, and we shall denote them by S3 and S5, re-
spectively. We know that to the right of S3, all the orbits
that begin with RLL (i.e., just larger than RLC) and end
with an LX (X =L or X =R) are prohibited. Thus all the
sequences

In addition to the left of S5 we cannot find any orbit
whose itinerary begins with a head larger than RLLRC.
Hence (using periodicity) no itinerary containing any of
the blocks

RLLLL, RLLLR, RLLRR (2.16)

2. Construction of the tree

At its nth level, the well-pruned tree should have all
the paths that do not contain the disallowed sequences.
Irrespective of the question of which are the disallowed
blocks of symbols (whether of the example of Sec. II E 1

or not) we can adopt the following strategy: let L and R
have values 0 and 1, respectively. Assign a binary num-

is allowed.
The condition that disallows LXRLL removes the re-

gion A from the symbol plane (see Fig. 10). The condi-
tions (2.16) remove the strip B, as shown in Fig. 10. At
the intersection point the symbol plane should be given
by Fig. 10 in addition to all the images and preimages of
the disallowed regions. The symbol planes for three
different Henon-type maps (see Sec. II E 3 below) with pa-
rameters corresponding to this very same intersection
point are shown in Fig. 11.

.0 J
1

I
I I ~

I

I J I

0 0.2 0 L. 0.6 0.8 .0

FIG. 7. Symbol plane for the Lozi map below crisis. a =1.8, b =0.2.
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ber g to any itinerary of length n,

7)= g a, 2' —',

where

1 ifR
0 ifL.

(2. 17)

(2.18)

If riq equals any of the numbers (2.14), r) is knocked out.
This test is almost complete. It only fails to recognize se-
quences where the head and the tail combine to give such
a number (such a path is disallowed by permutation). To
overcome this difficulty we perform the test on the num-
bers a, ,a2, . . . , a„a,aza3a4 rather than on a, . . . ,a„.

3. Results

All that we need to know is which of the 2" binary num-
bers which are generated from all the possible itineraries
are allowed. Consider again the example of Sec. IIE1.
The disallowed sequences are 00100, 01100, 10000,
10001, and 10011. These have values of

X'=y+a cos(nx/2) —1,
Y'=bx .

(2.21)

We tested the predictions of the tree constructed in
Sec. II E2 against the three dynamical systems, i.e., Lozi,
Henon, and

4, 6, 1, 17, and25, (2.19)

'g mod2
9k

=ak +ak+, 2+. . . +ak+42" =b ) b2b3b4b ~ . (2.20)

respectively. Form now from all the numbers g=1 to 2
the numbers gk, (k =1,2. . . , n —5),

The parameters for the crossing point of the 3 and 5 cy-
cles are a =1.8125797,b =0.0228643 for the Henon
map, a =1.6946978 and b =0.0642623 for the Lozi
map, and a =1.905 870, b =0.03079 for the map (2.21).
We found the periodic orbits in these three maps by
Newton-Raphson techniques and the numbers of periodic
points in the tree and in these systems are presented in
Table I. As we see, the number of periodic points pre-
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FIG. 8. Symbol plane for the Henon map at the classical parameter value a =1.4, b =0.3. Notice that in this case a second discon-
tinuity in the pruning front is clearly visible.
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0.06
I I I I

0.05—

0.04—

0.03— V

0.02—

0.01—

14 1.6

I ji IJ il

1.8 2 2.2

FIG. 9. The a-b parameter plane of Henon map for small b. The lines are parameter values where the itineraries of the denoted
orbits contain a C. Orbits whose itineraries end with LC(RC) move to the right (left). We focus on the intersection of RLC and
RL RC as an example.

dieted by the grammar agrees exactly with the number
found in the Henon map and in the Sin map (2.21). The
Lozi map has more points sometimes. The reason is that
in the Lozi map there is no cascade of period doubling,
but period-doubled orbits begin simultaneously. Thus,
for example, a period 3 exists together with its doubled 6,

B

and thus there are 28 rather than 22 periodic points of
length 6. Taking this into account yields exact agreement
with the tree also in the Lozi case.

The availability of local rules for the pruning of the
tree also means that we can calculate the topological en-

tropy of the map. The topological entropy Ko can be cal-
culated for all practical purposes from the rate of in-
crease of the number of allowed periodic points belonging
to orbits of length n. Denoting this number by N„,we
write

KonN„-e,n~~ . (2.22)

An nth-order approximant to Ko can be calculated from
the well-pruned tree as

lnN„
n

(2.23)

FIG. 10. Schematic pruning front for the point of intersec-
tion of Fig. 9. The region denoted by A is pruned by disallow-
ing itineraries to contain block of the type LXRLL, whereas the
strip 8 is pruned by disallowing blocks larger than RLLRC.

These approximants are displayed in Table I. It is in-
teresting to compare this approximant to a calculation
based directly on the available rules. The most straight-
forward calculation is completed via the transfer matrix
formalism. In this formalism we consider a matrix
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0
I

0.2 04 0.6 0.8 1.0 0 0.2 0 4 0.6 0.8 I.O

0 0.2 0.4 0.6 0.8 I.O

FIG. 11. Symbol planes of the Henon (a), Lozi (b), and the map (2.21) (c), at their parameter values of the intersection point of Fig.
10. The parameters are given in the text. Notice the (b) contains more points, for reasons explained in the text. The symbol planes

(a) and (c) are identical, and to this order of cycles (n ( 15) are universal.

TABLE I. The number of periodic points belonging to
periodic orbits of length n in Henon-type maps. The second
column is the theoretical value expected from the universal

grammar. See text for explanation of the differences with the
Lozi map. The last column is the nth-order approximant of the

topological entropy.

which is defined according to

=y(a, , . . . , a„)5a2az, . . . ,5a„„a„'1, (2.24)

Period

6
7
8
9

10
11
12
13
14
15

Tree

22
44
64

116
194
310
542
886

1516
2548

Henon

22
44
64

116
194
310
542
886

1516
2548

Sin

22
44
64

116
194
310
542
886

1516
2548

Lozi

28
44
64

134
204
310
584
886

1516
2698

rc'")
0

0.515 17
0.540 60
0.519 86
0.528 18
0.526 79
0.521 51
0.528 61
0.522 06
0.523 13
0.522 87

where

1 if a, . . . ,a„is an allowed block

0 if a, , . . . , a„is an excluded block .

(2.25)

In the case considered above, the blocks a &, . . . , a„areof
length 5, meaning that T is a 16)& 16 (sparse) matrix. In
the notation of Eq. (2.18), this matrix in the present case
1s
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12 014

12 012

0"
12 p8

12 p6

12 p4

1 0
12

p2

0'
06

08

p10

p13

014

016

02 1013

p4 12

06 12

0'
p10 12

p 12 12

p14 12

p10

08

p6

p4

02

(2.26)

E0 ——0.522 737 64. . . . (2.27)

where we have used a shorthand notation for the rows, in
which the second row for example is 0011000000000000.
The topological entropy should be (asymptotically) the
logarithm of the largest eigenvalue of this matrix. Com-
puting this eigenvalue, we find

The relation to the more usual isotropic scaling P (1)-1
is obtained for l, =l2, leading to +=a, +a2. The noniso-
tropic scaling (3.4) is required in the case of strange at-
tractors, where the scaling exponents in the unstable
direction are very different from those in the stable direc-
tion.

Next one wants to know the range of 0:,a;„(o. (a,„,and how many times X(o; )Ae one finds a
between a and a+ha. Naturally, this number depends
on the length scale l. To scale this trivial dependence out
one uses f (a) defined by

N(a)ba-1 f' 'ba . (3.5)

pq
I (q, r)= g (3.6)

It has been shown that in the limit of increasingly fine
partitions the condition I (q, 7 ) =1 singles out a quantity
r(q) such that

The f (a) function is taken as a convenient summary of
the scaling properties of the set. Clearly, a scheme to
connect the nonisotropic scaling (3.4) (which is essential)
to the single length-scale dependence (3.5) is needed.
Such a scheme is offered by the partition function formal-
ism. We shall cover the attractor with balls of radius l,
(nonconstant 1; varies from place to place) and calculate
the measure P, of each box. Then we shall consider the
partition function

Evidently, the approximants tabulated in Table I appear
to converge to this value. a=, f(a)=q r(q) . —Br(q) Br(q)

Bg Bq
(3.7)

III. METRIC PROPERTIES AND SCALING EXPONENTS

The organization of the strange attractors about their
unstable periodic orbits can be used also to calculate their
metric properties in a systematic and eScient way. We
base the analysis on the spectrum of singularities Lf (a)]
formalism. In this formalism one uses the natural ergod-
ic measure generated by the time series IX;);,, X;
=(X;,Y;). Then the measure P„(1„12)in a box of size

11 )& l2 centered around X„is considered, where I, and I2
are in the direction of the local eigenvectors calculated
from the tangent map around X„.This measure is

defined

b
' '

N

P„(1„12)=lim (1/N) g E„(X;),
N~ oo i=1

where

0 g~&l, or ~g~&l,
1~/~ &1, and gi &12

and

(3.1)

(3.2)

X —X„=pe,(n)+ge2(n), (3.3)

where e, and e2 are the eigenvectors of J„.The funda-
mental scaling hypothesis is that P„(1,, 12 ) scales
like"'"

The nonisotropy of the set enters into such a calculation
through the coverage of the natural oblong partitions by
balls whose radii are the narrow sides of the oblong
shapes.

Of particular interest will be apparent nonanalyticities
which can appear in f (a) in Henon-type mappings. We
shall suggest that these nonanalyticities, which can be in-
terpreted as phase transitions in the thermodynamic for-
malism of multifractals, ' are absent in hyperbolic at-
tractors like the Lozi attractor. They appear due to the
existence of homoclinic tangencies (the Newhouse
phenomenon). '

The analysis of the metric properties will be performed
using tools, some of which have only recently been
developed. Therefore we review the needed background
material first.

A. Periodic orbits and scaling exponents

The basic assumption is that the metric properties of
the invariant measure can be calculated once the proper-
ties of the periodic orbits are known. The important
property of the periodic orbits is their stability. Denoting
the tangent map about a point X, on the attractor by J;,
we calculate the stability of an orbit of length
n, X,, X2. . . ,X„from the eigenvalues p, ,p2 of the matrix
J,

P„(1„1~)—1, '12' . (3.4) (3.g)
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The Lyapunov exponents are defined as

~&,z=»P&, z .(&) (3.9)

H4 H3 HP HI

The convention will be that
~

A, ] ~
) 1 and

~

A, 2 ~
& 1.

The relation between the periodic orbits and the invari-
ant measure is obtained when one realizes that the proba-
bility to see a particular orbit of length n is proportional
to exp( —A,I")). We assume that better and better approxi-
mants to the invariant measure p(x) are obtained by look-
ing at all the periodic points belonging to periods of in-
creasing length n. Denoting the set of periodic points of
length n by Fix(n) we write' '

p(x) = g 5(x—y)e
Z(&)(y j

y 6Fix(n)

g(&)(y)
e

yGFix(n)

(3.10)

The eigenvalues of the periodic orbits yield the scales 1;
and measures P; of (3.6). As discussed in Sec. II, the for-
ward iterate of a Henon-type map generates folds of the
attractor. After nth iteration each fold contains (at most)
one periodic point of cycle length n. The thickness of the
fold is determined by the contracting eigenvalue
exp[A, 2(n)]. The length of the fold is of 0 (1).

If we assume that the attractor is hyperbolic (i.e., ap-
proxirnates the folds by straight sections, and ignore the
turnbacks), under iteration the expansion along the fold
is approximated by the periodic point expanding eigen-
value exp( —A,I"'). We can cover the fold with I /exp(i, z"')

square boxes, each with measure exp[ —)(, ](n)]exp(1(,z"').

So for hyperbolic attractors (3.6) becomes

X g(n) g(n) X ](n)( ])
=1.

Fix(n) 2 »~(~) e

(3.11)

However, this is too crude for nonhyperbolic attrac-
tors. Every fold of an attractor ends in a turnback, and
on turnbacks stability is marginal, and the measure is
singular. Hence we need to refine the unstable direction
as well. Realizing that the periodic points are also owned
by the map run backwards, we use the local scales

g(n}
1/e ', which are the contraction rates of the inversely
run orbits, to define strips "orthogonal" to the previous
ones. '

The horizontal strips are now given an address which
is the itinerary of the periodic point, whereas the vertical
strips are associated with the itineraries run backwards.
Every box in this partition is identified by an itinerary of
2n symbols R,I.; see Fig. 12.

What remains now is to estimate the measure of each
box. Evidently, not every box contains at this stage
periodic points; in fact, most of them are empty. To
overcome this we look now at all the periodic points of
length 2n. Each of these is equipped with an itinerary of
2n symbols, which we consider as head and tail of n syrn-
bols, respectively. By matching the head and tail of the
address to vertical and horizontal strips, respectively, we
assign a periodic point of length 2n to any box that
matches the itinerary of the 2n points. We know that

b/hY)A+ 7/PZNX+W~l~
I I I I
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&/PX+'rYX YZX+/EWXP~ T4

FIG. 12. The schematic covering of an attractor by boxes
whose width and length are determined by the eigenvalues of
the periodic points belonging to orbits of length n (denoted by
dots). Every box has an address (H, T) which is obtained from
the itineraries of these points. To estimate the measure, we find

periodic points of length 2n whose itinerary is (H, T) (denoted

by stars). The measure is then estimated from exp[}(,'P")(H, T}].

P„+ (1],12)=P„(l],12) . (3.12)

On the other hand, after m iterations the original box
I, )&12 has been deformed to one of size

g(rn) g(m)

(1 e ' X12e ' ).
Using the preservation of probability,

g(m) g(n)

P„+ (l„l~)=P„(l]e ', 12e
'

)

exp( —a]g] —a2$2 ), (3.13)

where in the last step Eq. (3.4) has been used. Collecting
equations (3.4), (3.12), and (3.13) we conclude that

EK I +A, 2 Q'2 =0 . (3.14)

there can be at most one point in each box, and some
boxes are still left empty. The empty boxes are assigned
zero measure, whereas the boxes that contain a periodic
point are assigned a probability proportional to
exp( —id& "'}. P, and 1 of Eq. (3.6) are obtained now by
covering each box of Fig. 12 by exp[ —A, ']"'(H)/e2'"'(T)]
square boxes of edge 1 =exp[A, (2"'(T)], each with a mea-
sure

exp[ —A, I "'(H, T}]exp[A,'] '(H}]exp[1(,z"'( T)] .

In addition to this global description of the scaling
properties, we can find direct relationships between the
local scalings a],a2 of Eq. (3 4) and the Lyapunov num-

bers of the orbits.
Remember the definition of the invariant measure (3.1).

We make use now of the fact that close to any point X„
of the attractor there exists a point belonging to some
periodic orbit of length, say, m. Thus X +„——X„,and
from (3.1)
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To get a second equation in a& and a2 we use Fig. 12
again. Since the edge sizes and the measure of each box
is known, we can write Eq. (3.4) as

exp[ —AI"'(H)] 'exp[f2'"'(T)] '-exp[ —AI "'(H, T)] .

(3.15)
This equation can be written as

I.5

I.4—

I.3—

l.2—

—AI"'(H)ai+A2"'(T)az ———AI "I(H, T) .

At this point we can rewrite Eq. (3.14) as

AI "'(H, T)ai+A'q "'(H, T)a2 ——0,

(3.16)

(3.17) l.o
I.25 I.3 I.35

I I

l4 I 45 I 5

since the boxes are defined around 2n orbit points. The
local description will give useful information that is
difficult to see in the global theory.

FIG. 13. f (a) for the Lozi map with a = 1.7, b =0.5.

B. Metric properties of the Lozi attractor

We considered the Lozi attractor at the parameter
values a =1.7, b =0.5. Having located the periodic or-
bits, and having calculated their stabilities, we solved
Eqs. (3.16) and (3.17), with n ranging from 6 to 10. In-
variably, a, is found to be very close to 1. This is hardly
surprising, since the Lozi attractor is hyperbolic. In
terms of the eigenvalues, this means that roughly
A, 2' "'-2i,~i"'. Substituting this in Eq. (3.17) and subtract-
ing from Eq. (3.16) results in

—2A, 1 a1 = —~1 ——2A,
1

(n) (2n) (n)

or a, = l. Using this in Eq. (3.17), we find

g(n)
&(n)

g(n)
2

and

g(n)

g(n)
2

(3.18)

(3.19)

(3.20)

C. Metric properties of the Henon attractor

Each periodic orbit contributes one a value to the spec-
trum with a multiplicity that is the order of the orbit.

The meaning of a
&

——1 is that the measure is uniform in
the unstable direction. We can therefore use Eq. (3.11) to
calculate r(q). The singularity spectrum which is the
Legendre transform of ~ can now be evaluated. It con-
verges as a function of n, and agrees very well with re-
sults obtained earlier. The convergence improves if the
sum in (3.11) is averaged over a few successive levels.
Figure 13 shows the singularity spectrum determined us-
ing the periodic points of period 9—13. It is worthwhile
to mention that a,„andu;„aredetermined by the fixed
point and the period 2, respectively.

orbits with n 2n be-ing 6-12, 7-14, 8-16, 9-18, and 10-20.
The picture that emerges is the following: in almost all
the boxes a& ——1. Very rarely, we find orbits of length 2n
whose eigenvalues A, I

"' are much smaller than O(2A, I"').
This occurs twice in the 8-16 data set, and three times in
the 10-20 data set. The value of a in all these cases
comes to a=0.72 with (x& 0.59. These isolated events
are to be compared with thousands of boxes in which
a&

——1. The meaning of this is that even the Henon at-
tractor is almost everywhere hyperbolic, and the nonhy-
perbolicity is a delicate phenomenon.

The limited amount of data leaves the following possi-
bilities open.

(i) The isolated a values, a & 1, are found on a set of
zero Hausdorff measure, or f =0.

(ii) The isolated a values are to be found on all the
turnbacks, and are therefore associated with a set of di-
mension comparable to the transverse Cantor dimension
(-0.27 for these parameter values).

(iii) Every turnback contributes a somewhat different
a & 1, each of which is associated with f =0.

The limited information at hand indicates that the num-

l.2—

0.8—

0.4—

The Henon map is not hyperbolic. We might therefore
expect marginal orbit points that exist near turnbacks to
have some role in determining the metric properties. We
first found all the orbits of the Henon map with
a = 1.4, b =0.3, up to length 21. Using Eqs.
(3.16)—(3.17), we solved for ai and a2 using eigenvalues of

0.5 0.7 0.9 1.5

FIG. 14. f(a) for the Henon map with a =1 4, b =0.3. .
There is an apparent phase transition which is linked to the
nonhyperbolic nature of this map, and is believed to be generic.
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ber of events in which a & 1 is not growing exponentially
with n. We thus feel inclined to believe the first possibili-
ty (i), but further work to substantiate this feeling is need-

further work to substantiate this feeling is needed.
From the global point of view we can calculate r(q}

from Eq. (3.6} as explained above. Legendre transform-
ing, we obtain the solid line of the f (a) curve shown in
Fig. 14. The numerics asymptote to a=1 already be-
tween q =2.2 and q =2.4. The global calculation fails to
reach the isolated a values obtained by the local analysis,
because of their extreme rarity. Adding the value a=.72
onto the f =0 axis, we see, however, that a straight line
of slope 2.3 connects well onto the solid curve calculated
by the global approach. Since a straight portion in the

f (a) curve translates to a nonanalyticity in the q depen-
dence of r(q), this phenomenon can be interpreted as a
phase transition in the thermodynamic interpretation of
the multifractal properties. Such an interpretation is in
agreement with a recent conjecture by Grassberger,
Badii, and Politi.

IV. CONCLUSIONS

We have shown that the set of all allowed periodic or-
bits in Henon-type maps can be understood theoretically.
The allowed and disallowed orbits are separated in the
symbol plane by the pruning front, and the latter can be
obtained systematically at well-chosen points in parame-
ter space, using the fact that its discontinuities are or-
dered by O(b"). Low-order calculations were done ex-
plicitly showing that Henon-type maps have practically
universal topologies to the order considered. Thus, al-
though in principle there is no finite-codimension univer-
sality, in practice, for b small enough, the control of two
parameters yields universal distributions of periodic or-
bits for orbits which are not too long. Next we have
shown that the ergodic and metric properties of the
strange attractors can be systematically calculated by or-
ganizing them about the periodic orbits. Calculations for
Lozi and Henon maps indicate the essential metric
differences between hyperbolic and nonhyperbolic sys-
tems. The latter exhibit apparent phase transitions in
their multifractal properties.

The application of these ideas to quantitative analysis
of experimental data sets remains for future work. Of
particular interest is the question of whether the organi-
zation about periodic orbits might help in predicting the
future evolution of chaotic deterministic systems.

Guckenheimer, P. J. Holmes, L. P. Kadanoff, and C.
Tresser are much appreciated.

APPENDIX A

The order (on the axis) of two points x and y can be
determined from their itineraries [ak I and Ibl, I as fol-

lows. ' " Suppose a, =b, , . . . , ak ——bk and ak+, ——0 and

bk+) ——1. Then

k

x &y g a;(mod2)=0 . (A 1)

To prove this, first note that if a
&

——0 and b
&

——1, then x
and y are, respectively, to the left and the right of the
critical point and hence x &y. Next suppose that a, =b I,
a2 ——0, and bz ——1. The latter two conditions imply that

f (x) &f (y), and hence that

f'(z)(x —y) &0 (A2)

for some zC(x,y). But f'(z) is positive or negative ac-
cording to as a, =0 or 1, and the result follows. Next
suppose that the first k symbols are equal. Then from

ak+, ——0 and bk+, ——1, it follows that

f(k)(x)&f(Ic)(y) (A3)

wherezE(x, y). Hence

x&y —f'[f'" "(z}]f'[f" "(z}] . f'(z)&0

By (2.1),f'[f"(x)]&0 a;+, ——0, and (2.3) follows.

(A5)

APPENDIX B

We will determine the structure of the symbol plane
for the Lozi attractor at the crisis point. First we observe
that the tangent bifurcations will occur when a point of
the periodic orbit crosses the y axis, and then, expanding
to linear order about the tent map, determine which or-
bits will be disallowed.

We rewrite the Lozi map as

Since the first k symbols of the itineraries are identical,

f'"'(x}—f'"'(y) =f'[f'" "(z}]

&&f '[f(" "(z)]. . . f'(z)(x —y),
(A4)
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where q = —sgnx. The crisis for the Lozi attractor
occurs at a =(2—1/2b) (Ref. 22). The outer edges of the
Lozi attractor are shown in Fig. 15. The coordinates of
the points marked are

Xp= 37 yp= 3b 7
l 1g,

x~=1, y~=O.

As b increases, the coordinates of a given periodic point
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where s —1. Its image and preimage are

xk+1 = 1 —2bs

xk —I 2 (9k —I +bs gk 1k —I) '(0)
(86)

8

X

For small b we write the corresponding orbit of the
Lozi attractor as (x„xz,. . . , x~). The expanding in

linear order in b

(87)

FIG. 15. The outer edge of the Lozi attractor (see Appendix
B).

will vary smoothly. Hence in order for a tangent bifurca-
tion to occur, some point of the orbit will have to cross
the y axis. Thus an inverse tangent bifurcation (which
will make the corresponding orbit disallowed) will also
occur when a point in the orbit crosses the y axis.

The tent map

From (A 1) to linear order in b,

x„'+,+btk+( bxk '——, +(1—
—,'b)

+gk(2 ——,'b)( bsrtk—+btk )

at crisis. The analogous equation for the tent map is

xk+, ——1 —2bs .(0)

Subtracting (A9) from (A8) gives

tk+i ———,'(rtk —1+1)+2rtktk .

(8&)

(89)

(810)

x'= 1+2gx (83)
Now suppose rtk, = —1. Then (A10) reduces to

is Smale complete, and contains a unique periodic point
corresponding to any symbol sequence. We need to find
out which of these orbits will be disallowed as b increases
from zero. Consider an orbit (xI ', xz ', . . . , xN ') of the
tent map and assume that xk ' is the point that will cross
the y axis to cause the inverse tangent bifurcation. Since
xk ' is close to the origin, we write it as

tk+1 ——2Vlk tk

But for (xk,y„)to cross the y axis,

O=xk ——xk +btk ~tk —s(0)

Hence

tk+1=2S,

(811)

(812)

= —&'Qk
(0) (84) and so

xk ' ———bs(0) (85)

where e &g1. The points that have the potential of cross-
ing the y axis have to be within a distance eo (to the axis)
which is linear in b Hence we .rewrite (A4) as

Xk+1 Xk+1 + k+1
(0) (813)

Hence (xk+ „yk+,) is the point B. But all preimages of 8
are on AB, and so it cannot be a periodic point. Thus

1
———1, which is what we needed to prove.
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