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A particular solution, which describes the shape-preserving evolution of an explosive localized
state (ELS) in one, two, and three spatial dimensions, is obtained for the reaction-diffusion equation
with a quadratic creative reaction term. This state, the ELS, is discovered to be of fundamental

significance, since states which are "nearby" an ELS are attracted to it. A new technique of analysis
is introduced, which enables one to describe the dynamical evolution of the amplitude and width of
density profiles. These variables are found to be governed by two coupled nonlinear differential
equations. The dynamic theory covers, in a unified form, the cases of one, two, and three spatial di-

mensions.

I. INTRODUCTION

Reaction-diffusion equations have recently attracted
considerable attention, partly due to their occurrence in
many fields of science, in physics as well as in chemistry
or biology, partly due to the interesting features and rich
variety of properties of their solutions. ' The processes
of diffusion and reaction each play essential roles in the
dynamics of many systems, e.g. , in plasma, or semicon-
ductor physics. The simultaneous occurrence of these
processes may lead to solutions which can only exist if
both kinds of processes do contribute to the dynamics. '

Exact solutions are rare in this connection.
Particularly interesting phenomena occur when the

tendency of the nonlinear reaction term is such as to
create large solutions. Such situations may lead to explo-
sive instabilities such as have recently been studied in
connection with fusion energy research on mirror
machines, where a certain mode, a so-called density-
independent flute mode becomes explosively unstable in
the presence of ion-cyclotron oscillations. Whereas the
presence of such nonlinear reaction terms of the creation
type causes the amplitude to grow drastically, the con-
trary is true for a steep gradient diffusive process. As a
result threshold phenomena may occur and interesting
situations develop where the balance between the
different processes becomes crucial.

Even if situations of the type described above may be
well suited for computer studies, analytical results are
fundamental and useful for making comparisons with the
results of computer simulations, in order to provide
check points and to offer means of interpretation of com-
puter experiments and of real experiments in the labora-
tory. The analytic results are also of principle interest in
connection with the fundamental question of finding
more general solutions to the reaction-diffusion equa-
tions. ' ' This last issue is indeed a challenging one, as
has been demonstrated by previous examples, such as sol-

itons, or shock-wave solutions of the so-called Burger's
equation. The reaction-diffusion equations also offer a
variety of new questions of fundamental nature. '

The analytic solution as well as the dynamic equations,
which we here study, are for certain given dependences of
the diffusion coefficients on density. For various practical
situations, several different choices are motivated. Often
the diffusion coefficient is taken as constant, for simplici-
ty or proportional to the density. The only reason we
have here made such choices is that those are the only
ones for which explicit exact solutions have been ob-
tained for the forms of the equations we consider. In ad-
dition, however, computer simulation studies for other
choices have been made to confirm a more general princi-
pal validity of the analytic results obtained.

II. REACTION-DIFFUSION
EQUATIONS WITH AN ANNIHILATION

TYPE OF NONLINEAR REACTION TERM

In plasma physics, reaction-diffusion equations, where
the reaction term describes annihilation of particles, are
frequently used. In cold plasmas electron-ion recombina-
tion plays an essential role. Applications are found in
various laboratory experiments as well as in space
research. In hot burning plasmas, fusion reactions are
expected to be responsible for the energy production of
future thermonuclear devices.

As concerns the theoretical description of such plas-
mas, a quadratic nonlinear loss term, accounting for the
reaction processes, is a typical ingredient in the equations
describing the dynamics of the system. In addition,
diffusion terms are generally to be considered. Simul-
taneous diffusion and reaction processes introduce new
interesting solutions. ' The purpose of this section is to
elucidate the properties and the role of such solutions,
which are of a particular kind but of physical
significance.
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A. Basic equations and exact particular solutions

in one, two, and three dimensions

Consider the equation

Bn =DV n —an
at

(2)

where D and e represent diffusion and reaction
coefficients, and n refers to, for example, an electron-
plasma density. If we introduce the convenient normali-
zation of space and time coordinates, namely,

(a/D )'r x ~x and at ~t,

may, for instance, describe how a plasma density profile
with a bell-shaped structure evolves in time and space.
The solution can, furthermore, be used to construct solu-
tions of coupled reaction-diffusion rate equations. Such
equations are encountered in the description of media in
which reactions between species of different kinds occur,
for example a burning fusion plasma, where deuterium
and tritium nuclei undergo reactions as well as diffusion.

B. Evolution of narrow local perturbations
of the particular solution for the plasma density

Eq. (1) becomes

Bn =V n —n
at

(3)

The purpose of this section is to study the evolution of
a narrow perturbation which we may represent initially
by the simple expression

For symmetric configurations the diffusion operator is
b,n (x,0)=En pcos[(x —x, ) /L i ], (14)

a, a
xr Bx Bx

where y =0, 1, and 2, corresponding to the dimensions d
(d =y+1). The simplest form of similarity-type solution
can be written

n (x, t)=t~P(g),

g=x/t',
(5)

(6)

where g is the similarity variable and p and v are con-
stants to be determined.

From Eqs. (3) and (4) with (5) and (6) we obtain by
matching powers of t,

p= —1, v=2 (7)

which corresponds to a similarity solution of the form

n, (x, t)=t 'p(x/t'r ) .

A class of solutions n(x, t)=n, (x, t+tp)
=(t+tp) '(()(x/(t+tp)' ) can also be generated with

t0 arbitrary, due to the time translational invariance of
Eq. (1).

The function P(g) satisfies the ordinary differential
equation

where n(x, t) denotes the unperturbed plasma density and
An (x, t) the perturbation at a certain time.

Introducing expression (15) into Eq. (3) with the
diffusion operator (4) and neglecting (b, n ) terms we ob-
tain

r)(b, n )

r)t

8 (b,n) ~ B(b,n )

X Bx
(16)

For x=x„we have [B(bn)/Bx]„„=0, if x, &0,
whereas if the perturbation occurs in the center, i.e., if
x i

——0, we have [yx 'B(b n)/dx]„„= yL ienp. W— e
1

may, accordingly, use the notation

[yx 'B(b,n )/Bx]„„= yL, en 5p„—

where 5p„denotes a Kronecker symbol, 5p„= 1 if x i
——0,

but 5p, ——0 if x, &0. We find

=exp L, (1+y5p„—)t —2 n (x, t')dt'hn (x, t) '
z

an x, o 0

where e«1,
~

x —xi
~

/Li &&~/2 and where we consid-
er L, as constant, much less than the width of the main
profile. The perturbed density may then be described by

n (x, t)=n(x, t)+b, n(x, t),

~z 0
2 dg

, +p+I' (p+0')'
(10)

The Eq. (9) has the following interesting particular solu-
tion, ' namely,

with

1
n(x, t)=

t +tp
+ 2

X Xp+ p+t +t0 t +tp

(17)

p =2(15+@+5''6+2y),
a =12(4+./6+2@),
b = —24p

(12)

(13)

There is a stationary solution for b =0, p =0, and
a =6—2y, i.e., P =(6—y ) /g, corresponding to
n (x, t)=(6—2y)/x .

The more interesting solution, where

(19)

where the constants a, b, and p are given by expressions
(11)—(13).

In expression (17) we find after integration

f ( 1 b P(t +tp)+x
n dt'= —a+ —ln

P P Pt0+X

b tx

P (Ptp+x )[P(t+tp)+x ]
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For x, =0 we obtain

bn(0 t) t

bn(0, 0) to

—q y+1
exp — t

2

where from (19) and (11)—(13)

(20)

(t+t, ) —r +A J:=0,BA 1 dP

at t+t, p at
(24)

P —A P+2(t+t, ) —M +2A'E=O,aA aP
Bt t +tp ' at

2 b 12(2++6+2y)q= —a+-
p p 15+y+5&6+2y where

(25)

or q =1.96 for y=O, (1D); q =1.92 for y= 1, (2D); and
q=1.89 for y=2, (3D), where (1D), (2D), and (3D)
denote one, two, and three dimensions, respectively.

For the unperturbed solution we have from expression
(18),

n (O, t)
n (0,0) to

to —— [n (0,0)]
2

(21)

The conclusion from expressions (20) and (21) is that the
narrow perturbation always decays faster than the origi-
nal unperturbed plasma density, and more so the smaller
the width L, is. The decay of the perturbation is slightly
faster, for the same width L„the higher the dimension
d =y+1. The validity of the results obtained is limited
by the fact that we regard L

&
as a constant, which is,

however, a good approximation for an early stage of the
development of the perturbation.

C. Evolution of the plasma density for large scale
deviations from the form of the particular solutions

n (x, t) = A (t)
2

P(t)+
t +tp

bP (t)/p
'2

xP(t)+
t +tp

For given values of the parameters a, b, p, and tp the
exact particular solution (18) expresses the evolution in

space and time (for 1D, 2D, and 3D) of a certain initial
plasma profile n (O, t). In the solution expressed by rela-
tion (18) the parameter p is a measure of the width of the
profile.

It is interesting to consider a more general form of
solution, namely,

I =2(1+y) a +2b/p =2(3+y —&6+2y ),
a +b/p

a +2b/p

and %=12(2+&6+2y). It follows from (24) and (25)
that

A =, P=p+1

t +tp t +tp
(26)

where 5 is an arbitrary constant. It should be stressed
that the solution (26) has been obtained by considering
only the situation in the central region, near x =0.

We could make a more general assumption about the
form of the solution than in (22), namely,

n (x, t)=
A 1(t)

+
x xP, (t)+ P, (t)+t +tp t +tp

'2 (27)

If we then try to determine A &, B„and P& by inserting
(27) into Eq. (3) and equate successive powers of the
denominators, without any expansion, the results come
out identical to (22) with (26), i.e., A

&

——a A, 8& ——AbP/p,
P =P&, which therefore gives the evolution of the density
in space and time exactly over the whole space domain in

one, two, and three dimensions.
It is instructive for the forthcoming analysis in the fol-

lowing sections to have been able, here, to confirm the re-
sults of an expansion in x by comparison with an exact
solution. Such solutions are in general not available. It
is, furthermore, instructive to notice that the solution can
be expressed in the following simple form, namely,

(22)

where A and P depend on time, whereas a, b, and p are
the constant parameters defined by expressions (11}—(13}.
For x =0 the relation (22) takes the form

[(t +t, )p +&]b/p
n (x, t}= a+

(t+tQ)p+b, +x (t+tp)p+b, +x

(28)

n (O, t) =—a+—A b
(23)

which has the same relative contributions from the two
main terms in the bracket of (22) as has, for x =0, the re-
lation (18).

Let us introduce the expression (22) into the original
equation (3) and consider the development in time of A
and P in the central region, i.e., for x near zero. Expand-
ing each term of the equation in x, we obtain two cou-
pled equations, one from the constant terms and the oth-
er from the x terms, in terms if A and P, namely,

from which we conclude that for different values of 6 the
solution corresponds to a manifold, all of which ap-
proach, in a conformal way the profile for which 6=0.
In the process of evolution this occurs from above, if
6 & 0; from below, if 6 & 0.

As a result of time translational invariance all profiles
in the set are equivalent and identical for the same value
of (t +to}p+b,. A shift in b, is equivalent to a change in

(t +to)p No crossi.ngs in space of neighboring profiles
occur with time for this set of solutions. For the specific
given initial shapes of the plasma profiles (including any
given value of b, ) the simultaneous effects of diffusion and
annihilating reaction processes are therefore to cause a
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decay of the particle density in every point in space as de-
scribed by relation (28). These results are intended to
shed some light on the properties and the role of the ex-
act particular solutions.

n, =n, o[cos(&2x}]' ( ~x
~

&1.11)

for 1D,

n, =n, p[Jo(&2x)]'~ (
~

x
~

&1.70)

(34)

(35)

III. EXPLOSIVE INSTABILITIES
OF REACTION-DIFFUSION EQUATIONS

It is the purpose of this section to consider reaction-
diffusion equations for situations which are explosively
unstable, i.e., where instabilities tend to grow to infinite
amplitudes in a limited period of time.

for 2D,

n, =n o[jo(+2x ) ]

=n p 2
—[J~yz(&2x)] (

~

x
~

&2.22)
(2)' t/77

(36)

A. Basic equations and assumptions for 3D, or if the real space coordinates are reintroduced
' 1/2 1/2

Consider the equation

Bn 1 8
&

Bn

dt xr Bx Bx
—bn +cn 2 (29)

n, =n, o cos
2c
a

x (
~

x
~

&1.1&a/c )

(37)

where y=0, 1, 2, corresponding to the dimension d
(d =y+1); n is assumed to be radially symmetric for the
cylindrical and spherical cases (y = 1,2) and to describe a
population density; b and c are constant coefficients with
c g 0 for explosive cases; and D is the diffusion coefficient,
which we assume to be of the form D =an, where a is a
constant coefficient.

It is convenient to introduce new variables of space and
time, accordingly

(c/a)' x —+x and ct~t .

for 1D,

n, =n, o Jo
2c

for 2D,

2a
n, =n,p&n/2

' 1/4
1 J

1 /2

1/2 ' 1/2
2c

(
~

r
~

&1.70&aic } (38)

The linear term —bn can easily be handled by introduc-
ing the transformation

N=n exp(bt}, r=b '[1—exp( —bt)], (30}

r}n 1 8 Bn 2x~n +n
clt xr Bx Bx

(31)

where N and ~ satisfy an equation which is formally iden-
tical to Eq. (29) with b =0. Thus, the solution to Eq. (29)
with b =0 can directly be extended to include the effects
of linear dissipation (or growth). In the following it
therefore suffices that we treat the case b =0.

The remaining equation can be written as

(
~

r
~

)&2.22&a/c (39)

for 3D. We notice from the exact solutions, (37)—(39),
that the equilibria become narrower as the coefficient c,
representing the nonlinearity becomes larger, or when the
diffusion, represented by a becomes smaller.

For explosive-type solutions we take

n (x, t) =(to t ) '(()(x) —. (40)

We then obtain the following ordinary differential equa-
tion for P(x}:

82
+ (41)

ax2 x Bx

or

()n 1 ~ (jn+— +n
Bt 2 Qx2 2 x Bx

(32)
P =—,

' [1+cos(x /+2 }], (42)

which for @=0, i.e., for the 1D case, has a particular
solution

B. Equilibria and explosive localized
solutions (ELS) in one, two, and three dimensions

For [Bn (x, t)]/(Bt)=—0 (all x), the remaining equation
for n =n, (x, t) is

or

P = T4 cos [x /(2&2) ],
corresponding to

(43)

d2n2 dn2
+~ +2n,'=0 (y =0, 1,2),

dx x dx
(33)

no 2 c
cos x

1 ——'cnot Sa4

1/2

(44}

which is linear in n, .
We obtain the following expressions for the equilibria

(
~

x
~

&
~
xp

~

where xp is the first zero from the center),
namely,

We notice the interesting fact that this simple exact solu-
tion describes an explosive growth, which develops in
time with a preservation in shape of a certain spatial dis-
tribution.
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For the corresponding 2D and 3D situations, the fol-

lowing solutions can be constructed, namely:
C. Evolution of narrow deformations

of the initial shape of ELS

cos (x/L), L =[2(4+y)]'~
3

(45) Consider a perturbation of the following initial form:

which for y =0 is identical to the exact solution (43},but
for y=1,2 are approximative such that BP/Bx =0 for
x =0 and x =(n /2)L satisfying to lowest order Eq. (41)
in the neighborhood of these points and bridging the in-
termediate domain in an approximate way.

It is possible to improve the solutions in the 2D and
3D cases. For our forthcoming purpose of studying the
dynamics of the central region it suSces to use the ex-
pression

cos x/L — (x/L )34+y
3 12 3+y

bn(x, O)=enpcos[(x xi)lL, ], (47)

where e «1, Li «L =[2(4+y)]', and
~

x —x,
~

/L &&m./2. Assume that the perturbed state can be de-
scribed by

n (x, t)=n(x, t)+An(x, t), (4g)

where n (x, t) denotes the unperturbed state. Introducing
the expression (48) into Eq. (32), neglecting the (b,n)
terms, and considering L, as a constant, one obtains for
X X),

L =[2(4+y }]'" (46}

which satisfies Eq. (41) to order x in the central region,
x =0, for y = 1,2 and which coincides with the exact solu-
tion for y=0.

b,n(x„t)
1 — not

hn (x i, 0) 4+ y

where

'q

(49)

sin[(x —x i ) /L i ]q= L, ' —2— p+xdx L, Z =Z)
(50)

and where the last term in the large parentheses of (50) is
zero if x,&0.

Taking for P in expression (50) the form (43) we obtain

4+L 2(1+ ) 2+'+y +y,

I

cases, respectively, which means that the profile is
"stable" for narrow perturbations in the center if L, /L is
less than the values given for L „/L.

In the region of maximum gradient (x, = ,'m.L ) of the-
main profile the corresponding critical limits of L, be-
come

whereas if we consider the region of maximum gradient
of P, where xi ——(n /4)[2(4+y)]', we have L), —— 2——4

m. 4+y

' —1/2

(54)

L-2 2+ 4
4+y

4+y
6

(52)

We notice that the sign of q determines whether or not
the perturbation will grow in time. For q & 0 the pertur-
bation will vanish as t ~[(4+y )/3]np, whereas for q & 0
the tendency is that the perturbation will grow on a time
scale that characterizes the explosive growth of the main
profile.

It follows that a narrow perturbation will develop ac-
cording to the size of its width L, . If L, is smaller than a
critical value L„ the perturbation will vanish in the
course of time, whereas if L» L„the perturbation will

grow.
In the center of the main profile the critical limit of L,

1S

L;, =[2(l+y) ' —(4+y) '] '~ (x, =0), (53)

which should be compared to the width L of the main
profile L = [2(4+y )]' for different dimensions
(y=0, 1,2). We then obtain (xi —0}, L) /L =0.2'7

(y=O), 0.35 (y= 1), 0.41 (y=2), in the 1D, 2D, and 3D

D. Dynamic confluence with ELS for profiles
of various initial widths and amplitudes;

the KLS as a natural nonlinear entity

When an initial profile has a width that does not coin-
cide with an ELS it is an interesting problem to consider
whether or not the profile will have a tendency to ap-
proach that of an ELS. Let us try to describe the evolu-
tion in time of a profile, which has an initial shape

F(x /L p }=cos x /L p
— (x /L p )

12 3+y
(55)

The critical widths of the narrow perturbations as related
to the width of the main profile are the following:
L„/L =0.25 (y=O), 0.24 (y=1), 0.23 (y=2), which
means that the profile is stable for narrow perturbations
in the region of steep gradient of the main profile if
L, /L &

—,', and that the limit is about the same for all
three dimensions.
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where Lo differs from that of an ELS, i.e., Lo&2(4+y ),
and to consider the change in time of L =L(t) as well as
of an amplitude A = A (t), such that

n = AF(x/L) . (56)

Introducing the expression (56) into the original equation
(32), we obtain

F —AF' = A2 (F')2+FF"+ FF' +F21

dt L' Bt L' x/L (57)

where the prime indicates derivation with regard to x /L
Limiting our study to the central region and retaining

terms up to second order in x/L the following equations
result.

(i) From the constant terms,

Introducing the amplitude A from Eq. (61) into the
right-hand side (rhs) of Eq. (6) and integrating we obtain
the following relation between A and L, namely,

2 '((+y)/(4+y) '
2 3/(4+y)

A0 2(4+y) —L'
(}A 2 1(1+y )

t3t
(58)

[L2 & 2(4+y )]

(62)

(ii} From the x terms,

+2A (5+2y) —1
2dL 1 (}A 1

LBt A (}t
(59)

(60)

and

1 BL
Bt

= A [2(4+y ) /L —1] . (61)

By combining Eqs. (58) and (59) we can conveniently
write the coupled equations in the following forms:

= —A [2(1+y )/L —1]
1 aA 2

A t

[2(4+y ) L 2 ]3/(4+y)

X [2(4+y) —L']"+""'+" (63)

Therefore BL /(3t~0 when L ~2(4+y), i.e., when
g ~00.

From Eq. (60} we notice that (}A /(3t ~0 when
L ~2(1+y), which corresponds to a minimum in A,
since from relation (60}we have

where A0 is the initial amplitude, and L0 corresponds to
the initial width. From Eq. (61) it furthermore follows
with the aid of Eq. (62) that

2
' (1+y)/(4+y)

(}t

2
~min Lo

A() 2(1+y )
I (

) )[2(4+y ) L 2 ] )
3/(4+y)

((} A/Bt ), „,=2A (1+y)(L (}L /(}t), „,~0.
The minimum value of A can be found from expression (62) with L =2(1+ y),

( 1+y)/(4+ y)

(64)

From relation (64) we notice that for small Lo, i.e., very
narrow initial profiles, the ratio A;„/Ao depends on Lo
as Am;n/A0 ——1.04L0, 0.78L0, and 0.58L0 for 1D,
2D, and 3D (y =0, 1,2), situations, respectively.

In order to relate the dynamics of the system to time
explicitly, we use Eq. (63) and choose to express time as a
function of L, accordingly,

A(L 2
) A

—) (L 2 }
—()+y)/(4+y)

0 0 0

X [2(4+y) L] /( +y)— (67)

K

Introducing y =L, yo =Lo, y „=2(4+y ), and
tc =(1+ y)/(4+y ), the integral I can be expressed as

t =A(L() )I(L ), (65) dy', (68)

where

and

' (1+y)/(4+y)

dL (66)
L2 I 2

I(L )=
t-o 2(4+y ) L— where z= —,', —,', or —,', for 1D, 2D, or 3D (y=0, 1,2), re-

spectively, and y =8, 10, or 12, correspondingly. By
means of suitable transformations, e.g., [y/(y „—y )]"=s,
it is possible to carry out the integration of (68) for the
various values of a.

For y =0, z= —,', the 1D case, we obtain
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so sI=8
1+sp 1+s

e2 $2+se2+I $0+$00'2+ I
+ ln —ln

s —sV2+1 so —sov 2+1

$&2+2 arctan
1 —s

Sp 2—arctan +y$2
(69)

where y=m if sp & 1 &s, but q=0 otherwise.
For y =1, ~=—'„ the 2D case, it is convenient to intro-

duce the transformation [y (y „—y )]'~ =u. In this case
we then obtain

2
upI=y„

1+u,'
2 I

u ~d, u

1+u "0 1+(u')
(70)

and that for u & 1 we can expand the integrand in the in-
tegral of (70) to determine I =2. 18, whereas

min

I = 13.0.
For y =2, ~= —,', the 3D case, we find the exact expres-

sion

~ = [yo(12 —yo)]'"—[y(» —y)]'"
' 1/2

+ 12 arctan

—arctan

12—y

yp

12—yp

1/2

(71)

We notice that for small up and y =y„, i.e., u ~ 00, we
have

f
Idu', = . =0 65,

o 1+(u')s 5sin(2m/5)

profile, i.e., L « 2(1+y ) of high amplitude, i.e.,

Ao » A;„. According to relations (60) and (61) A will
start to decrease with time until it reaches a minimum
A = A;„ for L =2(1+@),then progress and increase to
infinity for L =2(4+y), whereas in the same period of
time L will increase smoothly and reach a maximum
where L =2(4+y). It follows from relation (60) with
L =2(4+y) that BA/Bt =[3/(4+y)]A, i.e., the
profile, the dynamics of which we consider, will approach
the growth rate as well as the width of the ELS and be-
corne asymptotically confluent with it at a finite time.

It is important to emphasize, however, that a minimum
reached for the amplitude in the central region does not
correspond to a situation where local amplitude minima
occur simultaneously for all points in space. The equili-
bria described by expressions (34)—(39) will thus not be
reached in the dynamic process we are here considering.
It therefore seems that the ELS, here introduced, plays a
more fundamental role than the time-independent equili-
bria. ELS may, in fact, be considered, at least as regards
small-scale perturbations or dynamic deviations, as dy-
namic equilibria with pronounced properties of stability.

So far we have emphasized the behavior of narrow de-
viations from ELS or the evolution of narrow initial
profiles. It is easy to argue in an analogous way about the
dynamic evolution of a profile which is initially broader
than ELS, i.e., for which Lo &2(4+y). For such a
profile the width will shrink in the process of evolution,
in accordance with relation (61) until it reaches the "dy-
namic equilibrium" where L =2(4+y ).

It thus seems that the dynamic evolution of a profile
which differs from ELS initially, and which is governed in
its evolution by Eq. (31) will approach ELS asymptotical-
ly. Computer experiments support this view and indicate
that in the course of dynamic evolution the profile may
develop from an initial form and finally adjust to that of
ELS. It therefore seems justified to regard ELS as a natu-
ral entity of a nonlinear dynamic system governed by the
reaction-diffusion rate equation (31).

From the above formulas, (65)—(71), the times corre-
sponding to A;„and A„can be calculated in each
separate case and for any dimension (y =0, 1,2).

If we consider again small values of L p, i.e., very nar-
row initial profiles, we find for the ratio of the time t„

min

for reaching A;„, and the time t „ for reaching infinite
values of A the following figures:

=0.13 (y =0)

=0.17 (y = 1)

=0.18 (y =2) (72)

for the 1D, 2D, and 3D cases, respectively, in full agree-
ment with direct numerical solution of the coupled equa-
tions (60) and (61) by computer.

The main features of the evolution of a certain profile,
that is, for example, more narrow than an ELS in the ini-
tial state, can thus be understood from purely analytic
considerations. Assume that we start with a narrow

IV. CONCLUSIONS

It is demonstrated analytically that the plasma dynam-
ic evolution of density profiles of various initial widths
and amplitudes will approach asymptotically to charac-
teristic profiles of specific shapes, widths, and amplitudes,
as determined by particular solutions of reaction-
diffusion equations in one, two, and three dimensions.
The dynamics is assumed to be governed by simultaneous
processes of diffusion and reactions, represented in the
models by quadratic nonlinearities. The profiles may
represent distributions in configuration space of particles,
e.g. , electrons and ions, or plasmons as well as species of
other populations. Particular annihilation types as well
as creation types of reactions, which may lead to certain
explosive localized structures, are considered. The re-
sults, which have been confirmed by computer simula-
tions, are of physical significance for practical applica-
tions concerning, e.g., hot tritium-deuterium burning
fusion plasmas or free-energy plasma systems of, e.g. ,
beam-plasma interaction type. Other applications re-
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garding the case of creative nonlinearity are found, e.g. ,
in studies on ionized media, where ionization of ions by
hot electrons produces new electrons.

The basic equations (1) and (29) do not have the Pain-
leve property (absence of movable singularities other
than simple poles) for the corresponding reduced ordi-
nary differential equations. It would, accordingly, seem
as if the possibilities of finding explicit solutions for these
equations were limited. The inverse scattering transform
technique (IST), extensively used for solitons would not
be applicable either. Nonetheless, exact particular solu-
tions are found for the reaction-diffusion equation,
representing states which are of physical significance. '

The particular solution discovered in this investigation
for the reaction-diffusion equation with creative reaction
term, for one, two, and three spatial dimensions,
represents an explosive localized state, ELS, the ampli-
tude of which grows explosively in time while the shape
of the ELS is being preserved in the process of evolution.
The ELS, (43)—(46), may accordingly be extended to
represent periodic structures, polytons, in one, two, and
three dimensions, by repetition in space of a single local-
ized ELS, a singleton.

The ELS has been discovered to be of fundamental
significance in that other states "nearby" are attracted to
it. The ELS has, furthermore, been found to be stable
against "narrow" perturbations (the width of the pertur-
bation 5 —,

' the width of the main profile) in one, two, and
three dimensions. The analysis of the reaction-diffusion
equation, presented here, and the role of the ELS,
discovered here, are important steps forward for under-
standing the dynamic properties of media described by
this equation.

New possibilities are foreseen for further investigations
of several new issues such as studies of the interaction be-
tween two or several ELS's, influence of initial and
boundary conditions, generalized forms, and correspond-
ing generalized solutions of the original equation, includ-
ing more general diffusion and reaction terms, and exten-
sions to differential-integral reaction-diffusion equa-
tions. ' These questions are being addressed by the au-
thor and are due to appear in forthcoming publications.
The results of the present work, furthermore, give indica-
tions and check points for new computer experiments of
principal interest and practical significance for laboratory
experiments.
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