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Three-dimensional convection in a binary-fluid mixture is studied near the onset of the steady-
state instability using symmetric bifurcation theory. Idealized boundary conditions are assumed in

which the temperature and solute concentration are fixed at top and bottom, with stress-free bound-

ary conditions on the velocity field. The effects of sidewalls are neglected. The problem is formulat-
ed as a bifurcation problem on a doubly periodic lattice, with two cases considered in detail: the
square lattice and the hexagonal lattice. Symmetry considerations determine the form of the ordi-

nary differential equations governing the dynamics of the neutrally stable modes. The relevant
coe5cients of these equations are calculated from the governing binary-Quid equations. The bifur-
cation diagrams are given for all physical values of the separation ratio, the Lewis number, and the
Prandtl number. It is found that supercritical rolls are stable to all perturbations lying on the
square and hexagonal lattices. Squares, hexagons, and triangles are never stable for the physically
accessible regions of parameter space.

I. INTRODUCTION

Rayleigh-Benard convection has been extensively stud-
ied as a relatively simple pattern forming system. These
studies have emphasized those solutions that are spatially
periodic along with their stability properties. Disordered
patterns have begun to be studied only relatively recently.
The emphasis on spatially periodic patterns stems from
the prevalence of approximately periodic patterns in
carefully controlled experiments. The observed patterns
depend on the specifics of the system. Thus rolls are
stable in systems with a reflection symmetry in the layer
midplane, ' while stable hexagons appear in a hysteretic
bifurcation in systems in which small non-Boussinesq
effects are important. Stable squares are found in con-
vection with a strongly temperature-dependent viscosity
or in Boussinesq convection between thermally insulating
plates. 4

The initial bifurcation leading to the above patterns is
a steady-state one. Recent years have seen increasing in-
terest in pattern formation arising from a Hopf bifurca-
tion, and this has lead investigators to study convection
in binary fluid mixtures. These experiments have resulted
in the discovery of a number of novel phenomena, the
most interesting being the variety of travelling patterns
that are possible. In addition, stationary patterns in
three dimensions have also been investigated. Of particu-
lar interest here is the transition between squares and
rolls observed by Moses and Steinberg, and Le Gal, Po-
cheau, and Croquette. Hexagons, though possible in
systems with midplane reflection symmetry, have not
been found.

The present paper is a first step towards an understand-
ing of the relative stability of various three-dimensional
time-independent patterns in binary fluid mixtures. We
consider an unbounded Boussinesq fluid confined between
two parallel highly conducting plates, the lower of which
is maintained at a higher temperature than the upper.
The resulting equations are then equivariant under the
group I =E( 2 }XZz, where E(2) is the Euclidean group

that preserves the horizontal plane, and Zz is a reflection
in the midplane of the layer. In order to apply the results
of bifurcation theory, we seek solutions that are doubly
periodic in the plane and lie either on the square or hex-
agonal lattices. This formulation introduces the compact
groups I z=D4XT XZ2 or I H=D6XT XZ2 and
renders the number of critical eigenvalues finite. The
mathematical techniques used to study such problems are
those of equivariant bifurcation theory and singularity
theory, and enable us to rigorously establish the relative
stability between rolls and squares on the square lattice,
and between rolls, hexagons, regular triangles, and rec-
tangles on the hexagonal lattice. These techniques have
already been used to classify the secondary bifurcations
that occur on the hexagonal lattice without reflection
symmetry ' and thereby to complete the analysis begun
by Busse.

In Sec. II we introduce the basic equations and the
boundary conditions, and indicate the resulting sym-
metries. The results of linear stability theory are also
briefly summarized. In Sec. III the mathematical results
concerning the form of the amplitude equations on the
two lattices are given. This analysis provides an abstract
classification of the possible behavior and depends only
on the symmetries. It indicates exactly what perturba-
tion calculations need to be done in order that specific
predictions about a given physical system can be made.
These calculations are performed in Sec. IV and the re-
sults discussed in Sec. V. With the boundary conditions
considered we find that in both cases the only possible
stable pattern near onset is rolls. This supports the sug-
gestion that the zero mass flux boundary condition is
essential in stabilizing squares. "

II. FORMULATION OF THE PROBLEM

A. Basic equations

The nondimensionalized Boussinesq equations describ-
ing convection in a binary fluid take the form" '
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——crV2 u —Ro(8+SX)y+Vp = —u Vu, (2. 1a}
Bt

——V 0—w = —u-VO,B 2

Bt
(2.1b)

B 2——~V X+~V 0—w = —u. VX,2

at
(2.1c)

V.u=0 . (2.1(l)

Here u—:(u, v, w) is the velocity field in (x„x2,y) coordi-
nates, 0 and X denote nondimensional departures of the
temperature and concentration from their conduction
profiles, and p is the pressure perturbation. The equa-
tions depend on four dimensionless parameters, the
Prandtl and Lewis numbers o. and ~, the Rayleigh num-
ber R, and the separation ratio S. The separation ratio S
is proportional to the Soret coefficient. When S is posi-
tive the heavier solute migrates towards the colder (upper
plate), adding to the destabilizing effect of the imposed
temperature difference. When S is negative the solute
distribution set up by the Soret effect opposes the desta-
bilizing effect of the temperature difference; consequently,
when S is sufficiently negative the initial instability can
occur via a Hopf bifurcation. The Dufour effect has been
neglected.

B. Boundary conditions

Equations (2. 1) are supplemented with stress-free
boundary conditions and fixed temperature and concen-
tration at the top and bottom plates:

w=O=X= = =0 ony=0 1.BQ BU

By By
(2.2)

Although these boundary conditions are not appropriate
to the experiments carried out thus far, they have the ad-
vantage that analytical calculations can be performed. In
addition they allow us to compare our results with other
problems where similar boundary conditions have been
used.

(x„x2)~(x,+X),x2+&2),

(u, v, w,p, 8, X)~(u, v, w, p, O, X) .
(2.3a)

In addition, the equations are equivariant with respect to
reAection in the midplane, i.e., under the operation

(u, v, w, p, O, X)~(u, v, —w, p, —0, —X) .

(2.3b)

Consequently the symmetry group of the problem is the
group E(2) XZz.

C. Symmetries

With the boundary conditions (2.2) the equations of
motion (2.1) are equivariant under the group E(2) of
translations and rotations of the plane. For example,
translations act by

D. Linear stability properties

Equations (2.1) and (2.2) admit the conduction solution
(u, p, H, X)=(0,0,0,0). As the Rayleigh number is in-
creased this solution loses stability at either a steady-state
bifurcation (R ) or a Hopf bifurcation (R ~"); both
critical Rayleigh numbers are minimized by the same
wave number k, =~/&2, and are then given by"'

277T 7

4 r+S(&+1)
27m. (o +r)(1+cr }(1+r)

4 o[1+o(S + 1)]
(2.5)

The steady-state bifurcation sets in first provided

Sg
—r (o+1)

o +r(o+1)(v+1) (2.6)

Note that with other boundary conditions the two critical
Rayleigh numbers will be minimized by different wave
numbers. ' ' In particular, this is the case for no-slip
boundary conditions that are appropriate to the recent
experiments. ' Indeed, for these boundary conditions
and large enough positive S the critical wave number for
the steady-state bifurcation vanishes, and the first insta-
bility has infinite wavelength. '

III. STEADY-STATE BIFURCATIONS ON SQUARE
AND HEXAGONAL LATTICES

f(x,y)=f(x+n, a, +n, a, ,y), x—=(x„x,), (3.1)

where a, , a2 are generators of the lattice and n &, n 2 are in-

tegers. This assumption reduces the symmetry of the
problem (2.1) and (2.2) to the subgroup f'XT XZ2 of
E(2)X Zz, where f' is the symmetry of a unit cell, and the
two torus describes the action of translations on doubly
periodic functions of the form (3.1). The solutions can be
written in the form

n&, n2

(3.2)

where k, , k2 are wave vectors on the reciprocal lattice:
k, .a. =2m5;. . The complex amplitudes z„„specify the

pattern. We choose
~
I(,

~

=k, . There are three possible
lattices: square, hexagonal, and rhombic. In this paper

As posed there are two obstructions to the application
of rigorous results from bifurcation theory. The first
arises from the fact that the Euclidean group is noncom-
pact. Consequently, the kernel of the linear operator
describing the stability properties of the conduction state
is infinite dimensional. In particular, the linear theory,
while predicting the wave number k, of the marginal
modes, leaves their orientation unspecified, i.e., there is a
whole circle of marginally stable modes. The second
difficulty arises from the fact that the marginally stable
eigenvalues at R are not isolated: stable eigenvalues ac-
cumulate at zero. Consequently, for R & R a whole
band of unstable wave numbers appears. Both problems
are overcome when we restrict attention to spatially
periodic solutions in the plane of the form
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we consider the first two, for which the group f' is D4
and D6, respectively. Thus the symmetry groups for the
problem (2.1) and (2.2) on square and hexagonal lattices
are

provided that the following nondegeneracy conditions
hold for (3.8):

p&&0, p&&0, q&0, p&&q at X=K=A, =O,

I,=D, x T'xZ„ I H =D, x T'xz, . (3.3)
(3.10)

A. Square lattice

k) =kcx], k2=kcx (3.4)

where x&, x2 denote orthonormal vectors in the horizontal
plane. Then the kernel of the linearized problem at
R Rss is

w =I(z, e ' '+zze ' '+c.c. ) sin(ny)
~
(z, ,z2)EC ),

The fundamental wave vectors of the square lattice
may be chosen to be

(3.11)

From the linear problem we know that the trivial solu-
tion is stable subcritically, and therefore that so=+ l.

There are two types of nontrivial solutions to (3.9) cor-
responding to rolls (R },and squares (S):
(R),

eo ——sgn(p&), s, =sgn(q), m =

where the subscripts denote partial derivatives. The
zeros of n are in one-to-one correspondence with those of
(3.8). The coefficients m„so, s, are related to coefficients
in the Taylor expansion of (3.8) about r

~
r——

2
——A. =0,

(3.5) r~&0, r&=0, (3.12a)

(3.6)

where m is the vertical velocity and c.c. denotes the com-
plex conjugate. The center manifold theorem' justifies a
description of the dynamics near z=(z„z2)=O, R =Rss
in terms of ordinary differential equations for the com-
plex amplitudes,

i=g(z, A, ), g: C XR~C

(S),

P) =rz+0 . (3.12b}

These solutions may be determined in terms of the coor-
dinates of the original equivariant vector field (3.8) by re-
stricting its Taylor expansion to the invariant subspaces
(3.12). Thus for (R),

where A, =R —R . The form of these equations is deter-
mined by the symmetry I &.

A translation in the horizontal (x&,xz) plane induces
the following action on the amplitudes:

1) = Px
+0(A, ), r2 ——0,2

and for (S),

(3.13a)

(s, t) (z&,zz)~(e "z&,e "zz), (s, t)E T (3.7a) r) r2 ————— +8(A. ) .
pgA.

2pN
(3.13b)

9„(z„zz)~(z2,z, ),
o „(z„zz)~(zt,z2) .

(3.7b)

(3.7c)

The Zz-midplane reflection which takes w (x,y)
—+ —w (x, 1 —y} acts on C by I. This acti—on is
equivalent to a translation (m., m ) G T, so that
D4)& T )&Z2=D4)(T . In terms of real variables defined

by z =r e ',j=1,2, the most general (D4XT )

equivariant vector Geld on lR is'

l'j Pi

=s,, +q~ (3.8)
P2

The group D4 is generated by a 90' rotation r90. , and by a
reflection o „which takes x2~ —x2. The corresponding
action on C is

A

e,=+ 1
m&0

R

0&m&v,

S. '.

In Fig. 1 the bifurcation diagrams associated with the
normal form (3.9) are shown in the various regions of the
( m, s, } space. Note that both branches must be supercrit-
ical in order that there be a stable nontrivial solution.
Which of the two branches is actually stable depends on
the value of e, . The values of the coefficients m, e&as.

n(r(, r2, A, ) =(col, +mN) +e,5
72 Pp

m+0, E)

(3.9)

where p and q are smooth real-valued functions of
N=r, +r2, 6=5 =(rz r~ ), and A.. Obs—erve that the
equations for the amplitudes (r„r2 ) have decoupled from
the phase equations and that they have D4 symmetry. '

The singularity theory normal form of the steady-state
bifurcation problem is of finite order and is given by'

Ti

t1 —1

c,(m&0

R.,

m)0

FIG. 1. Bifurcation diagrams for eo ——+1 and all values of
the coefficients c,

&
and m in the general D4-equivariant normal

form (3.9) showing the variation in amplitude with the bifurca-
tion parameter A, for rolls (R) and squares (S). The trivial solu-

tion, corresponding to r, =r& ——0, is indicated by a horizontal
line in the diagrams. Stable solutions are denoted by a solid line
and unstable solutions by a dashed line.



38 PA i aERN SELECTION IN STEADY BINARY-FLUID CONVECTION 1471

functions of the physical parameters (S,r, a ) may be cal-
culated from the partial differential equations (2.1} and
(2.2) by considering steady-state solutions in the form of
rolls and squares. Let Az and As denote the amplitudes
of the rolls and squares. Then for small Az and As we

may expand the Rayleigh number about its critical value
R =Rss + A&R2 + . , and likewise for squares. Thus
for (R),

I] «(0)&0, I] (0)+I3(0)~0,

2!, (0)+I (0)&0, 31, (0)+I (0)~0,

l3(0)&0, m, (0)+0 .

(3.19)

These four solutions correspond to rolls (R), hexagons,
(H), regular triangles (RT), and a rectangular pattern
called the patchwork quilt (PQ):
(R),

A + ~ 0 ~

R"
2

and for (S),

A + ~ ~ ~

S RS
2

(3.14a)

(3.14b)

z]&0, z2 ——z3 ——0, z] EE,
(H),

z] —z2 z3+0, z, EE
(RT),

(3.20a)

(3.20b)

Direct comparison of (3.14) with (3.13) together with Eqs.
(3.11) now determines e] and m in terms of R 2 and R 2,

z] z2 z3+0, iz, EE

(PQ),

(3.20c)

s] ——sgn(2R 2
—R 2 ),
S

C, 1R 2

R2 —2R2

The quantities R 2 and R 2 are calculated in Sec. IV.

(3.15) z] —0 z2 z3+0, z2 EE (3.20d)

z, =z](I].+a]r]+u, )+cqz2z3+O(z, k, z, kz ), (3.21)

Upon rescaling time, the bifurcation parameter, and the
amplitudes, the vector field takes the form

B. Hexagonal lattice

In this case the center manifold is spanned by three
complex amplitudes with the kernel of the linearized
equations at R =R given by

a& —1, a& ——,', a& —
—,', c=+1,

~here

I, (0)
c=sgn[m5(0)13(0}] .

3o
(3.22)

ik x ik (+3x —x )/2
w = I(z, e ' ' +z, e '

—ik (+3x&+x& )/2
+z3e

+c.c. ) sin(ny)
~
(z],z2, Z3)G]L' ] (3.16)

The action of D6)& T on C may be determined in a simi-
lar fashion to that described for the square lattice. How-
ever, in this case the Z2-midplane re6ection is not
equivalent to a translation so that the appropriate sym-
metry group is D6X T XZ2. The general (D6X T XZ2)
equivariant vector field is'

i ] =z, (I, +u, 13+u ]l5 )+z2z3q(m 3+u ] m 7+ u ]m 9 ),

c=+1

a(-1

t, (o)&o

PQ

H

- RT

t, (o)&o

R,
PQ
H-

RT-

The transformation which puts the amplitude equations
in this form reverses the direction of time and changes
the sign of A, if l3(0) &0. The bifurcation diagrams are
given in Fig. 2 for various values of a and c =+1 [for
c = —1, the (H) and (RT) branches are interchanged].
Note that a stable solution exists only when all solution

(3.17)

with the corresponding equations for z2 and z3 obtained
by cyclic permutation. The quantities 1., and m are
functions of A, and the invariants,

-1&a&-1/2

, PQ

, H

- RT

PQ,

H,
R

RT

0 1=u1+u2+u3

~2:u 1u2+u2u3+u3u]

03 u 1u2u3 j

Z]Z223 +Z]Z223

(3.18)

-1/2&a&-1/3

a&-1/3

PQ

RT
H .'i

PQ
R-

H
/ H.

RT

PQ/

. R

RT

, H

PQ

R

There are four nontrivial solutions to i=g(z, A, )=0,
z (z] z2 z3 ), on a neighborhood of the bifurcation point
(z, i, )=0, provided the following nondegeneracy condi-
tions hold:

FIG. 2. Bifurcation diagrams for c=+ 1 and all values of the
coefficient a in the general I H- equivariant vector field (3.21).
The diagrams for c = —1 are obtained by interchanging the (H)
and (RT) branches.



1472 MARY SILBER AND EDGAR KNOBLOCH 38

branches bifurcate supercritically, and that the solution
(PQ) is never stable on a neighborhood of the initial bifur-
cation.

The coefficient a and the sign of l&(0) may be comput-
ed from a third-order perturbation calculation of rolls
and hexagons. As before, we let Az and AH denote the
amplitudes of rolls and hexagons. Then for (R),

A. =R —R

Here Lo and L1 are the linear operators

Lo ——rV —R [r+S(1+~)]Vi, ,

L, =[r+S(1+3-)]V'„,

where

(4.2)

(4.3)

2 A
A~ ——

RR
(3.23a) 2

B' B'
+

B~2 B 2
(4.4)

and for (I),
2

AH ——
RH

(3.23b)

These solutions may be compared with the corresponding
solutions of the equivariant vector field (3.17) restricted
to the invariant subspaces of rolls and hexagons:

(R),

Ni(u, u), N2(u, 8), and N3(u, X) represent the nonlinear
terms

2

N, (u, u)= —V Vi, (u Vw) — (u Vu)
Bx,By

(u Vv)
Bxz

l1~A,
zi ——— ' +O(A, ), zz=z3 ——0,

(1, ~13)
(3.24a) Nz(u, 8)= —r(1+S)V&(u V8),

N3(u, X)= —SV&(u VX) .

(4.5)

z] zz z3 — +O(12)
(31, +13 )

(3.24b)

sgn(!3(0) ) =sgn(R 2H 3R z~ ) . — (3.25)

The quantity R 2 is calculated in Sec. IV.
The computation of the coeScient c requires fifth-

order perturbative calculations of the hexagons and regu-
lar triangles. Such a calculation is necessary in order to
distinguish between these two branches in the bifurcation
diagrams. Since we find that neither of these solutions is
ever stable for the physically accessible regions of param-
eter space, no fifth-order calculations have been done.

IV. CALCULATIONS AND RESULTS

In order to determine the coeScients m and c, in the
normal form (3.9) and the coefficient a in the vector field
(3.21), we consider the steady-state form of Eqs. (2.1) and
look for solutions in the form of rolls, squares, and hexa-
gons. In doing these calculations it is convenient to
decouple the linear part of the equation for the vertical
velocity field w from the other fields. This is accom-
plished by taking the curl of Eq. (2.1a) twice, thereby el-
iminating the pressure p and the linear terms involving u
and v from the y component. Finally, linear terms in 0
and X are eliminated by operating with ~V on the result-
ing equation. The following steady-state equation for w is
obtained:

The trivial solution is stable subcritically so that
sgn(li z)=+1. On comparing (3.23) and (3.24} together
with Eq. (3.22) we obtain

R2 —R2
HR2 —3R2

The steady-state equations for u, v, 0, and X are

B2 1 B B
V u —R (8+SX)=— + (u Vu)

By Bx1 0 By
2

(u Vv)
Bx1Bx2

2

(u Vw)
Bx,By

B2 Bz
V v —R (8+SX)=— + (u Vv)

By Bxz By Bx

(u Vu)
BxiBxz

(u Vw), (4.6)
xzBy

W = AW1+ A W2+ A W3+

0= A01+ A 202+ A 303+

and likewise for u, v, and X, where

R =R +AR, +A R2+. . .

(4.7)

(4.8}

Here A denotes the pattern amplitude. At leading order
in A, Eq. (4.1) has solutions in the form of rolls, squares,
and hexagons:

(R),
w, = cos(k, x, ) sin(~y), (4.9a)

V 8+w =u V8, 7(V X—V 8)+w=u VX, V u=0.
Near R solutions to Eqs. (4.1) and (4.6) with the

boundary conditions (2.2) may be obtained perturbative-
ly,

Low =EL,w+N, (u, u)+R [N2(u, 8)+N3(u, X)], (4.1)

where w i
= [ cos(k, x, )+ cos(k, x2)] sin(my ) . (4.9b)
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(H),

w, = [ cos(k, x, )+ cos[k, (&3X2—x, )/2]

+ cos[k, (v'3x2+x, )/2]) sin(my ) .

rSS R SS

27m r+S (r+ 1)
(4.16)

(4.9c) For rolls, the corresponding solutions to Eq. (4.6) are

2 Qz&Qy' 2 /+2'
with similar expressions holding for rolls and squares.

At second order, Eq. (4.1) has the form

Lpw2 =R ~L &w~ +N&(u), u))

+R [N2(u), 8))+Nl(u), X))] . (4.11)

This is an equation for wz, with R
&

determined by the
condition that the solution be spatially periodic. There-
fore, all terms on the right-hand side of Eq. (4.11) lying in
the kernel of the operator I.o must vanish. For each of
the solutions considered none of the nonlinear terms in
(4.11}lie in the kernel of Lp. It follows that

RR, =O, R', =0, RH=O. (4.12)

This condition is a consequence of symmetry as discussed
in Sec. III. Equation (4.11) has solutions:

(R),

In the case of hexagons, Eqs. (4.6) are solved at linear or-
der by

2w, 2(1+r)w,
0) y X]

3m-2 3~2
(4.10)

R R
Q2 =U2 =0,

02 ——1
sin(2my ),

12m

(r +r+1)
sin 2~y

12m P

s (r +r+1)
30rr r

X sin(2my ) .

677r( r+ 1 )a
r'+r+1

Finally, the solutions in the case of hexagons are
r

4 agt 4 ag2
'a cos(2ny ),

while for squares,

a'u ~

ay axe

a2w S

ay ax2

82 —— [—5+ (6m a —2)f (x „x2 )] sin(2my ),s 1

30m

(4.17)

(4.18)

W2 =0,R

(S),
(4.13a)

4 agl 4 ag2
U2= —.Pla. +3.P2a cos(2my ),

(4.19)

w2 ——af(x, ,x2) sin(2ny) (4.13b)
(2mPl —1) (6rrP2 1)—

Hq- g)+ g2 sin(2ny ),
4m 9m. 33m3

(H),

w2 =[P,g)(x),x2)+P2g2(x), x2)] sin(2ny), (4.13c)

where

(r +r+1) 2m.r(r+ 1)P,
+ —1 g)4 9 r'+r+1

f (x~,x2)= cos(k, x&+k,x2)+ cos(k, x, —k,x, ),
gl(x»x2) = cos(k, x, )+ cos[k, (v'3X2 —x, )/2]

(4.14)+ cos[k, (v'3X2+x, )/2],
g2(x»x2) = cos[k, (~3X2+3x, )/2]

+ cos[k, (&3X2—3x, )/2]+ cos(&3k,x2),

1

+33
6m r(r+ 1)P, —1 g2 sin(2~y)+r+1

(4.20)

At third order, Eq. (4.1) has the form

pwl =R2L, w, +R [N2(u, , 82)+N2(u2, 8, )

+Nl(u„X2)+Nl( 2, , )]

+N, (u, , u2)+N, (u2, u, ) .

and

6 5 3 S ss1+—r
473rr cr 2

3 1 S ss+—1+—r
26m. 2o 2

(4.15)

RR2 ——
27rr'

4S

r'+S(r'+ r'+r+1}
r[r+S (r+1)]' (4.21a)

12 R 473m
R2 — R2+5' 32

ar (4.21b)

The solvability condition determines R2 for rolls,
squares, and hexagons. We obtain

where

9 11 3 S Bs

1250m 2cr 2 45
R R 143rr 2 12511

11 10 ' l8
(4.21c)
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A. Square lattice results

We are now in a position to calculate the coefficients m

and E, in the D4-equivariant normal form (3.9). The re-
sults for R 2 and R 2 given by (4.21a) and (4.21b) may be
substituted into Eqs. (3.15) to give

14197T 2 ssE)= —sgn 2 + cx p (4.22a)

96R +1419~ ~ p

16R +14197T a r
(4.22b)

From the general analysis of Sec. IIIA we know that
stable nontrivial solutions exist on a neighborhood of the
bifurcation point onIy if both squares and rolls bifurcate
supercritically (i.e., R 2 &0, R 2 &0). Which of these two
branches is actually stable depends on the value of c,
From the condition that the steady-state bifurcation
occurs before the Hopf (2.6), it follows that

The location of these degeneracies in the (r, S) plane is
shown in Fig. 3 for two different values of o, together
with the bifurcation diagrams characteristic of the vari-
ous regions of the plane. The two values of Prandtl num-

ber, o. =0.6 and 0.=18, are appropriate to convection ex-
periments on normal He- He mixtures' and to convec-
tion experiments on ethanol-water mixtures. ' '

B. Hexagonal lattice results

The results for R 2 and R 2 given by (4.21a) and (4.21c)
may be substituted into (3.25) to determine the coefficient
a in the equivariant vector field (3.21), as well as
sgn[13(0)]. We find

68R2 +(1287pl+625pz)~ r

24R 2 + ( 1287p& +625p2) n r

(4.26)

ss 0

Consequently, when rolls bifurcate supercritically

(4.23) 4pss
sgn(l3(0))=sgn Rz +(1287p&+625pz)

c& ———1, m& —1. (4.24)

Hence squares are never stable for physical values of ~
and o.

The degeneracies (3.10) in the vector field (3.8) occur
when the following conditions are met:

From the general analysis presented in Sec. IIIB we
know that stable nontrivial solution branches exist on a
neighborhood of the bifurcation point only when all
branches are supercritical. In the case where rolls are su-
percritical,

R2 =0 (uw=q»

R2 ——0 (p~ ——0),
Rs2 ——2R2 (q =0) .

(4.25)

a & —1, sgn(13(0))=+1 . (4.27)

Hence, rolls are stable when they bifurcate supercritical-
ly. The necessary conditions for stable triangles and hex-
agons [a & —

—,', sgn(l3(0) ) = —1] cannot be satisfied.

:(a
—0.04—

I I I I | I I I I

)
I I/ I I

[

I I I I

:(b) ~=18
—0.04—

—0.03— —0.03—

—0.02— —0.02—

—0.01— —0.01—
/

0.0
0.0 0.1 0.2

(c)

0.3

R R

0.4

S,

Ri

r
0.0

0.0

NIE

0.1

R.

0.2
T

0.3 0.4

FIG. 3. Degeneracies in the D4-equivariant normal form (3.9) are indicated by solid lines in the (~-S) plane for (a) 0.=0.6 and (b)
o =18. These lines separate the parameter space into four regions characterized by the bifurcation diagrams shown in (c). In (b) re-
gions 2 and 3 have not been labeled. Above the dashed lines in (a) and (b) the initial instability is to an oscillatory state, not studied in
this paper.
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Rz ——0 (a = —1),
Rq +R2 =0 (a = ——,)

Rz ——0 (a = ——,'),
R 2

—3R 2
——0 [13(0)=0]

(4.28)

These codimension-one surfaces are shown in Fig. 4 for
o =0.6 and o =18. They divide the (r, S) plane into five

regions, each of which is characterized by a nondegen-
erate bifurcation diagram as indicated.

Degeneracies occur in (3.21) when the following condi-
tions are met:

ary conditions at top and bottom are the same, but also
to those, such as free surface problems, in which they are
not. However, in the case of the hexagonal lattice, the
presence of the midplane reflection symmetry does modi-
fy the normal form so that the results of Sec. III B are
specific to systems in which the boundary conditions at
the top and bottom are the same. In particular, with
stress-free boundary conditions and fixed temperature
and concentration at top and bottom, we have found that
rolls are stable on both lattices whenever they bifurcate
supercritically. For example, this is the case when S & 0.

We can use our results to deduce those for a pure fluid
(S=0) confined between stress-free boundaries held at
fixed temperatures. For the square lattice we find

V. DISCUSSION AND CONCLUSIONS

In this paper we have studied pattern selection in
binary fluid mixtures near a bifurcation to steady convec-
tion. The problem was formulated on a doubly periodic
lattice in order that rigorous results from equivariant bi-
furcation theory could be applied. These results apply
whenever the boundary conditions do not change the as-
sumed symmetry and specify precisely the calculations
that have to be performed to solve a given pattern selec-
tion problem. Both square and hexagonal lattices were
considered. In the case of the square lattice, the mid-
plane reflection symmetry acts trivially so that the form
of the amplitude equations does not depend on the sym-
metry of the boundary conditions; the results of Sec.
III A thus apply not only to systems in which the bound-

c&
———1, m &c&,

while for the hexagonal lattice

a & —1, sgn(l3(0))=+1 . (5.2)

Note that here the rolls always bifurcate supercritically;
in both cases they are stable. None of the degeneracies
found in the analysis of convection in a binary fluid arise
in pure fluid convection. These results are in agreement
with those of Schliiter et al. ' obtained by other means.

Our results may also be transformed into those for
doubly diffusive convection in which the solute gradient
is imposed through the boundary conditions on the con-
centration, instead of developing in response to an ap-
plied temperature gradient by means of the Soret effect.
In this system the concentration Rayleigh number
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FIG. 4. Degeneracies a = —1, a = —2, a = —
3

in the general I H-equivariant vector field (3.21) are indicated by solid lines in the
(~-S) parameter space for (a) cr =0.6 and (b) 0.=18. In (b) these lines are indistinguishable, and regions 2—4 have not been labeled.
The coe5cient a in (3.21) increases with decreasing ~ and S from region 1 (a & —1) through region 4 (a & —

3 ). The dashed-dotted
line corresponds to 13(0)=0; above it, in region 5, 13(0)& 0 and a & —1. The bifurcation diagrams appropriate to the various param-
eter regimes are shown in (c). Above the dashed lines in (a) and (b), the initial instability is a Hopf bifurcation.
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Rs —= —RS replaces the parameter S as the parameter of
interest, and the term involving 0 in Eq. (2.1c) is absent.
Under the transformation'

R =R 1—
1 —~

—RSRs=
1 —~

our results agree with those of Nagata and Thomas.
Applying the theory summarized in Sec. III, we conclude
that rolls are stable on both the square and hexagonal lat-
tice, whenever they bifurcate supercritically.

In this paper we have emphasized the presence of de-
generacies in the bifurcation analysis. These occur along
codimension-one surfaces in parameter space, and divide
it into regions characterized by structurally stable bifur-
cation diagrams. Our interest in these degeneracies stems
from the plausible hypothesis that subcritical branches
turn around at large amplitude and acquire stability.
Thus the transition from a supercritical bifurcation to a
subcritical bifurcation (the "tricritical" point) heralds the
appearance of a hysteretic transition to a stable pattern.
Consider, for example, the hexagonal lattice (Fig. 4). De-
creasing ~ or S from a region of stable rolls one first
crosses the line a = —1 (the tricritical point for rolls),
suggesting a hysteretic bifurcation to rolls for
—1&a & ——,'. The point a = ——,

' is the tricritical point
for the rectangle solution (PQ), but this solution does not
acquire stability when it turns around since it remains un-
stable to rolls. In fact, one expects a hysteretic transition
to a roll pattern for all a ) —1. Of more interest is the
square lattice, where the line m =c., is the tricritical
point for rolls, and m =0 is the tricritical point for
squares. When c.

&

———1, squares are unstable to rolls,
whereas when c.

&

——+1, rolls are unstable to squares. For
c& ———1, m)0, both rolls and squares are subcritical,
with squares unstable to rolls; we therefore expect the ini-
tial bifurcation to evolve to finite amplitude rolls. When
c& ——+1, m &1, the rolls are unstable to squares and we
expect the initial instability to evolve to finite amplitude
squares. Note that the latter situation pertains for
sufficiently negative values of S.

The above suggestions can be verified by a singularity
theory analysis near the codimension-two degeneracies.
Such an analysis has been carried out for the square lat-

tice ' but not the hexagonal lattice with the extra mid-

plane reflection symmetry. For the square lattice one
picks up the conjectured saddle-node bifurcations on the
(R) and (S) branches by analyzing the degeneracies
A, =m —c&

——0 and k=m =0, respectively. Of greater in-

terest is the degeneracy A, = c& ——0, where there is the pos-
sibility of secondary bifurcations which produce a mixed
mode branch joining the roll and square branches. For
example, for m &0, stability may be transferred from
rolls to squares via this secondary branch when c& =0 is

negative. Two cases are possible, since the transition
from stable rolls to stable squares may or may not be ac-
companied by hysteresis. ' By analyzing the
codimension-three degeneracy X= c& ——m =0, one can
further show that the mixed mode branch (r, , rz), r, &rz,
can undergo a tertiary Hopf bifurcation, leading to time
dependence. As A, is varied, the oscillation amplitude
increases, and the oscillations eventually disappear in a
homoclinic bifurcation. The unfoldings of all four de-
generacies (m =e|, m =0, e&

——0, m =e& ——0) have been
analyzed and classified in considerable detail in the con-
text of the amplitude equations for the Hopf bifurcation
with O(2) symmetry ' and capture the most interesting
possibilities that can occur generically on the square lat-
tice. As shown in the present paper, the codimension-
two degeneracies can be obtained in steady binary-fluid
convection for physical parameter values and the bound-
ary conditions (2.2). It is possible that with other bound-
ary conditions not only these but also the codimension-
three degeneracy will occur at finite parameter values.
The resulting oscillations may develop into those report-
ed in Ref. 7 as parameters are varied away from the de-
generacy. However, the no-mass-flux boundary condition
must be used in order that the initial bifurcation can be
to a stable square pattern.
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