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The full second-order, cold-fluid theory of the diocotron and magnetron resonances for nonrela-

tivistic, non-neutral electron flow in planar, crossed-field geometry is investigated using the method
of multiple-scales perturbation theory. We find that, for both resonances, the zeroth-order density
evolves in the slow time and spatial plane according to a diffusion equation. The quasilinear treat-
ment of the diocotron instability [R. C. Davidson, Phys. Fluids 28, 1937 (1985)] is recovered from
the full treatment near the wave-particle, or diocotron, resonance. We also conjecture that, under

constant-voltage conditions, this diffusion will cause a small dc current to be set up from the anode
to the cathode and that this second-order diffusion equation could possess equilibrium solutions as
well. Such solutions would have negative density gradients between all unstable resonances (magne-

tron as well as diocotron), with plateau formation occurring at the spatial position of all these reso-
nances. Although we cannot show stabilization, we can argue that the introduction of negative den-

sity gradients, which would occur as the density profile seeks to re-form into an equilibrium profile,
should tend to reduce the linear-instability growth rates, thereby causing the system to tend toward
stabilization.

I. INTRODUCTION

There have recently been several theoretical studies'
of the equilibrium and stability properties of sheared,
non-neutral electron flow in various planar and cylindri-
cal high-voltage diode and crossed-field amplifier
configurations of interest in microwave and inertial-
confinement-fusion applications. Such configurations are
characterized by crossed fields and high densities. These
studies have included relativistic, kinetic, electromagnet-
ic, and cylindrical-geometry effects on stability properties
at moderately high density. In particular, Davidson and
Tsang' have studied the stability of nonrelativistic cylin-
drical magnetic diodes, and the influence of density
profile shape on stability in planar diodes. Also, David-
son, Tsang, and Swegle have studied the stability proper-
ties of relativistic planar diodes; Swegle has studied the
stability of a general relativistic laminar flow of electrons
in crossed fields, and Chemin and Lau have studied the
stability of cylindrical laminar layers of electrons in the
presence of crossed fields. Davidson has developed a ki-
netic stability theorem for the relativistic planar diode, a
quasilinear theory of the diocotron instability (a long-
wavelength instability which occurs when the phase ve-
locity of the wave matches the velocity of the electrons in
the presence of a positive density gradient) in planar
geometry, and has also used a macroscopic guiding-
center theory to study the stability of the cylindrical mag-
netic diode. Prasad, Morales, and Fried have studied
the modification of electron gyrofrequencies inside a
non-neutral plasma. There have also been several other
kinetic studies of non-neutral plasmas, ' ' mainly in
homogeneous, low-density regimes. These have recently

been extended into both the inhomogeneous and high-
density regimes by Kaup, Hansen, and Thomas' using a
singular perturbation expansion for the equilibrium or-
bits.

Our interest in such studies is to better understand the
operation of such devices as the magnetron, crossed-field
amplifiers (CFA's), and other related crossed-field de-
vices. In particular, we wish to study the nonlinear re-
gime in such devices so as to place the current nonlinear
theory' on a firm mathematical basis by the use of
multiple-scale expansions. Of course, before this can be
done, it is necessary to have a well-developed linear
theory to expand about. The above studies have provided
such a linear theory for the cold-fluid equations.

A study based on the Fokker-Planck equation was
done in 1966 by Monthaan and Sussind' which predicted
a dc current in the smooth-bore magnetron. They ob-
tained a diffusion equation describing vertical particle
transport in the magnetron, and their results were shown
to give good qualitative agreement with experiments. '

In the first nonlinear multiple-scale treatment of this
problem in 1981, Thomas' obtained rf-field-dependent
coefficients for a nonlinear Schrodinger equation. In
1982, Swegle and Ott obtained the Kortweg —de Vries
(KdV) equation for long-wavelength perturbations on a
cold-fluid Brillouin flow. Most recently, Davidson's
quasilinear theory gave a detailed quasilinear description
of the classical diocotron instability, treating the elec-
trons as a massless (m =0) guiding-center fluid. The
quasilinear diffusion of the time-averaged (or dc) plasma
density leads to a smoothing out of the density profile
(the so-called spatial "plateau formation") and the stabili-
zation of the instability. Davidson considers general
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features of the stabilization process in detail.
We are interested in the nonlinear evolution of the

zeroth-order or dc parameters of the crossed-field device,
such as the electric field, and the electron flow density.
Thus we must consider the magnetron instability ' '

which occurs for sheared non-neutral flow at higher den-
sities where space-charge effects are stronger; and we can-
not treat electrons as Davidson's massless guiding-center
fluid.

The quasilinear theory of Davidson is equivalent to the
second order of the "method of multiple scales, " a sys-
tematic technique for solving nonlinear ordinary
differential equations (ODE s) or partial differential equa-
tions (PDE's) by a singular perturbation expansion. We
use the method of multiple scales in this paper to study
fully the second order of the nonlinear regime of
crossed-field device operation using the full cold-fluid
equations. We assume that the ratio of the plasma fre-
quency to the cyclotron frequency is sufficiently less than
unity so that the linear instability is weak; and that the
device configuration is planar. We retain the full effect of
electron inertia, and consider in detail the effect of
diocotron and magnetron resonances in driving the non-
linear evolution. For now, we do not consider elec-
tromagnetic, relativistic, or cylindrical-geometry effects.
Our equations generalize Davidson's treatment by includ-
ing the effects of high electron density and electron iner-
tia.

One important difference between Davidson's treat-
ment and ours is that we consider an operating
configuration with constant anode voltage rather than the
constant-charge operating configuration of Davidson.
Because of this, in second order we can obtain a nonzero
flux of particles from cathode to anode: a small dc
current can exist in such a device. In second order, we
obtain an equation for the density profile which is a
diffusion equation (24) describing how electrons diffuse
from the high-density region near the cathode to the
low-density region near the anode, producing the dc
current. This equation is a direct generalization of
Davidson's quasilinear equation, except that the
constant-voltage conditions require an additional term,
which generates the dc current. Furthermore, under the
constant-voltage condition, we conjecture that static
equilibrium profiles may exist. By equating the particle
flux by diffusion to the net current, one can determine an
equilibrium profile if it exists. (The equations defining an
equilibrium profile are integro-differential equations and
we have no proof of the existence of solutions. ) This
equilibrium profile (if it exists) has a negative definite den-
sity gradient inversely proportional to the diffusion
coefFicient. Thus, where the diffusion coefficient is large,
the profile flattens (the plateau formation of Davidson),
and where it is small, the profile steepens.

This picture of the density profile differs considerably
from the conventional Brillouin flow, wherein the density
is constant up to an edge at which it drops precipitously
to zero. Diffusion makes profiles with sharp edges non-
static and density gradients minimal only at the position
of a resonance, with steeping between the resonances.

We define the diocotron resonance as the resonance

where the phase velocity of the wave matches the local
electron velocity (cu=kv0), and the magnetron resonance
as the resonance where the local frequency of the wave,
as seen by the moving electrons, is equal to the electron
cyclotron frequency Q. Thus (co —kU0) =0 at the mag-
netron resonance. The magnetron instability apparently
occurs when both the diocotron resonance and the mag-
netron resonance occur inside the electron sheath, with
the diocotron resonance positioned near the edge. ' '

The diffusion coefficient, determined by the eigenmodal
structure of the linear problem, is actually nonlinear, be-
ing linear in the magnitude squared of the vertical veloci-
ties of each unstable linear mode. It peaks strongly at all
resonances of any unstable mode. At any diocotron reso-
nance, its structure is exactly as detailed by Davidson
with a peak value inversely proportional to the growth
rate and a width directly proportional to the growth rate.
We find the diffusion coefficient at the magnetron reso-
nance to be exactly the same form as at the diocotron res-
onance: strongly peaked with amplitude inversely and
width directly proportional to the growth rate. Conse-
quently, plateau formation occurs at the magnetron, as
well as at the dicotron, resonance.

But will stabilization occur? In other words, what hap-
pens to the growth rates as the initial density profile re-
laxes toward an equilibrium profile? We do not know,
and the existence of the above-mentioned equilibrium
profiles hinges on the answer to this critical question.
Davidson was able to show that, for the diocotron insta-
bility when the density profile has positive gradients, sta-
bilization would occur in the low-density, massless,
guiding-center limit with growth rates vanishing to zero
as the positive density gradients diffuse away. Although
we do not know what happens in the general case, nu-
merical results indicate that if the profile drops
sufficiently, growth rates do vanish. This is encouraging,
because we would expect equilibrium profiles to have neg-
ative density gradients away from any resonances. More
work must be done here, particularly on the evaluation of
growth rates of any linear unstable modes for any equilib-
rium profiles.

Our primary concern is not with the question of the ex-
istence of equilibrium density profiles, but rather with po-
tential nonlinear instabilities such as the modulational in-
stability, which is a third-order phenomenon. In
preparation for studying these, we have considered this
second-order problem, and in the process have both
found new questions to be answered and developed a
basic understanding of what does happen at this order.
We find that unstable linear modes initially drive a
second-order diffusion process. We conjecture then that
the initial density profile will relax toward some possible
equilibrium profile which has negative density gradients
between resonances and plateaus at resonances. As this
process occurs, the linear eigenmodal structure shifts be-
cause the density profile is changing. We do not know
what will happen to the growth rates then. However,
density gradient steeping does reduce the growth rates,
which leads toward stabilization.

In Sec. II, the zeroth-order equilibrium configuration
which we consider for the crossed-field device is de-



D. J. KAUP, S. ROY CHOUDHURY, AND GARY E. THOMAS 38

scribed, and the relevant equations describing the linear
theory (first-order perturbations) are given. The equa-
tions describing the nonlinear (second-order) evolution of
the zeroth-order electron flow velocity and electric field
are derived in Sec. III. In Sec. IV we discuss these equa-
tions and present the results. We discuss the effects of
the diocotron and magnetron resonances in driving the
nonlinear evolution of the zeroth-order quantities.

II. THEORETICAL MODEL —EQUILIBRIUM
AND FIRST-ORDER EQUATIONS

where now co =4mn. pe /m, and np is the equilibrium
electron density. The electron density n p may be
specified to be of any form and, hence, is arbitrary. For
n p or co& a monotonic decreasing function of y, the linear
diocotron mode is stable for a cold massless low-density
electron plasma. This criterion has recently been gen-
eralized to warm plasmas without assuming the guiding-
center approximation. The equilibrium electron flow
velocity is

The cold-fluid macroscopic equations (with pressure 0)
describing the nonrelativistic flow of a non-neutral pure
electron plasma are

B,n+V (nv)=0,

(B,+v V)v+4+vXQ=O,
8= —VP,

V /=co

(lb)

(lc)

(ld)

By Ap=ciyy (2a)

0 0

OX Bp E

Electron
Sheath

/athod

FIG. 1. Geometry and the shear flow in the planar magne-
tron.

Here, n, m, and v denote the electron number density, the
electron mass, and the velocity, respectively. The plasma
frequency is coy 4nne /——m .The equ. ilibrium we consider
corresponds to the planar configuration of Fig. 1 with
crossed electric and magnetic fields. The cathode is at
y=0, and the anode at y=l. The stability of nonrela-
tivistic and relativistic non-neutral electron flows in pla-
nar and cylindrical diodes has recently been considered
by several authors. ' We define the normalized electric
field 8p ——e Ep/m = eEpy /m a—nd the gyrofrequency
Q=Bpe/mc= —e(8p/mc )z.

In this paper we consider electrostatic modes where
the magnetic field remains equal to the equilibrium or
zeroth-order value at all orders. Hence we will omit the
subscript 0 on the 0 even though this is a zeroth-order
quantity. We shall also do the same for the plasma fre-
quency shortly. We consider a two-dimensional diode
structure, with translational invariance in the z direction
both in the equilibrium and for the perturbation quanti-
ties. In addition, we assume translational invariance in
the x direction for the equilibrium quantities. From
Poisson's equation, we have

Equations (2a) and (2b) imply that Up increases monotoni-
cally with y, and thus we have a nonzero velocity shear in
the equilibrium.

We next consider first-order perturbations of Eqs. (1).
In general, all physical quantities X may be written as

g=gp+6gi+6 +2+ ' ' ' (3a)

where e is a measure of the (small) deviation from the
equilibrium value Xp. Here, 7 may denote the density,
electric field, or velocity. In first order, all quantities are
expanded as

X=Xp+eXi=Xp+e(Xie +C.C. ), (3b)

ikP, , — (4)

Then for the electrostatic modes, the linearized perturba-
tion equations obtained from Eq. (1) for nonrelativistic,

with Impy&0 for instability (in the initial-value sense).
The perturbations 7& are Fourier decomposed in the x
coordinate, which is of infinite extent, with 7& being the
Fourier amplitude. The linearized equations for the
Fourier amplitudes of the first-order perturbation quanti-
ties X& will be combined into a composite equation for a
single first-order physical variable (the perturbed electro-
static potential P, or the perturbed y velocity u& ). This
equation, with appropriate boundary conditions at the
electrodes, is then to be solved for the eigenfunctions P,
{or u&y) and the eigenvalues co for various perturbation
wave numbers k. The stability of the modes is then deter-
mined from the sign of Imago. The stability properties of
electrostatic- and extraordinary-mode perturbations, as
well as the structure of the eigenfunctions, have recently
been investigated in considerable detail. ' We will not
consider this here. However, we give below the equations
satisfied by linear electrostatic modes for nonrelativistic
non-neutral electron flow in the planar device
configuration. These equations will be necessary in deriv-
ing the second-order theory of Sec. III.

For electrostatic perturbations of the form given in Eq.
(3), the set of Eqs. (1) may be linearized. Translational in-

variance in the z direction implies that 8, =0. In the non-
relativistic limit, the z component of the perturbed elec-
tric field ( 6 &, ) satisfies the free-space equation

(By —k )8&, ——0. Hence b„decouples from the electro-
static wave. So we shall take 6„=0, which implies

0&, ——0. Introducing the first-order perturbed potential

{(),={I),e'"" ""+ c.c., such that
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non-neutral electron flow are

1
v) = kco + 0

R

ik COe"=-R "+ k' '
and

n, =—inoI
U)y

p e

(8 —k }P,—tv~
no

=0.

Here, we define

cv, —:(co —kvo ),
R—:0 —

Np
—Ne

2 2 2

Q2 Q2 2
p

2k cue copI—:B co
Q(Q —cv, )

Equations (5a) and (5b) invert to

Q2—tkf)=le v) + v)

(Sa)

(5b)

(5c}

(5d)

(6a)

(6b)

(6c)

(6d)

(7a)

—k+ —8+I kQ,

R y co,
(9b)

Equations (9a) and (9b) have been considered previously
by Davidson and Tsang, ' and in generalized form by
Davidson, Tsang, and Swegle. In particular, Davidson
and Tsang have derived a sufficient condition for the sta-
bility of low-frequency flute perturbations in a moderate
aspect-ratio cylindrical diode configuration. They have
also considered the detailed structure of weak and strong
instabilities driven by velocity shear for electrostatic
modes in a cylindrical diode configuration with various
density profiles n(y), and various values of the ratio
tv&/Q . Analogous results have been obtained for
extraordinary-mode stability of relativistic non-neutral
electron flow in a planar diode by Davidson, Tsang, and
Swegle.

An important aspect of these equations is the fact that
R =0 is not a real singularity but is only an apparent
one. This may be made obvious by considering the
composite equation for the Fourier amplitude of the per-
turbed y velocity v, . From Eqs. (4),

Q(Q —co, )

2(tv&Q tv&)
—k (B~cvz)

Q2(Q2 2) J' Q

and

Bzg& =Qv
&

its v—~z

Using Eqs. (5a),(5b) and (7a),(7b), we have

iI '

ByU)~ = lk — U)y
co~ 0

and

2k ct)e ct)p

y )y
= —ikU)z —

2 2 U&y
Q(Q —cv, )

where

(7b)

(7c}

(7d)

which has no singularity at R =0. Equation (10) general-
izes the equation considered earlier by Buneman, Levy,
and Linson to the case with 8 cv &0. It does not ap-
pear to have been derived earlier in the literature. Also,
as noted by Buneman et al. , the singularity at R =0 in
Eqs. (9a) and (9b) is only "apparent" and does not cause a
blowup of the physical quantities. However, the diocot-
ron resonance cv, =0 present in Eqs. (9a), (9b), and (10),
and the magnetron resonance co, —0 =0 which occurs in

Eqs. (9b) and (10) are "real" singularities. Hence Eq. (10)
for U,y

contains only genuine or real singularities, in con-
trast to Eqs. (9a) and (9b), which contain the apparent
singularities at R =0.

III. SECOND-ORDER EQUATIONS
2kco~k Np

I =Bycop +
Q(Q —tv, )

The first-order perturbation equations (5) for nonrela-
tivistic flow may be combined into the following equation
for the Fourier amplitude of the first-order perturbation
potential P, :

2 2

By

2

P, B =0, (9a)
kQ — ~p

cue R

where the boundary conditions are P&(y =0)=0=/, (y
=I). This equation may be written in the equivalent use-
ful form

In this section we will derive the equations satisfied by
the second-order perturbation quantities. These quanti-
ties contain terms independent of t, as well as second-
harmonic e ' " terms as per the usual multiple-scale
analysis. We are interested in the slow-time variation of
the zeroth-order physical quantities characterizing the
cross-field device, e.g. , the average density. These evolu-
tions occur on the slow-time and spatial scales t2 ——e t,
and x2 ——e x of multiple-scale analysis, with

B, =B,+e B,-+, and B =B +e B + . . . We will

therefore concentrate on parts of the second-order per-
turbation equations which are independent of the fast-
time scale and obtain evolution equations for the varia-
tions of the zero-order velocity Uo, normalized electric
field Do, and plasma frequency co on the slow-time and
spatial scales t2 and x2. (We do not consider first-order
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Here, the subscript 2 indicates a second-order perturba-
tion quantity. The superscript 0 on the 7z ' indicates
that X 2

' is the zeroth-harmonic or the fast-
time-independent part of the second-order perturbation
quantity X2. As with X, in first order, 72 denotes the
Fourier amplitude of the second-harmonic part of 72.

Perturbing Eqs. (1) and neglecting terms of order e or
higher, we obtain the equations satisfied by the second-
order perturbed quantities X2. Using Eq. (11), the
zeroth-harmonic component of the second-order pertur-
bation equations, describing nonrelativistic electron flow,
may be derived.

The second-order perturbations to the Maxwell equa-
tions (1c)—(1f) yield

., =-",a, Ã„,[0) "o —[0)

P

(12a)

time or spatial scales t] and x, , in the zeroth-order quan-
tities, because if they were present, they would drive the
first-order equations as inhomogeneous terms. Rather,
we are interested in how the first-order fields could drive
the zeroth-order quantities away from the equilibrium
values. ) We also assume any linear instabilities to be
small and on the order of the time scale t2 =6

Writing the second-order physical quantities Xz (fields,
velocities, density, etc.) as the sum of zeroth-harmonic
and second-harmonic terms, we have [cf. Eq. (3a)]

f(p)+(f e2((kx —rut)+c c )

Equation (13) may be integrated over y to give

g2 2

cd v z + (3, ( p+ —,
( () + ( n ( v (2 &2 Q no

=c(t2, x2)Q

where c(tz, x2) is a constant of integration, and Eq. (2a)
has been used. Equations (12), (14), and (15) are the set of
equations we will use.

The case of zero net flux studied by Davidson may be
treated easily only in the limit m =0, corresponding to
c(t2, x2) =0. In the general case, the electron flow is not
an exact EXB drift and we cannot then argue that
() Cp=0 at both cathode and anode. Thus we see no ad-
vantage in treating the zero flux here and instead will
concentrate on the operating configuration where the
voltage at the anode is to be kept constant. Then
c(t2, x2) is determined by the anode voltage (see Sec. IV).

It appears that 6'2 ( or n 2'

' is arbitrary. The arbitrari-
ness of n 2

' is simply due to the zeroth-order density no
being arbitrary. Without loss of generality, we may take
—(0)n 2

——0.
Introducing the electrostatic potential (t(p, where

4p= J, &p(y)dy (16)

and the potential is chosen to be zero at the cathode, we
may solve Eq. (12b) for 6 2„'. Then our second-order rela-
tions can be reduced to Eq. (14b) and

0= —a„e,—a, Ã (;„', (12b) (17a)

as well as Qz
' and 6 (z,

( being constants, which we take to
be zero. We have also taken 0 to be independent of the
slow time.

Similarly, the zeroth-harmonic part of the second-
order perturbations to the continuity equation (la) gives

() (npv 2 )= d, n d„(n —v ) ——() (n, u, & . (13)

2- (0) 1n
CO&U 2&

= (()( +Up() )6p N& U(&
0

+c(t2,x2 )0 (17b)

(17c)

Equation (13), together with approximated versions of
Eqs. (7a) and (7b), have been used by Davidson to devel-

op his quasilinear theory for the slow-time evolution of
the zeroth-order quantities. His approximations will be
considered in Sec. IV, where we compare his results to
our exact theory. It is shown there that Davidson's
quasilinear theory is exactly valid near the diocotron res-
onance. For the case where one is away from the diocot-
ron resonance, or slow spatial variations are present, a
generalization of his theory results.

We also have, from the zeroth-harmonic part of the
second-order momentum equations (lb), that

QU 2» = —B 2y
—( v('VpU(y & (17d)

COp $'
(()( + vpc) )vp =

2
() (t(p — + c(t2 xp )t2 x2 2 X2 g Q

(18a)

Using Eqs. (2a), (14b), and (17b), we then obtain the
equations for the evolution of the zero-order velocity vo,
and the normalized zero-order electric field 6p on the
slow temporal and spatial scales t2 and x2. The equation
for vp results by using Eq. (2a) to eliminate bp from Eq.
(17b) in favor of vp. On the other hand, eliminating vp in
favor of 6'p in Eq. (17b) by using Eq. (2c) results in the
equations for Cp. These are

—.,"„'=——„(~,",'+ (,.V,.„&), (14a) and

[((), +U ()„)u +( '„'+(v, .V u„&], (14b) (a, +u, a„)C,= „'a„y, S+S'c(t, ,x, ) . — (18b)

—(0)v2, ——0. (14c) Here, the nonlinear source term in Eqs. (18) is

In Eqs. (12)—(14) quantities in angular brackets denote
the fast-time averaged part.

CO COS—: ' ((v, .V, )u,„&+, ' (n, u„& .
Q Q no

(19)
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Equation (18b) describes how 60 will evolve on the
slow-time scale, while (2a) defines how it must vary verti-
cally. The integrability condition for these two equations
to have the same common solution is

D =QDk,
k

2
ulk I 2~ t

e ' +c.c. ,
COe

(25a)

(25b)

(a, +uoa )iu =
2

By cop

0 a„p o c—(t2, x2)aye~

2

—a,s+ "' a„e, . (20)

Lastly, we shall work out the components of the non-
linear source term S in Eq. (19). We have

((v&'Vo)u& ) =+V &z(a&V&„)+c.c.
k

I', I"= —g(V; u, ) +c.c.
COe 0 e ', (2 la)

2
p j I 2,~,. t(n, ,u) = —g(V*,~V,~) +c.c. e
no k

"
Ne

(21b)

where the sum over k indicates a sum over all linear
eigenmodes of the system. Hence, using Eqs. (8), the
source term reduces to simply

2

S=g i [u, (

— +c.c. e
k Ct)e

(22)

where co; is the imaginary part of the eigenfrequency co.

This is the nonlinear term driving the evolution of the
zero-order velocity uo and normalized electric field 6o, on
the slow scales t2 and x2, via Eqs. (18). We will consider
this term in detail in Sec. IV.

IV. RESULTS AND CONCLUSIONS

In this section, we discuss the evolution of the zero-
order density cu, normalized electric field 80, and veloci-

ty vo on the slow-time and spatial scales t2 and x2. Our
treatment up to this point has been exact, and Eqs. (18),
(20), and (22) describe the general nonlinear evolution of
the zero-order quantities, which we now consider.

Equation (20) may be written in the equivalent form

2

[a, +c(t„x,)a, +u, a„]~,'=a, "„'a„y,—s (23)

[a, +c(t2)a ]co =a (Da co ), (24)

where we have set S=—DB co . The quantity D in (24)
is a diffusion coefficient and is given by

The changes on the slow spatial scale x2 in Eq. (23) in the
E&( B drift direction correspond to possible long-
wavelength fluctuations in the density. These changes
would be important for a pulse which had a finite spatial
extent.

From this point on, we shall consider devices and
operating conditions where the x2-spatial structure is

unimportant. Thus, all quantities become independent of
xz. Equation (23) then reduces to the form

coup Daytup ——I (t2—), (27)

where I is the constant of integration. From (18b), one
may evaluate I, obtaining

I =cA (28)

One may combine (27) and (28) to obtain

Da tu = —c(Q —tu ), (29)

which shows that under the conditions of normal
diffusion, the equilibrium density gradient will be nega-
tive definite and inversely proportional to D. Thus,
where D is large, B co is small and vice versa. This is
equivalent to the plateau formation observed by David-
son.

Note that (29) predicts that any equilibrium density
distribution must fill the entire interelectrode space, un-
der the conditions of normal diffusion. Since c and D are
nonzero, both the density and the density gradient cannot
simultaneously vanish. Thus co may only vanish at the

where Dk is the contribution to D from the kth mode.
Obviously, in general, co; is a function of k also.

In order to interpret (24), let us consider the two
separate parts individually. First, let D be zero. Then
the solution would be tu =f(X), where for c constant,
7=y —ct2. If c is positive, the time evolution of co is de-
scribed as a uniform lateral shift of the plasma sheath up-
wards towards the anode. Now consider (24) when c =0.
It then becomes the standard diffusion equation, but with
a y-dependent coefficient. This part will seek to smooth
out sharp density gradients. If we put two parts together,
then we have (for c yO) a general upward motion of the
plasma sheath accompanied simultaneously by a smooth-
ing of any density gradients.

Due to (18b), the value of c is actually determined by
the diffusion coefficient and the density profile. Requir-
ing $0 in (16) to be fixed at the anode, integrating (18b)
from y =0 (cathode) to y = I (anode) gives

c(t ) = f ( Da tu' )d—y f b, dl .

In (26), the denominator is positive definite. Since we
only consider here profiles with negative gradients, the
sign of c is the same as the sign of D. If D ~0 (normal
diffusion), then c ~ 0 and, except for modifications due to
the diffusion, the general sheath motion is upwards to-
ward the anode. If D &0 (reverse diffusion), then c &0
and the sheath would tend to contract. If D(y) is of
mixed signs, the sign of c will depend on the exact distri-
bution of D(y).

Directly from (24), we see the possibility for the ex-
istence of an equilibrium distribution static to second or-
der in time. (Recall that to zeroth order and first order,
the density profile was arbitrary. ) Setting a, co~=0 in

(24) gives
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anode, with the equilibrium dc current being proportion-
al

tock'

.
The equation for c, (26), and the equilibrium density

profile (29) require values for D(y) In general, these are
obtainable only in an iterative process where by one starts
with a density profile, obtains the linear eigenmodal
structure, and then constructs D as in (25). One could
take the profile obtained from (29) (which now will differ
from the original), calculate its linear eigenmodel struc-
ture, and reconstruct the D for it. Although one suspects
this procedure will converge, its convergence is not
known. We also do not know if there is only one equilib-
rium profile, since several may satisfy (29). One way to
determine what does occur is to integrate (24) forward in

t2, simultaneously calculating D(y, t2) at each t2 from
the linear eigenmodal structure.

Let us turn our attention to the structure of D in (25).
The results of Davidson's quasilinear theory are con-
tained in this, as is seen by applying the conditions

nances. If we evaluate Dk exactly from (25b), we have

2' f
2tu, /u,

/

e
Dk=

2(tu„—kuu) +to;
(35)

2+A
'&y 2 2+ '

0 —Ne
(36)

where n is some constant. Now, in the region around the
magnetron resonance, which is where (to„—kuo)=+0,
(35) becomes

At the diocotron resonance where tu„=kuo, from (10),
one may show that v

&
is regular.

Thus, around the diocotron resonance, we may treat
V& as a constant. Then Dk is Lorentzian shaped with a
peak amplitude inversely proportional to co; and a spatial
width of tu;II/(kcu ).

At the magnetron resonance, Eq. (10) shows that u&» is
singular and is of the form

and

co~ g(Q (30a)
2'; [a /2e

Dk-
2(cu„—kuo+ Q) +co;

(37)

i
tu, k

i
«kA (30b)

to (Sb) and (25b). In (30b), k» is a typical value for a
wavevector in the y direction near the diocotron reso-
nance, co, =0. One obtains for a cold, massless, electron
fluid that

2tu, k'
[ (t,

/

'e

0 (tu„—kuo) +co,
(31)

where cu„(cu; ) is the real (imaginary) part of the eigenfre-
quency. [The D in (31) is exactly twice that of Davidson's
Eq. (36) due to different conventions for real parts. ] Note
that for instability where co; p0, we have Dk p0. If
cu, =0, then Dk ——0 and if to, &0, then Dk &0 (reverse
diffusion). However, the latter case is exponentially
damped in time so that after appearing as an initial tran-
sient, it vanishes from the system.

The structure of D in (25) is very suggestive. If we
define a "vertical displacement, "

g, via

(8, +v V)g=u»,

then in the first order we have

(32)

V iy 1 COe

which gives

(33)

(34)

This shows that this diffusion is a random-walk process
because the diffusion coefficient is equal to the time rate
of change of the average square of the vertical displace-
ment. This provides an alternate mechanism for calculat-
ing Dk when one performs particle simulations. One sim-

ply follows one fluid particle and averages over several
periods, the time derivative of which will give the total
diffusion coefficient D.

Let us now consider the shape of Dk at the two reso-

Again, we have a Lorentzian shape with an amplitude in-
versely proportional to co; and a spatial width of
cu;Q/(ktu» ). As in the diocotron resonance, this profile of
D will seek to drive the density gradient toward zero at
the magnetron resonance, simply because of the nature of
diffusion. And if an equilibrium is ever approached, (29)
assures that plateau formation will also occur at the mag-
netron resonance.

Will an equilibrium ever be reached? Davidson's cold,
massless, guiding-center fluid at low densities and not-
too-high wavelengths did give stabilization and a final
equilibrium by diffusing away any positive density gra-
dients. As the positive density gradients melted away,
the unstable growth rates decreased, eventually reaching
zero and giving stabilization. While it is possible to ex-
tend Davidson's result into the high-density general case
for k not too large, the magnetron instability makes this
of little practical value. For the diocotron resonance lo-
cated at the edge of the sheath, as k increases, the magne-
tron resonance eventually moves above the cathode and
into the plasma sheath. When this occurs, all modes with
a value of k above this value seem to be unstable and to
have co; &0. ' If any unstable modes exist, then D be-
comes time dependent. However, usually one unstable
mode dominates. Then D becomes proportional to
exp(2tu, t), where now co; is the imaginary part of the
most unstable mode. And by (26), c becomes proportion-
al to exactly the same factor, which when factored out of
(29), leaves (29) as time independent. Thus, although D
may have an exponential growth, one could still have a
static background equilibrium.

With few exceptions, ' calculations of growth rates of
the magnetron instability have been based on flat density
profiles with no density gradients except at the very edge
of the sheath. This box-shaped profile is contrary to the
second-order diffusion equation (24). Because of
diffusion, no such profile could be static. The sharp edges
would immediately diffuse away, and the remaining
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smoothed profile would, more slowly, relax to some equi-
librium solution of (29).

What will happen to the growth rates as the profile re-
laxes and negative density gradients appear between the
resonances? We cannot yet answer this question but ob-
serve that, considering (29), if a resonance does not occur
exactly at the cathode, then D will be small there, forcing
a negative gradient into the density profile at the cathode.
This will drive co away from its maximum possible value
of 0 . Once co is less than about —,'0, at least for flat

profiles, growth rates do become very, very small. '

In conclusion, our viewpoint of the evolution of the
sheath is that linear instabilities grow and initiate the
second-order diffusion instability described by (29). A
small dc current is the consequence of the diffusion of
electrons from high density near the cathode to low den-
sity near the anode. The time scale for the diffusion to be
initiated is tz( =e t) which, for very practical reasons, we

want to be faster than the linear instability growth time
1/co; ). Thus our analysis fails if wide, flat density profiles
with 0 ) co )—,'0 occur because of the large linear
growth rates. ' ' ' On the other hand, if our average
density has (co~ ) & —,'fl, then we can expect very small

linear growth rates and the second-order diffusion pro-
cess could then dominate. And if diffusion sufficiently
smooths the profile, the linear growth rates may decrease
and lead to stabilization.
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Since growth rates co; are frequently very small compared to
the real part of frequencies co, in such situations as ours (see
Ref. 24), we take co; t to be on the order of the slow time t~, or
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our second-order analysis would not be required due to the
linear term being so unstable as to dominate all second-order
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