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Static and dynamic correlations in fluids with internal quantum states:
Computer simulations and theory
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We continue our investigation of the properties of a model fluid whose molecules have classical
translational degrees of freedom and two quantum internal states. The attractive pair interactions
are "turned on" when the internal states are hybridized, corresponding to the molecules acquiring a
"dipole" moment. The phase diagram of this system in the temperature-density plane as well as the
static and imaginary-time correlations at various densities are investigated by Monte Carlo simula-

tions, using the "polymer" representation, for different strengths of the quantum parameter. These
are compared with low-density expansions and mean-field-theory predictions. Good agreement is
found in appropriate regimes.

I. INTRODUCTION

In this paper we continue our study of a model-fluid
system: classical particles with quantum internal degrees
of freedom. This model has a long history; see Refs 1-4,
which we refer the reader for motivation and back-
ground. The version we consider is the same as in our
previous work: a system of particles (molecules) whose
relevant internal states can be represented by a two-level
tunneling system, while their translations can be treated
classically. We ignore all other degrees of freedom.

The N-particle Hamiltonian of the system is

N N

H = g p;/2M ——,'coo g cr;"+ g U(r; —r. )

g J(r, —rj )o,'tr' =E + V,
l,j

(i (j)
where p,. is the momentum, M is the mass of the parti-
cles, cr" and o' are the usual Pauli spin- —,

' matrices, and K
and V are, respectively, the kinetic and potential energy;
the latter consists of a one-particle (two-level) part and
two pair-interaction terms U(r) and J(r}, which will be
specified later.

We are interested in the equilibrium properties of this
system when the mass M is suSciently large for the
translational degrees of freedom to be treated classically.
The classical-quantum canonical distribution function is
then a product of a purely classical momentum part
-exp( —PK) (which is trivial) and an N-particle density
matrix p; p is classical, e.g., diagonal, in the coordinates
I r; J and a quantum-mechanical operator in the spin vari-
ables o = I o; },

=(tr
~
exp( —PV}

~

tr') fdr, dr~ tr exp( —PV) .

(1.2)

J, R &r& —', Rr&R
0 r R J(r)= '0 r )

The important feature of the Hamiltonian (1.1) is that
the interaction term will tend to lift particles out of their
internal ground state corresponding to o =1 into a hy-
brid state, i.e., the eigenstates of o'. We shall study this
phenomenon as a function of P and the particle density
p=N/

~

A ~, where
~

A
~

is the volume of the box A tak-

P ' is the temperature.
We shall consider both the static and imaginary-time

equilibrium correlation functions ( A (0)B(~)), where A

and B are operators on the spin variables, ~=it, and
B(it)=e" Be " (setting tel=1); B(it) gives the time evo-
lution of the spin variables at a fixed configuration Ir, j.
This is reasonable when M is large, so that the time scale
for the internal degrees of freedom is very fast compared
to the translations. We do not consider the dynamics of
the classical variables I r;, p; ).

Examples of systems which can be modeled to a
greater or lesser extent in this way, particularly when the
positions are frozen in a regular or (quenched) disordered
array, can be found in Refs. 1-9. Our mode corresponds
to annealed disorder in which the positions I r; ) take on
continuous values in some box A: we think of the parti-
cles as two-state molecules with an internal Hamiltonian
—cootT /2, interacting via a pair potential depending on
their internal state. The aim here is, however, not to
mimic any particular real system but to establish reliable
methods for dealing with the effects of strong interactions
on the internal structure of molecules or atoms when
there are no obvious collective coordinates in terms of
which the description is simple. (We are particularly in-

terested in being able to eventually treat systems such as
metallic vapors, say sodium or mercury, which change as
the pressure increases from a collection of weakly in-
teracting neutral entities to a liquid metal, i.e., plasma. )

For this reason we shall take U(r) and J(r) to have very
simple forms
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en to be a periodic cube (this is of no importance in

the thermodynamic limit N ~~;
~

A
~

~~; and

N/~ A
~
=p, fixed). Ve shall also be interested in the

complementary phenomenon: how the internal quantum
degree of freedom inhibits the cooperative effects of the
interactions by trying to keep the particles in their
ground states, where the J(r) interaction vanishes. This
is called "competitiveness" by Stratt and leads to impor-
tant modifications of the phase diagram of the system as
the quantum parameter cop is increased. The limit Np~0
corresponds to a two-component classical system with at-
tractive interactions J(r) between particles of the same
species, which favors segregation. The opposite limit,
cup~ao, gives a one-component classical system with
only hard-core interaction U(r)

While most previous analyses of these model systems
were based either on mean-field theory and its extensions
and/or on the use of integral equations from the theory
of classical fluids (generalized to this quantum system},
we follow Hall and Wolynes in using computer simula-

I

(1.4)

where A, is the de Broglie wavelength. Following Suzuki,
we use the Trotter formula to write Z as

g NP

Z= lim f dri dr&exp[ —P g U(r; —r )]i N I J
I%J

(i (j)
X g exp[ —P Vr ( ( S ) )],

)S)
(1.5)

where

tions on the "equivalent" polymer model; cf. Ref. 10 for
an overview. We then compare the results of the simula-
tions with both mean-field theory and (for low density)
with virial expansions in p.

The polymer formalism is most easily described by
considering the partition function'

Z(P, N, A)=A, f . . fdr, drztr exp( —PV),—3N

N P
1

N

+PS,JS;J+i+ g J(r rk)~, j~kj s J=+1
i =1 j=1 k=i+1

(1.6)

Ar and Er are defined so as to make (1.5) exact for any
choice ofP when J(r)=0,

A p ——[—' sinh(Phoo/P) ]', Er —— in[coth(Phoo/2P) ],
(1.7)

and A, is the thermal wavelength. Vp is the Hamiltonian
of an Ising-like classical system of P layers. The proper-
ties of the system can now be obtained as thermal aver-
ages over the classical canonical distribution of the N
times P particles,

exp —P g U(r, —r ) —PVr({S}} . (1.8)
l,J

(i &j)

The outline of the rest of the paper is as follows. In
Secs. II and III we describe the virial expansion and the
mean-field theory for this system. In Sec. IV we present
the results of computer simulations for a range of P and p
at coo/2J =—',0, 4, and ~, and compare them with theory.
We find that the first two terms in the virial expansion
give a very good fit to all quantities for pR (0.15. The
mean-field theory, on the other hand, gives some quanti-
tative results at high density and a good qualitative pic-
ture of the overall phase diagram in the P-p plane. This
includes both second-order and first-order phase transi-
tions whose locations depend on the strength of the quan-
tum param. eter ~p; see Fig. 1. We conclude in Sec. V
with a discussion of the results.

II. LOW-DENSITY EXPANSIONS

A. Background

The virial expansion of the static correlation functions
is, for simple classical fluids with integrable pair poten-

I

tials, a well-polished subject of great formal elegance. "
One can simply write down, in the infinite-volume (ther-
modynamic) limit, the coefficient of the nth power in the
density p" as a finite sum of specified Mayer graphs. The
expansion can furthermore be shown to converge at low
densities,

~ p ~
&po,

' and so the series can be rearranged
in various forms suitable for approximations. " The for-
malism generalizes to multicomponent and/or complex
fluids (with internal degrees of freedom) in a straightfor-
ward way —merely requiring the piling up of indices.

The expansion formalism is more complicated and less
developed for quantum fluids. Even in the absence of
statistics the evaluation of the nth coefficient requires
solution of the quantum-mechanical I-body problem, for
all 1 &n, including bound states, which causes many
problems. Nevertheless, one can prove rigorously the
convergence of the virial expansion for simple fluids us-

ing Feynman-path representations of the coefficients. '

There are, however, more restrictions on the potentials
and the bound on the density is smaller than in the classi-
cal case.

The system we are considering is intermediate between
the classical and quantum case. While we are not aware
of any rigorous work on the virial expansion for this type
of system, many of the authors cited earlier' used for-
mal graphical methods for the 2"-component classical po-
lymer system defined in (1.5). Taking the limit P~ oo is
then a tricky problem: in many cases, however, it can be
dealt with, at least formally. We shall not follow this line
here: the correct limit, P~ao, corresponds (see Spohn
and Diimke' ) to interacting continuum Ising fields, i.e.,
o "(y)=+1, for yER, and explicit evaluation of higher
coefficients seems difficult. Instead we shall compute the
first few virial coefficients of the relevant quantities in our
system directly. We do this by going back to the
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where g Al means a sum over all I-tuplets in A.
Equation (2.3) can be expanded in the fugacity and the

coe5cients will have a well-defined thermodynamic lim-

it, ' which we shall now compute for some functions of
interest. We could of course deal equivalently with the
reduced density matrices, but this is more direct for our
purposes.

The simplest example is AI ——1. The right-hand side of
(2.3) is then simply the average density p(z), which is

I

given simply by

p= lim
IAI&~

with

n=1
nb„z",

zQ(1)/
i

A
i
+2z'Q(2)/

i
A

i + .

1+zQ (1)+z'Q (2)+

(2.4)

b i
——[2 cosh( —,'Ptoo) ],

b2 ———,
' fdriztr (expI —P[V(1,2)]I—expI —P[V(1)+V(2)]j ), (2.5)

bi ———,
' liin [3Q(3,A) —3Q(2, A)Q(1, A) +Q (1,A)] .

fA/

In the expression for b2 we let k stand for rI, and ok to
show that the integrand is equal to zero when r12 is
greater than the range of U(r) and J(r) In b3 .we indi-
cated explicitly the dependence of Q (N) on A.

The explicit evaluation of bI essentially requires the di-

agonalization of VI. This can be done readily for l=2
(see Ref. 15), where for a fixed r the eigenvalues of the
operator

2
(o'i+o2) —J(r)o io 2

are given by

A, i
= —[J (r}+a)0]', A, 2 —— J(r), —

Ai ——J(r),A4
——[J (r)+&00]'

This yields

(2.6)

(2.7)

b2 ——fdr[e ~ '"'(cosh[PJ(r)]+coshIP[Ji(r)+too2]'~z) )—1 —cosh(Phoo)]

=fdr(e ~ '"' —1)(cosh[PJ(r)]+coshIP[J (r)+coo)' ] )

+ f dr[I csoh[P J(r)]—1I+(coshIP[J (r)+F00]'~ ] —cosh(Peso))], (2.8)

which reduces to the standard "classical" formulas when J(r}=0or ceo=0. [For J(r)=coo=0, z~—,'z for the purely
classical fiuid without internal degrees of freedom. ] For the particular interactions given in (1.3), we find

bz ,'[2co—sh———(Phoo/2}] ', mR +——43mR ( —", —1}([cosh(PJ)—1)+Icosh[P(J +coo)'~ ]—cosh(Pais)I ) . (2.9)

We can carry out an exactly analogous expansion for o" or cr'. The latter mill of course yield zero for all the
coeScients in the expansion (since H is invariant under o';~ tr*, , all—i), while the former gives for the average "x mag-
netization" per unit volume

=[2 sinh(Phoo/2)]z+ fdr e ~ '"'(4coosinh[P[J (r)+F00]'~ I /[J (r)+coo]'~ 4sinh(Phoo))—z2+ (2.10)

where in deriving (2.10) we had to use also the eigenfunctions corresponding to the eigenvalues given in (2.7).
A similar expansion holds for the imaginary-time-dependent correlations. Setting r=it, we define, for 0 &r &P, the

"pseudo-one-particle" operators

o'( r) o(0)=e'"cr'e ' o', s =x or z .

We then have for their expectations per unit volume,

N 00

C, (r)=(o'(r)o'(0)&= g o&';(r) o( )0 &/~A
~

= g z (Nl
~

A
~

)fdr, dr~tr(e "o'e "o'p~)/:-
N=1

(2.11}

= g ci'(r)z', 0&r&P .
I=1

(2.12)
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It is easy to check that C, (r) is symmetric about p/2. We note that

X, =P ' I C, (r)dv.

is just the "self-part" of the isothermal static response function of cr' to an external field acting on the 0'. '

C. Virial expansion

To obtain an expansion in p, we invert (2.4) to get z(p) as a power series in p and substitute in (2.10}and (2.12). This
yields, for the interactions (1.3),

(cT')/p=tanh(pcoo/2)+p R ( —", —1)[4coosinh(pk~)/A~ —tanh(pcoo/2)I +(0)]/cosh (pcoo/2)+

C (r p }—= ( a "(r)cT"(0)) lp

(2.13)

= 1+p R ( —", —1)[ I (r)I (r)/I (0)—I (0)+coosinh[A~(p —r)]sinh(A, r) ] /cosh (pcoo/2)+, (2.14)

= [coshcoo(P/2 —r)]/cosh(Pcoo/2)

+p R ( —,
' —l)[I (r)L +I (r)L —I' (0)cosh[co (P/2 —r)]/cosh(Pco /2) ) /cosh (Pco /2)+ .

where we have dropped the overbar from p and put

(2.15)

I +(r) =cosh (A4+A3) ——r cosh (A4+ Ai)
2

L ~ = ( A 42ki )/[ ( A 4+ II(,i ) +co(i ]

X,(p)=P ' I C, (r,p)d~,

as a function of p . Using the first two terms in formulas (2.14) and (2.15) with p replaced by a„we obtain from (2.16)

(2.16)

The terms on the right-hand sides of (2.13)—(2.15) represent the averages per particle, which we compare in Fig. 2(a)
with the results of computer simulations carried out at fixed density; see Sec. IV for details. We see that the agreement
is extremely good for p'=pR &0.15, even though we used only the first two virial coefficients. Remarkably enough,
we can use the formula in the square brackets (2.14) and (2.15) with p replaced by an adjustable parameter a, (p) to fit
our simulations up to much higher densities. This can be seen in Fig. 3, where we plot the "self-susceptibility" X,(p),
defined by

X,(p)=P, ~a, (p)f, ,

where (}I), and P, are independent of p,

(2.17)

(}},= (pcoo/2) 'tanh(pcoo/2),

R ( —", —1)I sinh(PA 4) /PA~+ sinh(PA 3)/PA &+co(i[cosh(PA 4)—sinh(PA~)/PA 4]/I ~

—2I +(0) j /2 cosh (Pcoo/2),

R ( —", —1)2[I" (0)L /p(A, —A&)+I" (0)L /p(A&+A. ) —I (0)tanh(pco /2)/pco ]/cosh (pco /2) .

Equation (2.17) can now be used to define a„ from the computer data for X,(p). Doing this we find that
a„(p)=a, (p) =a (p), which is plotted in Fig. 4: the error bars in that figure represent the mean-square deviation of the
computed C, (r) from that given by (2.14) and (2.15) with p replaced by a, (p). We will discuss this point further in Sec.
V.

We also define the pair distribution functions

1 1+yo',

~A~ .~ 2i j =1

1+5o.'
5(r;) —r)), (2.18)

where y, 5=+1. In the low-density paramagnetic regime g++ ——g, and we find to the lowest (zeroth} order in the
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The interaction energy per particle, obtained from the pair density

u, = ——,'pg fJ(r)y5g s(r)dr=p R ( —", —1)( —J)[sinh(PJ)+Jsinh(PA4)/A4]/4cosh (Poop/2)+. . .
y, S

(2.21)

is plotted in Fig. 5. Again the lowest-order term in p
gives accurate results for small densities. We also show
there the results of replacing p in (2.21) by a, (p) deter-
mined via Eq. (2.17).

III. MEAN-FIELD THEORY

The Hamiltonian of the mean-field version of our mod-
el is given by'

HMF ——g p;/2M+ g U(r; —rj )

N

(Jp/N) g cr OJ —(c.op'/2) g cr (3.1)

Xx Xz

i.e., the interaction between the internal degrees of free-
dom of two particles is distance independent; it decreases
as 1/N with increasing number of particles to get a sensi-
ble thermodynamic limit.

In order to compare the results of mean-field theory
with those of our model (1.1}we need to choose the value
of Jp in (3.1). Stratt (Ref. 3) takes Jp pf dr J(r)g(——r),
where g (r) is the two-point correlation function of the
underlying classical model. This is motivated as follows:
In the mean-field model the magnetic field felt by, say,
the first particle is

(Jp/N) g o'; .
i() 1)

Assuming that the o'; can be replaced by some effective
value m the first spin feels an effective external field

(Jp/N) g m =Jpm
t'() 1)

as N~ ao. In the same spirit, we have that in our real
model (1.1}the field felt by the first particle is

N

HMF(h)=HMF —h g cr;'. (3.2)

The properties of this system can be computed exactly in
the thermodynamic limit, ' ' provided one knows the
properties of the classical part of the system, i.e., a sys-
tem with Hamiltonian

N

H, )
——g p;/2M+ g U(r, —r ) . (3.3)

For instance, the free energy f (p;h) of this model in the
thermodynamic limit, A~ ac, N/

~

A
~

=p, is given by

ax(p)

az(p)
2.5—

P = 0.7

~ /2=20/7

g J(r, —r, )o', .
I'() 1)

Replacing o'; by m and approximating the two-particle
distribution by the classical one, we find that the effective
field on any particle can be approximated by

mp fdr J(r)g(r),

leading to the preceding prescription. Note that now Jo
depends on the density. Ideally, one should of course try
to take the actual pair-correlation function g(r) of the
model. Since this is, however, not known, one takes in
practice the g(r) from the Percus-Yevick approximation
for hard spheres. While this may not be optimal, it is the
most simple and therefore the most useful for approxima-
tions. Furthermore, as seen in Fig. 6, it is in fact very
close to the g(r) obtained from the simulation (cf. also
Sec. V).

For convenience, let us introduce an external magnetic
field in our Hamiltonian,
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FIG. 3. "Self-susceptibility" vs reduced density. Monte Car-
1o simulations.

FIG. 4. Fit of a, (p) [see Eq. (2.17)] to the "self-susceptibility"
(See Fig. 3). Comparison with the second-order virial expan-
sion. The error bars give the least-squares error of the Monte
Carlo result for C, (~) from that given by (2.14) and (2.15), with

p replaced by a, (p).
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f(p;h)—:lim lntrexp[ P—HMF(h)]
A

=f,&(p)+ min —+lncosh[p[(Jom +h) +(coo/2) ]' (3.4)

Here f, (ip) is the free energy of a classical system with
Hamiltonian (3.3) and the second term on the right-hand
side of (3.4) reaches its minimum at

Jcm (h}+h
m(h)= tanh[Pb, (h)], (3.5)

where

b(h)= I [Jom (h)+h] +(coo/2)2) '/2 .

For most situations, the following rule of thumb may
be used: the Hamiltonian HM„(h} becomes, in the ther-
modynamic limit X~~, equivalent to the Hamiltonian

(2JQ/coo)tanh(p, ruo/2) = 1 . (3.7)

If Jc & coo/2, P, =+~. In this case, no phase transition
occurs. If Jo&coo/2, then for p&p, Eq. (3.5) has three
solutions, namely, m (0) (&0), 0, and —m(0). The right-
hand side reaches its minimum at km(0) and its max-
imum at zero. (The fact that the minium is reached at
two points is the reason why one has to be careful in
making statements about h =0.} When h &0, the
minimum of (3.4) is reached at a unique point [although
Eq. (3.5) might still have more than one solution].

Let us now look at certain specific quantities. We
define

N

H (m (h);h )= g p;/2M+ g U(r; —rj ) trA exp[ —PH+MF(h)]
&~)"„„=hm (h~O) .

«exp[ —PHMF(h)]
(3.g)

N N—g [Jom(h)+h]o', —(coo/2) g o";, We also define ( A )M„= limi, ic ( A )M„. Then, using our
rule of thumb, we find

(3.6) (o')MF ——m (0)= lim (o')M„.
h)0

(3.9)

where m (h) is as defined in the preceding. (In fact, the
case h=0 is special and the statement has to be made
more precise in this case. ) Since the quantum-mechanical
part in (3.6) is a sum of independent particle contribu-
tions, properties of this system can be calculated easily.

Let us now take a look at the solutions of (3.5). First,
assume that h=0. For fixed Jo and con this equation has
only one solution, namely, m =0, for p &p„where p,
satisfies

(3.10)

We thus see that (cr')MF shows nonanalytic behavior
when we go through the point p=p, . Indeed, for p &p„
(o')M„=O, while for P&P„(o')MF&0. Moreover, one
checks that for (p—p, ) small that (o')M„-(p—p, }'/ .

We can also easily calculate ( o i )M„. We find

tanh(pro/2) for p &p,(o')' ='
coo/2JD for P&P, .

TABLE I. Ratio of g ~(r *)/g ~(r +) at the potential step (r = 1.5R, J= 1).

P=0.7, coo/2= i7o

g+ (r )/g+ (r+)
g (r+ )/g (r )

p =02

1.36
1.15

MC

p =03

1.54
1.07

p =04

1.75
0.88

Eqs. (2.20)

1.27
1.15

Classical

2.01
2.01

P=1.5, coo/2=4

g+ (r )/g+ (r+)
g (r+ )/g (r )

p =0.15

1.27
1.02

1.23
1.04

4.48
4.48

P=1.05, coo/2=3/1. 05

g (r )/g (r+)
g (r+ )/g (r )

p =0.15

1.37
1.09

1.29
1.11

2.86
2.86

P=0.35, coo/2= —,

g+ (r )/g+(r+)
g (r+ )/g (r —

)

p =0.55

1.23
1.03

1.11
1.09

1.42
1.42
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The susceptibility

x=
dh h 0

can be found by differentiating expression (3.5) with
respect to h. This gives for the paramagnetic region

-puz
~&a

P=O 7

uo/2 = 20/Z-

[tanh(Pr00/2 )]/(Pc@0/2 )
p 'x=

1 —J&&(p)[tanh(Pc00/2) ]/(coo/2)

One verifies that near P„X- ~P —P, ~

'. We further
note that, in the mean-field model, positional correlation
functions, such as

oa p oa /+ ~

/ ~~:Monte Carlo+ ~
/

second —order

vitl1 expRRsion.

: -pua(p)

+ - -+: -pua(aa(p))

(3.11)

g(r)= g grs(r),
y, S=+1

are fully determined by the distance correlation functions
of the underlying classical model.

%e can also obtain the time-correlation functions by
using our rule. %e Snd in the limit /~00 that

hm (o;*(0;h)trj(t;h))MF ——(cr;*)MF(o'J )MF,
h)0

0
0.1 0.2

I

0.3
I I I I

0.4 0.5 0.6 0.7 P

FIG. 5. Interaction energy vs reduced density. Comparison
of Monte Carlo simulations and second-order virial expansion.
We also show the result of replacing p in (2.21) by a, (p) deter-
mined via Eq. (2.17).
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FIG. 6. Correlation functions at different densities. g is the Percus-Yevick solution for hard spheres. The blocks at the right-
hand side are at 14m, where m is the spontaneous magnetization obtained from the simulations; see Sec. IV B.
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if i&j and s =z or x. When i =j and h=O the self-
correlations are given by

C,(r)=
Jam (0} 1 cosh[(p —21.}h(0)]+(~o/2)'

b, (0) g(0) cosh[ph(0)]

(0&r&P) (3.12)

and

C„(~)=(coo/2)' +1 Jorn (0} cosh[(p —2r)h(0)]
6(0) b,(0) cosh[PA, (0)]

(0 & ~ &P), (3.13)

where, as before, b(0)=[Jom(0) +(~o/2) ]' and we
have used a bar over the C's, defined in Eqs. (2.14} and
(2.15},to indicate their mean-field nature.

In order to get the phase diagram, it is important to
remember that the free energy of any physical model al-
ways needs to be a convex function of the density. This is
not the case for our mean-field model. However, if the
mean-field free energy contains a concave part as a func-
tion of the density, we take the convex envelope (i.e., the
largest convex function which is everywhere smaller than
the original function}. This is nothing else than the usual
Van der Waals prescription for the equation of state. The
result of introducing the convex envelope is that our sys-
tem now also can show first-order transitions. In Fig. 1

we have plotted the phase diagram of our system in the
mean-field approximation for coo/2J=O, '0, 4, and 8. At
higher temperatures, the system has no phase transition
when we vary the density. At lower temperatures the
system undergoes, when the density is increased, a
second-order phase transition from a nonmagnetized
phase to a magnetized phase. Finally, at even lower tem-
peratures the system undergoes a first-order phase transi-
tion. For a certain range of densities (region between two
lines in Fig. 1), the system then splits into a low-density
nonmagnetic phase and a high-density magnetic phase.
Note that there would be no transition if coo/2Jp(p) & 1

for any densities. In Figs. 2, 7, 8, and 9 we show how the
quantities (0"), (cr'), X, and the imaginary-time-
correlation functions vary when we vary the density
(J=l, p=0.7, and coo/2=', ~) and compare them with

Monte Carlo results. Generally, a mean-field theory
should not be expected to reproduce fluctuations very
well. Thus correlation functions of the form (S;SJ ) will

be more accurate in the ferromagnetic regime than in the
paramagnetic region, simply because the mean-field ap-
proximation that

3

2&St A

PJ=0.7, 1.05, and 1.5. For comparison wes considered
purely static properties at small quantum weights
(Peso/2=0, 1, and 2 and PJ =0.2, 0.35, and 0.5) near the
second-order transition densities. In the present work
the reduced density p'=pR was varied up to 0.7, which
is still far below the freezing density. The number of
classical particles N was 100 and the number of "mono-
mers" in the polymer P [see Eq. (1.5)] was 32, except for
the case of coo/2J=4 and PJ=1.5, where N=200 and
P=48. These values of P appeared suf6cient for points
investigated, i.e., increasing them did not seem to affect
the results. The good agreement with the results of the
virial expansion at low densities is further evidence of
this adequacy. A typical run with 3&(10 Monte Carlo
steps took about 2 h on a Cyber 205.

A ~
~ ~

o.s — P=o &

no/2=20/7 O: Monte Carlo

0.6—

04—

~~A
r

Oto at& 02 08 0A 0$ 08 07 08 P

FIG. 7. Interaction and internal energy vs reduced density.
Comparison of Monte Carlo simulations with mean-field theory.
The interaction energy in mean-field theory is given by
pJO(p)m '/2.

(ss, )=&s, )&s, ) =&s)'
contains most of the answer when (S) is not zero. In
Fig. 10 we show Jo(p)—it is seen to be almost linear in p. 0.2—

mean field:

: transition density

from convex envelope

~:solution of eq.(3.5)
IV. MONTE CARLO SIMULATIONS

In order to study quantitatively the features of the
model described by Eqs. (1.1) and (1.2), for different den-
sities, quantum weights, and varying interaction
strengths, we performed Monte Carlo simulations for
fixed J= 1 and R= 1, at uo/2J=2/0. 7, 4, 2/0. 35 and

o Ilc I'D 0
0.0 O.l 0.2 0.3 0.4 0.5 0.6 0.7

I

0.8 P

FIG. 8. Magnetization vs reduced density. Comparison of
Monte Carlo simulations with the mean-field theory. The
mean-field values of m, denoted by 0, to the left of the vertical
line are metastable or unstable states.
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X
7—

~ . Monte Carlo

mean field

B. Thermodynamic and pair correlation functions
in the difFerent phases

We computed the internal energy, using standard
Monte Carlo techniques, ' on the classical polymer sys-
tem using the following definitions: the one-particle ener-

gy

—Pu"=(Phoo/2) tanh '(Pa)0/P)

P=0.7

uo/2=20/7

—sinh (Phoo/P)
—1 1

0 l I I ] I I T

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 P

FIG. 9. Susceptibility vs reduced density. Comparison of
Monte Carlo simulations with the mean-field theory.

the interaction energy,

(4.1)

A. Phase diagram
the susceptibility (cf. Ref. 19),

(4.2)

As already mentioned, the phase diagram is given qual-
itatively by mean-field theory: for small pJ the system
undergoes, as p is increased, a second-order phase transi-
tion from the paramagnetic to the ferromagnetic phase.
At larger values of pJ, a formation of clusters sets in, and
the system undergoes a first-order phase transition from
the paramagnetic to the ferromagnetic phase (Fig. 1).
The coexistence region of the first-order transition was
judged by sampling the clusters with a weak external
(gravitational) field, which separates regions of high and
low densities. Outside the density range of the transition
the system shows no separation, whereas inside the tran-
sition range a strong tendency towards clustering can be
observed. This behavior is typical for a first-order transi-
tion.

(4.3)

the magnetization,

(4.4)

and the pair-correlation functions g+(r) for parallel and
antiparallel spins,

N i P
gz(r)—= 2 g —g —,'(1+S, „S,„)N;, J

(i &j)

0
1 ( l I I

0.0 0.1 02 09 0.4 050.6 0.7 P

FIG. 10. Jo(p).

We observed the following general behavior: as the
density is increased there is a continuous increase of
—pu', and a decrease of —pu", indicating a changeover
from occupation of eigenstates of cr" to that of e', i.e.,
hybridization. The degree of this hybridization at a given

p depends strongly on coo. The second-order transition is
visible by a large increase in the susceptibility. Beyond
the phase transition density the magnetization takes
nonzero values approaching 1 (see Fig. 8) as p is in-
creased, indicating the dominance of cooperative effects.

The pair correlation functions for higher densities
show maxima at distances near multiples of the hard-
sphere diameter R with intermediate minima, represent-
ing the layering structure of the classical fluid. As usual,
the probabilities for finding particles with parallel spin
are enhanced at close distances, compared to the
uncorrelated case. The integral of the difference
pJp[g+(r) g(r)] over the interaction—shell gives the
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interaction energy; see Fig. 6.
For large distances the expectation values of (cr', cr&.).

factorize. For densities beyond the transition, i.e., in the
ferromagnetic phase, the probability for finding two
parallel spins at large distances is higher than for antipar-
allel spins, g+(r) &g (r), the value of the difference, for
r ~ Oo, is given by m; see Figs. 6.

At r =—,'R the correlation functions are discontinuous.
The deviations of the ratios of

g+(-', R )/g+(-,'R+ )

from the classical ratios, given by the Boltzmann factors
exp(+PJ), may be thought of in terms of a quantum
screening effect. The two-particle approximation for
g+(r) (see Sec. II) already shows this effect of the weak-
ened effective interaction. The agreement of the Monte
Carlo (MC) results, with those obtained from the lowest
terms in the virial expansion is good for low densities; see

I

Figs. 6 and Table I. At higher densities the values for
g+ ( —', R ) are enhanced. The weak discontinuity of

g (r) at r =—,'R for high densities is in great contrast to
the classical results, with only a weak dependency of the
density.

C. Imaginary-time correlations

We studied the behavior of the imaginary-time correla-
tion functions C, (r,p) and C„(r,p) Th. ese give informa-
tion about the degree to which the system is in "eigen-
states" of 0"or o'.

We determine C, (lP/P, p} by taking the products of
the spins S;jS;j+& at points in the chain at a distance
I E (0, 1, . . . , P —1 j and averaging over i and j. The (un-
normalized) C„(!P/P,p) is obtained by exponentiating
the sum of products of neighboring pairs in ascending or-
der, where the first of the pairs are at a distance 1P/P,

N
1 P

C, (ISlPP) —Z —= Z S kS kkk),
j=1 k=1

(4.6)

N
1

P
c, (ISIP p)= —Z —X exp[SKs( —2s) ks. k+, —2s. k+ks( k kk +, )))j=1 k=1

= tanh (Pc@0/P) —tanh '(Pc@0/P)sinh '(Pc@0/P)

N
1

P
X —X —Z (S, kSkk+I+Skk+IS) kelso))

j=1 k=1
N

1
P

~sinh (Skee/P) —z —z (S; kSk]SkkISkkkkkk\)k) k.
j=l k=1

(4.7)

At low densities the particles are in eigenstates of cr",
C„(~,p) is nearly 1, and C, (~,p) shows a pronounced
minimum at ~=P/2 [see Fig. 2(a)], indicating that the
eigenstates of o' are least correlated at opposite points in
the "polymer. " With increasing density the system goes
into hybrid states: the o" eigenstates are now less corre-
lated and the tendency to more correlated cr' eigenstates
increases. C„(r,p) starts building a minimum at P/2, and
the value of C, (P/ p2) increases; see Fig. 2(b). As the
density crosses the phase transition between the
paramagnetic and ferromagnetic phases, C, (r,p) and
C„(r,p) interchange their form. C„(P/2, p) is now small-
er than C, (P 2/, p), corresponding to the ordering tenden-
cy of the cr;'o'. interaction. For densities above the phase
transition, C,(r,p} approaches unity; see Figs. 2(c) and
2(d).

The (imaginary} -time averages of C, (r,p} and C„(r,p}
over the interval between 0 and P [see Eq. (2.16)] vary
only little with the density for small densities, with values
of f„=1 and 7, =2tanh(@coo/2)/@coo for p=0; see Fig.
3. Near the transition density the increasing tendency to-
wards occupations of o' eigenstates cause a sharp de-
crease of X„and increase of X„with 7, and X„crossing
each other. Beyond the transition density 7, approaches

1. This behavior is of course very different from that of
the total susceptibility X shown in Fig. 9—the X behave
more like energies than like true susceptibilities.

V. DISCUSSION

We first note again that in the model treated here the
translational degrees of freedom are frozen out as far as
the dynamics is concerned. In particular, the (imaginary)
time-dependent correlations computed here correspond
to a quantum evolution of the spin variable at fixed posi-
tions, averaged over different configurations ( r, ]
according to the (annealed) Gibbs measure (1.2). The
justification for this kind of adiabatic (Born-
Oppenheimer} approximation for real systems remains to
be investigated.

Given the model, some of the most interesting ques-
tions concern the interplay, or competition (cf. Ref. 3) be-
tween quantum and cooperative effects as the density is
varied at a given temperature and quantum strength cop.

For the system to take advantage of the "dipole-dipole"
interactions it has to first be in a state in which it has
such a moment, i.e., hybridization. Since this is unfavor-
able as far as the "internal" energy —(coo/2)cr" is con-
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cerned, the cooperative effects are inhibited. The larger
the coo, the greater the density necessary for cooperativity
to dominate. This can be thought of as a reduction in the
effective dipole interactions with increasing coo, and ex-
plains qualitatively the main features of the observed be-
havior.

In particular, the increase of the transition density,
from a paramagnetic to a ferromagnetic fluid, as coo is in-
creased (Fig. 1), can be understood in this way. In fact,
in the low-density region the particles seem to be pretty
much in the rr"=1 state (cf. Fig. 7), with very little
effective dipole interaction. It is presumably for this
reason that the first two terms in the virtial expansion are
sufficient in this region (Figs. 2, 4, and 5 and Table I).
This still leaves a mystery why the scheme (2.17},which
replaces the whole system by one having only the four en-
ergy levels given in (2.7), works as well as it does in Figs.
4 and 5.

Quantum mechanics also has the efFect of "smearing
out" of the interaction, replacing the classical point parti-
cle by a "polymer. " This may explain at least in part
why mean field does so well at moderate and high densi-
ties, using just the hard-sphere g(r}; cf Figs. 2(c), 2(d),
and 7-9. An inspection of Fig. 8 shows the Monte Carlo
results following rather closely the mean-field values into
the metastable region of the latter —we are not sure
whether this is accidental or profound. Figure 9 also
shows remarkable agreement between simulation and
mean-field results at low density. Since mean field is not
so good for the self-correlation at densities around

p -0.25 (although it has the right p~0 limit) [see Fig.
2(d)] the good agreement in that range must be due to
compensation from the pair interaction part. Finally, we
note the good agreement between the [g+(r)+g (r)] ob-
tained from the simulations and the hard-sphere classical
g(r) (approximated by the Percus-Yevick g} at PJ=0.35
and p' =0.55, shown in Fig. 6(d).

In summary, the equilibrium properties of our model
system can be well approximated by relatively simple
analytical expressions in both the low- and high-density

regions. In particular, they seem to actually improve
with coo, unlike the semiclassical approximation of Ref. 5.
It would certainly be useful to develop similarly good ap-
proximations for truly dynamic quantities such as the
frequency-dependent susceptibility X(to); cf. Sec. 4.2 in
Ref. 16. This quantity gives direct information about the
absorption spectrum of the system and hence also about
"localization in one of the potential wells, "a, =+1, as a
function of the density. The computation can be readily
done to low order in the virial expansion or in mean-field
theory: it involves, Ref. 16, the evaluation of the Fourier
transform of

I (o~(0)o,' (A, +it.))dk. .

Unfortunately, neither of these schemes seems directly
useful. In the mean-field theory

X(ro)-a (p )5(to —&(0))+b (p)&(to),
with b=0 for p less than the transition density. In the
virial expansion to the kth order we can expect to get 5
functions corresponding to a system with 2 levels. It
would be very interesting, however, to see if the analog of
(2.17), including possibly some sort of broadening around
the "pair levels, " would still be useful here. We hope to
explore this further.
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