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We provide a theoretical and experimental study of the nature of morphology transitions in
diffusion-controlled systems. The interplay of surface tension and kinetic anisotropy is found to
determine the selected morphology in an anisotropic Hele-Shaw cell experiment, and in theoretical
computations in the boundary-layer model (BLM) for solidification. We employ the Hele-Shaw cell
to demonstrate the existence of surface tension and kinetic dendrites. Using the BLM we show that
the selected velocities for kinetic and surface-tension dendrites scale differently with the undercool-
ing A. A study of the selected velocity as a function of undercooling is presented for both aligned
and competing anisotropies, the latter motivated by the Hele-Shaw experiment. The difference in
scaling is related to the reentrant tip splitting found for the case of competing anisotropies in the
BLM morphology diagram via a time-dependent solution for the interface evolution. We suggest
that the nature of the transitions between morphologies should be classified by the behavior of the
selected interfacial velocity as a function of driving force. For the case of the BLM, first- and
second-order-like morphology transitions, by analogy to phase transitions, are discussed. We fur-
ther advance the hypothesis that the fastest growing morphology, whether it be tip splitting or den-
dritic, emerges as the stable interfacial morphology experimentally. We support our hypotheses by
drawing analogies to experimental results of growth from supersaturated solutions and by electro-
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chemical deposition.

INTRODUCTION

Over the past several years unifying principles govern-
ing the development of interfacial patterns have been ar-
rived at. It is now recognized that structures whose
growth is diffusion-controlled share a common set of in-
terfacial patterns with qualitative rules of morphology
correspondence between systems which can be estab-
lished by careful identification of the control parameters.
For a given system these results are well summarized in a
morphology diagram delineating the selected morphology
as a function of the control parameters.!* Part of the
beauty of this field has been the success of simple theoret-
ical models and experimental systems in exposing the un-
derlying physics. For example, the discovery that micro-
scopic anisotropy in either the dynamics of surface ten-
sion or kinetic growth is a singular perturbative control
necessary to stabilize dendritic growth, was first achieved
in the boundary-layer model for solidification® (BLM),
and the geometrical model.® This further led to the reso-
lution of the problem of the selected velocity of the nee-
dle crystal.”® It is also the prediction of these models
that in systems with weak effective anisotropy tip-
splitting growth occurs which can be identified with the
dense branching morphology’ (DBM). Although some of
these results have now been achieved for the full nonlocal
diffusion problem, '°=!* the local models retain the appeal
of capturing the correct fundamental physics while
remaining computationally tractable for the time evolu-
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tion of the interface. Similarly, the simple experiment of
Hele-Shaw viscous fluid displacement!*!4~17 has proved
a lucid method to demonstrate the effects of anisotropy,
and provides an important means to develop intuition as
to the dominant effects in morphology determination.

In this paper we focus on morphology selection and the
nature of the transition between morphologies as
diffusion-controlled systems pass from near-equilibrium
to far-from-equilibrium dynamics. We first present the
results of experiments in an anisotropic Hele-Shaw cell
where the presence of competing surface-tension and ki-
netic anisotropies"* allows the clear distinction to be
made between dendrites stabilized by surface-tension an-
isotropy for small applied pressure, and dendrites stabi-
lized by kinetic effects at larger pressure. This motivates
our study of morphology transitions in the BLM where
we find that the velocity of the selected needle crystal
scales differently with undercooling in the surface tension
and kinetic anisotropy regimes. Specifically, for inter-
mediate undercoolings of 0.2 < A < 0.6 the selected veloci-
ty V* scales roughly as A’ for surface-tension needle
crystals, while for kinetic needle crystals V* goes roughly
as A%, This difference in scaling correlates well with the
observation of reentrant tip splitting in our Hele-Shaw
experiment. This tip-splitting growth (presumably the
DBM) is observed between the regimes of surface-tension
and kinetic dendrites. As explained below, it arises natu-
rally for anisotropic Hele-Shaw interface development be-
cause surface-tension and kinetic effects are in competing
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directions. This observation motivated our study of
BLM simulations with the introduction of an offset angle
between the surface-tension and kinetic anisotropies. For
parameters chosen such that the two different anisotro-
pies are of roughly equal “strengths” (as judged by the
equality of the surface tension and kinetic selected veloci-
ties), just such reentrant tip splitting is also observed in
the BLM.

To develop a quantitative characterization of such
morphology transitions we propose below that a natural
scheme of a morphology diagram is one with axes of in-
terfacial velocity versus driving force. The example we
study is that of the selected needle-crystal velocity V* as
a function of undercooling for the BLM. We find that for
the BLM a plot of V* versus A can display discontinui-
ties or sudden changes in slope corresponding to changes
in the selected morphology. By analogy to phase transi-
tion terminology we dub these first- and second-order-like
morphology transitions, respectively. An examination of
the so-called “mismatch” function which determines the
selected velocity shows that it may fail to vanish when
the morphology transition is first-order-like. In addition,
our numerical study of the BLM needle crystal shows
that in the presence of competing surface-tension and ki-
netic anisotropy it is possible for there to be more than
one selected needle crystal. By studying the time-
dependent evolution of the slower one we show that it is
unstable and undergoes tip splitting. This motivates our
hypothesis that just as it is the fastest growing needle
crystal which is the stable and selected one when there is
no such competition, so more generally it is the fastest
growing morphology which is selected. We extend this
argument to the regime where we believe tip splitting
should dominate the interfacial growth.

Finally, we support our new characterization of mor-
phology transitions by making comparison to the earlier
results of Chan et al.'® and the results of electrochemical
deposition experiments. Although the physical mecha-
nisms underlying morphology transitions in real experi-
mental systems are likely not identical in nature to the
competing anisotropies BLM model we have solved, nev-
ertheless in these experimental systems when the velocity
is plotted against the driving force changes in slope and
discontinuities correspond to changes in the observed
morphology.

MORPHOLOGY DIAGRAM
FOR ANISOTROPIC HELE-SHAW FLOW

In this section we study interfacial development as
determined by surface-tension and kinetic effects in a
Hele-Shaw system with both surface-tension and kinetic
anisotropies. Moreover, in the experiment described
below the anisotropies are in competing directions result-
ing in the particularly rich morphology diagram of Fig.
1. Our key finding is that such competitive anisotropies
permit a morphology regime of tip splitting, which is
probably dense-branching growth, between dendrites
which are stabilized alternately by surface tension anisot-
ropy and kinetic anisotropy.

The anisotropic Hele-Shaw experiments were per-
formed in the same cell as described by Ben-Jacob et al.!
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FIG. 1. Morphology diagram for a sixfold anisotropic Hele-
Shaw cell. Here P, is the applied pressure measured roughly in
centimeters of Hg (the actual manometer fluid was a light oil).
The anisotropy of the cell is measured by the ratio
$=>b,/(by+b,) where b, is the depth of the grooves (0.015 in)
and b, is the additional spacing between the top plate and the
top of the grooved plate The morphology regions are I, faceted
growth; II, surface-tension dendritic growth; III, tip-splitting
growth; IV, kinetic dendritic growth. Cross hatching of curves
separating labeled morphology regions indicates possible ex-
istence of narrow regions of other morphologies, e.g., as men-
tioned in the text between regions I and II there is evidence for
DBM growth.

To review the experimental apparatus, air was pumped
into glycerol which was used again as the viscous fluid.
High purity glycerol (94%) dyed with food color was
used. On the circular bottom plate, radius Ry =25 cm,
was ruled a regular sixfold lattice of grooves with depth
b, =0.015 in and width of 0.03 in. The effective anisotro-
py of the system, defined by ®=b,/(b,+b,), was varied
by changing the spacing b, between the cell plates. The
range for ® in the experiments was between 0.1 and 1.0.
Pressures ranging up to 100 mm Hg were applied from a
large (=5 gal) pressure reservoir.

The classification of the morphologies was made at the
time when the average interfacial radius R was half the
radius of the circular plate R,. Specification of the ra-
dius at the point of classification is necessary since the
pressure field in the glycerol satisfies the Laplace equa-
tion V2p=0. Thus, the effective driving force, propor-
tional to (p,ppiied —Patm)/R 10g(R /R ), increases with R
with a consequent possible variation of morphology with
time. In practice, this did not prove a problem in mor-
phology identification. The morphologies observed, as a
function of increasing applied pressure at a fixed effective
anisotropy, are as follows.

At the lowest pressures applied faceted growth oc-
curred [Fig. 2(a)]. Flat interfaces that advanced a row at
a time via nucleation and subsequent kink propagation
were observed. At slightly larger pressures both the nu-
cleation time and the time for the propagation of a kink
along the entire length of a facet becomes shorter, but
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with the nucleation time shorter than the propagation
time. As a result, each face develops multiple propaga-
ting kinks. The upshot is an interface smooth on the
scale of the interchannel spacing due to the overlap of the
multiple kinks. However, the row by row advance is also
sufficiently disturbed to produce roughness on a multiple
channel scale. Characterization of this dynamic mor-
phology requires a larger system. In this regime, between

faceted and dendritic growth, tip splitting is observed.

As the applied pressure is further increased the first
transition to dendritic growth occurs. The underlying
needle crystals point at a 30° angle to the direction of the
lattice grooves [Fig. 2(b)]. For reasons to be explained
below, we designate these as surface-tension anisotropy
dendrites. With a continued increase of pressure the
selected morphology once again becomes tip splitting

FIG. 2. Morphologies corresponding to the morphology diagram in the anisotropic Hele-Shaw cell. (a) Faceted growth. (b)
Surface-tension dendrites. With careful inspection it is possible to observe that the dendrite tips are pointed at an angle of 30° to the
ruling of the grooves. (c) Tip-splitting growth. In a larger and more regular cell we assume that this would be a dense-branching
growth. (d) Kinetic dendrites. The needle crystals grow parallel to the ruled channels.
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[Fig. 2(c)]. Presumably this is the DBM; however, rela-
tive to the dimensions of this small cell the typical branch
width is too large to produce the multiple tip splitting
necessary for a clear-cut identification. (On the other
hand, in a demonstration cell with smaller interchannel
spacing than in the experimental cell desired above, it
was possible to plainly identify a range of DBM growth
after the surface-tension dendrite regime.) Finally, at
high driving force sixfold dendritic growth aligned with
the channels occurs [Fig. 2(d)]. These we refer to as ki-
netic dendrites. Between the DBM and kinetic dendrite
regimes is a region in which the morphology is that of
needle crystals without side branches. Within the resolu-
tion of our measurements (pressure steps of 5-10
mm Hg) the transition to needles from either the DBM or
kinetic dendrite sides is sharp. Nevertheless, at present
we identify kinetic dendrites and undecorated needle-
crystal growth as the same morphology.

A qualitative understanding of the morphology dia-
gram can be arrived at by considering the interfacial
boundary condition and the velocity field of the Hele-
Shaw cell. Thus, the pressure at the interface p; and the
velocity normal to the interface v, are determined from

ps=p,—d(0)x—pB(O)w, , (1)
_ =b(8’ g A
v"__——IZn Vpa, (2)

where k is the local curvature of the interface, 7 is the
viscosity of the glycerol, and 1 is a unit normal to the in-
terface. Moreover, the dependence of the interfacial
surface-tension and kinetic term vary with the plate spac-
ing in the Hele-Shaw cell. For the anisotropic cell this
variation on plate spacing b (6) gives rise to the angular
dependence of the surface tension d(6), and the kinetic
factor B(0).

It is the resultant angle-dependent competition be-
tween the terms d (8)k and B(68)v which gives rise to dis-
tinct kinetic and surface-tension dendrites oriented at 30°
to one another. As can be seen from (2), the larger b
along the channels favors greater velocity in these direc-
tions. The result is that for sufficiently large driving
forces the kinetic term B(6)v, dominates the surface-
tension anisotropy and stabilizes dendritic growth paral-
lel to the channels. Note that the dominant effect here is
not the directional variation of B(8) but the prefactor of
b(6)* in (2). On the other hand, by a simple energetics
argument we can see that surface tension stabilizes den-
drites at an angle of 30° to the channel grooves for veloci-
ties small enough for the surface-tension term to be dom-
inant. For dendrites oriented in this direction the posi-
tion of the interface is located where the effective distance
between the plates is least. This minimizes the total sur-
face area of the interface and the total energy necessary
to stretch the interface into the dendritic shape, i.e., the
increase in surface energy attendant to tip formation in a
deep groove suppresses dendritic growth parallel to the
grooves since this is the direction in which the interfacial
area is maximized by the third dimension. These simple
arguments based upon the interfacial boundary condition
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match the experimental observation that near equilibri-
um surface tension is dominant, whereas further from
equilibrium it is kinetic effects which stabilize the
needle-crystal tip necessary for dendritic growth.

We emphasize that the shape of the morphologies
which develop are sensitive to initial conditions.
“Snowflakes” with 3, 6, or 12 branches are observed de-
pending on the initial fastest-growing mode of the circle.
As further support that kinetic dendrites are due to the
anisotropy in b, in fourfold grooved cells the b2 depen-
dence of the interfacial velocity gives rise to slower den-
drites growing at 45° to the main kinetic dendrites ob-
served growing along the channels. Finally, in the ab-
sence of plate spacing (b,=0) we are in the limit of zero
surface tension (except within the channels). In this case,
diffusion-limited-aggregation (DLA) structures are ob-
served at low applied pressure, consistent with the notion
that DLA is a zero effective surface-tension morphology,
while at higher pressures dendritic-like or needle crystal-
like structures appear depending on the channel widths.

MORPHOLOGY TRANSITIONS
IN THE BOUNDARY-LAYER MODEL

Motivated by our Hele-Shaw results, we now draw
upon the analogy established between the effects of an-
isotropy in interfacial pattern formation in the Hele-
Shaw cell, computer simulations, analytic solutions of the
full solidification problem,!®!* and local models of
solidification, and study the problem of the simultaneous
effect of both surface-tension and kinetic anisotropies in
the boundary-layer model for solidification. A true solu-
tion of the solidification problem requires solution of the
diffusion equation 37 /3t =D V?T with boundary condi-
tions [e.g., Egs. (3) and (4) below]. (D is the thermal
diffusivity of the system.) Although much progress has
been made over the past few years in solving this prob-
lem, it remains a serious computational problem. In par-
ticular, solution of the time-dependent problem for the
advancing interface is very expensive computationally,
and has only recently been successfully achieved.'? It is
for this reason that recent advances in the understanding
of interfacial growth have frequently depended on local
models. Thus, to date the BLM has proved a useful
testbed to study the physics of diffusive growth. As a
model of solidification it retains the interfacial diffusion
of heat. Most critical to our study, the BLM is
sufficiently tractable computationally to permit the study
of both time-independent and time-dependent properties
of the interface. As described below, this allows us to
determine the evolved morphology starting from a wide
range of hypothesized steady-state initial conditions. To
date this has not been possible for the diffusion equation
in solidification. Specifically, for the BLM we have been
able to follow the time development in the three regimes
found experimentally in anisotropic Hele Shaw: surface-
tension anisotropy dominated dendritic growth, tip-
splitting growth, and kinetic anisotropy dominated den-
dritic growth.

The key feature which emerges from our analysis is
that the velocity dependence on driving force of dendrites
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stabilized by surface tension is substantially different
from that of dendrites stabilized by kinetic effects. This
difference in scaling provides a qualitative explanation for
morphology transitions which agrees with the Hele-Shaw
morphology diagram, the results of our electrochemical
deposition experiments, and previous experiments in cry-
stallization from supersaturated solutions.'® It further
strongly suggests methods for more meaningful analysis
of the results of growth in diffusion-controlled systems.
Preliminary results from a solution of the full model of
solidification for the selected needle-crystal velocities for
either surface-tension anisotropy or kinetic anisotropy
alone are consistent with this difference in scaling be-
tween selected velocities indicating that again the local
BLM has captured the fundamental physics of morpholo-
gy selection.

The boundary conditions for solidification are very
similar to those for anisotropic Hele Shaw. Far from the
growing solid the temperature of the supercooled melt is
T, < T, where T, is the melting temperature of the
solid. The velocity of interfacial advance is determined
from the equation of continuity: the heat generated at
the interface during solidification is the heat which
diffuses into the melt. (In the one-sided model adopted
here diffusion of heat in the solid is ignored.) With the
material constants L, the latent heat of fusion, D, the
thermal diffusion coefficient, Cp, the specific heat at con-
stant pressure, and 1, the interface normal directed to-
wards the melt, the normal velocity ¥, of the interface
satisfies: "

LV,=—DC,VT- . (3)

The standard measure of the driving force of the system
is the undercooling defined as A=(C, /L) Ty — T ).

In the phenomenological treatment adopted here a
form for the interfacial boundary condition, the Gibbs-
Thomson temperature equivalent of Eq. (1), must be
specified. In its simplest form the Gibbs-Thomson rela-
tionship for the interfacial temperature T is

T =TM_CLd0K , (4)

s
P

where K is the curvature of the interface. Equation (4)
results from arguments of macroscopic thermodynamics.
On the basis of both microscopic considerations and ex-
perimental results we expect (4) to generalize to account
for microscopic effects related to bonding anisotropy and
the kinetics of atomic attachment. That the interfacial
boundary condition should depend on kinetic effects has
been experimentally demonstrated by Chan et al.'®
Their experiments on dendritic growth from supersa-
turated NH,Cl solutions show a substantial variation of
the tip velocity as a function of the system’s supersatura-
tion. These variations in velocity correspond to changes
in the selected crystalline growth direction. This suggests
that the general form of (4) should be

T,=Ty—f(K,V,) (5)

and suggests the first-order expansion:
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T,=Ty———d(6)K ———B(O)V, . 6

s=1Ty c, (6) C, B(O)V, (6)

Here 6 is defined as the angle between the surface normal
fi and a fixed direction. Equation (6) must be considered
only a first heuristic approximation to the interfacial
boundary condition. Indeed it may be that the proper or-
der of ¥, should be less than or greater than unity. This
may be the case in the Hele-Shaw cell® although here the
physics does not translate to solidification. Generally, we
believe that the function f(K,V,) must be a nonlinear
function containing the activation effects which must ex-
ist to account for Chan et al.'® observation. Neverthe-
less, whatever the “true” boundary condition may be, we
believe that substantial insight can be gained by using (6)
as a first approximation.

The specific functional forms of the surface-tension
d (0) and the kinetic coefficient 5(6) adopted below are

d(0)=dy(1—d;cosm(6—6,)) , (7a)
B(6)=By(1—Bicosm (6—6)) . (7b)

Here d, is the capillary length; the isotropic kinetic
coefficient is By; d, and B, are dimensionless measures of
the degree of the two anisotropies; m is the symmetry of
the anisotropy; and, 6, and 6 are offset angles for
surface-tension and kinetic effects, respectively. A di-
mensional analysis of 3, suggests that it is useful to think
of it as d; ' Q™! with Q a characteristic frequency for ki-
netic attachment.

The inclusion of the offset angles 6, and 6 allows con-
sideration of two possibilities: kinetic effects and surface
tension can be aligned (6, = 6p) or they can be in compet-
ing directions (6,5460g) as in the anisotropic Hele-Shaw
cell. Since crystalline anisotropy is the microscopic
source of both anisotropies it may be expected that
surface-tension and kinetic anisotropy are aligned. On
the other hand, the dependence of observed morphologies
in Chan et al.'® experiment on driving force (i.e., super-
saturation) strongly suggests that as critical activation
points are reached competitive effects arise which deter-
mine the morphology. While the offset angles 6, and 6
are at best a crude way to include such competitive
effects, nevertheless doing so produces results in qualita-
tive agreement with experimental observations. More-
over, the morphology diagram observed for the Hele-
Shaw cell fits logically into the picture which emerges. It
is with this physical motivation that we study the selected
needle crystal velocities for both aligned and competing
anisotropies.

The basic concept of the BLM is to assume that within
a decay length I, the boundary layer, the temperature
field at the interface relaxes to T',,. This allows the BLM
to capture most of the essential physics of the diffusion
field, although it is not mathematically derivable from the
diffusion equation for solidification. By contrast, if the
diffusion equation were used the temperature field would
decay only exponentially to T,,. The BLM variable of
interest is H, the heat content per unit interfacial length
(or per unit area in three dimensions), defined as
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H(S,n= [ “dz C[T($,2)-T], (8)

where the integration variable z is the distance away from
the surface measured along the direction normal to the
surface, and S is the arclength variable for the interface.
An expression for the length / is obtained by assuming
that H =C,(T;—T)l. In two dimensions the time evo-
lution of the field H is given as the sum of the latent heat
generated, the heat necessary to bring the portion of
liquid which solidifies up to the temperature T from T,
the diffusion of heat along the interface, and a geometri-
cal term resulting from the local change in arclength:’

dH(S,t) | _ _ _
dl n“Vn[L Cp(Ts Too )]
pc, 2 laTS KV H 9)
PGas s | K

Here S and ¢ are the arc-length coordinate and the time,
respectively. As time develops each interfacial point
moves along the normal to the surface with velocity V,.
The notation |, refers to the fact that the derivative is
evaluated using the infinitesimal difference dH as evalu-
ated along this normal. This equation must be coupled
with the equations describing the geometrical evolution
of the interface. With d6/dS =K it can be shown that

dS  [S,ce e ,

E':fo dS'K (S",0)V,(S",1) , (10)
2

dK[.Zt(t),t] _ aE;ZJer v, . (11)

These equations, coupled with the Eq. (8), completely
define the time evolution of the interface and can be
solved numerically.

Equations (9)-(11) may possess a steady-state solution,
the needle crystal, which is expected to correspond close-
ly to the dendritic solution. The velocity of this needle
crystal can be determined via the “microscopic solvabili-
ty criterion.””® In the BLM the first step is to change
reference frames to the moving frame of the presumed
needle crystal. Assume that the needle-crystal tip is ad-
vancing with a constant velocity V. Directly from the
definition of the normal velocity of the interface, it fol-
lows that if each point on the interface advances parallel
to the direction of the tip with the velocity V| then
V,(S)=V,ycosO(S). Moreover, in the moving frame we
have dH (S,t)/3t=0 and 9K (S,t)/0t=0. Thus, using
Egs. (9) and (11), in the moving frame the needle crystal
is defined by

d |,9T;
V,[L-C/T,—T, o
[ (T )]+DC, 3s laS
dH dS
—KV,H — 3S di =0, (12)
K [S(1),t] dS 9? 2 _
3s @t 352 +K*|V,=0. (13)

Equation (13) with the moving frame expression for V,
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can be used to eliminate dS /dt from Eq. (10).

For the numerical computation scheme it is useful to
introduce dimensionless fields as follows:*
AH/L - doK A’S

d() ’ A3 ’ do ’

dO Vn

"= "= DA’

and
S
u =T[Ts(s,t)—Tw] .
In terms of these fields Eq. (9) can be expressed as a sys-

tem of three first-order coupled nonlinear differential
equations:’

d9 1 u 4 D
— =———— [1—— — A*—B(0)v,ycosO
ds ~ A (0)/d, a8 g, PO

=k, (14)
du
—=A 15
ds ’ (13
% =2A%\osin@+ AZvgku sec

2
—A*v3cos?0 1—u —%—LK tanf . (16)
u

With boundary conditions, Egs. (14), (15), and (16)
define a nonlinear eigenvalue problem for the selected ve-
locity of the needle crystal.” The problem is posed in
terms of the value of the so-called “mismatch function”
As =0,v,). For a needle-crystal solution to these equa-
tions to exist u, the dimensionless temperature at the sur-
face, must be symmetric about the origin. This requires
that A(s =0,v,)=0. For given parameters (i.e., A, m, d,
d,, By and B;) the eigenvalue v, is determined by in-
tegrating the equations from the initial conditions at
6=m/2 (i.e., s — o ) back to =0 (i.e., s=0) for a trial v,.
If the mismatch function vanishes then the velocity ei-
genvalue, the selected velocity v*, has been found. As a
practical numerical matter, the mismatch function never
completely vanishes. However, one can integrate the
equations from the initial conditions to s=0 (“shoot
backwards”) and find the range of v, over which
A(s =0,v,) changes sign. The selected velocity eigenval-
ue v* is then determined by interpolation. It is also pos-
sible for there to be more than one value of v, such that
A(s =0,v,)=0. In this case it is the largest v, deter-
mined which corresponds to v*.°> This method of deter-
mining v* constitutes the microscopic solvability condi-
tion as applied to the BLM.

It remains to specify the boundary conditions for these
equations. This is accomplished by observing that Egs.
(14)—(16) possess fixed points at 6=*7/2 (i.e.,, s =1t ).
It can be shown® that there is only one trajectory leading
into these fixed points, and that this trajectory is asymp-
totically identical to the equivalent Ivantsov trajectory.
(Recall that the Ivantsov solution is a needle crystal in
the absence of either surface-tension or kinetic effects.!®)
Since at 6=1m/2 the needle crystal is expected to have
vanishing curvature and normal velocity, the Ivantsov
solution with the specified needle-crystal velocity is asymp-
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totically a better and better approximation to the needle-
crystal solution. This provides initial conditions at
O0=m/2 of k(w/2)=0 and A(7w/2)=0, i.e., the Ivantsov
conditions at 6 =tm/2.

An additional question arises when solving for the
selected velocity in the case of competing anisotropies.
Competing anisotropies mean that 6, and 6 are unequal.
This leaves undetermined the direction of the steady-state
solution for the needle-crystal tip. On physical grounds,
and justified by our simulations, we choose one of the two
offset angles to be zero. This is tantamount to assuming
that the needle crystal is stabilized either by surface ten-
sion anisotropy (6, =0) or by kinetic anisotropy (65=0),
and is not oriented somewhere in between. Needle crys-
tals stabilized in the former fashion we designate as
surface-tension needle crystals, those stabilized in the
latter manner are kinetic needle crystals. A study of the
effects of competition between the two anisotropies now
requires computation for given A of selected velocities for
both orientations, i.e., both 6, =0 and 6ﬁ=0.

To develop a quantitative and qualitative understand-
ing of the relative importance of surface tension and ki-
netic anisotropy on morphology selection, we now
proceed to evaluate numerically the selected velocity for
a range of parameters d, d,, By, and 3;.

In Fig. 3 selected velocities as a function of undercool-
ing A are plotted for the case of six-fold symmetry and a
range of surface-tension and kinetic parameters. Kinetic
anisotropy and surface tension anisotropy are alternately
neglected in Figs. 3(a) and 3(b). The units of V*, the
selected velocity, are dy/D (e, V*=v*A%. It is
known'® that in the limit of vanishing Péclet number
(A—0) the selected velocity V* ~A*. However, the log-
log presentation of the higher undercooling regime stud-
ied here shows that surface-tension anisotropy and kinet-
ic anisotropy give rise to V* scaling with A with a rough
difference in exponents of =~3. The parameter regime
chosen is such that there is a significant overlap in V* be-
tween the two cases. For surface-tension and kinetic
term parameters of comparable strength, comparison of
Figs. 3(a) and 3(b) shows that surface-tension anisotropy
selects larger V'* than Kkinetic anisotropy at low under-
cooling, while the larger exponent for kinetic anisotropy
determined V'* results in this reversing at larger A. Thus,
in systems where both surface-tension and kinetic effects
are of the same order of magnitude, at low driving force
surface-tension anisotropy will be dominant in determin-
ing the selected velocity, whereas at high driving force
V* will be predominantly determined by kinetic effects.
For intermediate driving forces whether the two anisotro-
pies are aligned or competing will be critical to the value
of V* and the selected morphology. This scenario corre-
sponds precisely to our anisotropic Hele-Shaw observa-
tions. Moreover, the conclusions drawn above from the
local BLM are now supported by preliminary work solv-
ing the full diffusion problem. Our initial numeric studies
of the dependence of V* shows roughly the same
difference in scaling as a function of undercooling be-
tween surface-tension and kinetic anisotropies. For this
reason, we expect that the analogues of Figs. 3, 4, and 5
will be obtained for the full diffusion equation.
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In Fig. 4 are provided two representative plots of
selected velocities for the case of aligned surface-tension
and kinetic anisotropies. The primary observation is that
these log-log plots display no linear region: when kinetic
and surface-tension effects combine the result is v* does
not scale with A as it would for either anisotropy alone.
This may be experimentally observable. Our computa-
tions were limited in accuracy at about A=0.2. Presum-
ably in experiments with greater range, or where the on-
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FIG. 3. Log-log plots of the selected velocity V* as a func-
tion of the undercooling A in the BLM for different values of
the anisotropy. Here V* is measured in units of D/d,. The
straight lines through the computed values of V* are least-
square fits. The fits were done over the range 0.2 <A <0.4. (a)
Surface-tension anisotropy selected velocities computed for
different values of d; (dy=1.0, B=1.0, B;=0). Beginning with
the lowermost set of data points the values of d, are 0.02, 0.06,
0.20, 0.40, and 0.80. The bracketing values of the best fits are
for d; =0.02, V* ~A>% and for d; =0.80, V* ~A>*. (b) Kinet-
ic anisotropy selected velocities computed for different values of
B (dy=1.0, d;=0.0, By=1.0). Beginning with the lowermost
set of data points the values of B, are 0.10, 0.20, and 0.80. The
bracketing values of the best fits are for 8;=0.10, V'* ~A%¢! and
for B,=0.80, V*~A"2. Throughout the assumed symmetry
was m=6. Computations were done with d(8)=d,[1.0
~dlcos(m0)]/(d0+d1 ).
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FIG. 4. Log-log plots of the selected velocity v* for aligned
surface-tension and kinetic anisotropies. Here v* is measured
in units of DA%/d,. Scaling out the undercooling enhances the
transition from surface-tension to kinetic term dominated
needle-crystal growth. The lower curve is for d, =0.06, 8,=1.0,
and 8,=0.06. The upper curve is for d, =0.06, B,=1.0, and
B,=0.40. m=6 in both cases. Computations were done with
d(6)=dy[1.0—d,cosm(0)]/(dy+d,).

set of kinetic effects is more sudden (perhaps due to ac-
tivation), a change in the observed power-law behavior
would be the signature of the onset of kinetic effects.

We now proceed to consider the effect of competition
of anisotropies when the surface-tension and kinetic an-
isotropies are offset by 30° and the anisotropy is again as-
sumed to be sixfold (m=6). Crossing of the curves for
the selected velocities for either surface-tension or kinetic
effects alone is used to judge that the two anisotropies are
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FIG. 5. The selected velocity v*
peting anisotropies. v* is measured in units of DA%/d,,. ,
surface-tension anisotropy (8,=0, d,=0.15); ---, kinetic an-
isotropy (d, =0, B,=0.40); and for d, =0.15, 8;=0.40: X, v*
surface-tension needle crystals (68, =0, 83=0.5236); 0, v* for
kinetic needle crystals (8, =0.5236, 85=0); — — —, possible v *
behavior for tip-splitting DBM growth between surface-tension
and kinetic anisotropy regimes. Computations were done with
d(6)=do[1.0—d cos(m8)]/(dy+d,) and with m=6.

for dy=p,=1.0 and com-
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of comparable strengths. In Fig. 5 the result of their
competition is indicated by dividing the plot of v* into
three regions of selected morphologies as a function of
the undercooling A. In region I surface tension is dom-
inant, and the needle crystal corresponding to the select-
ed velocity is stable. This is concluded from the simula-
tion of the time development of the surface-tension den-
drite as shown in Fig. 6(a). In region III kinetic effects
are dominant, the selected needle crystal is stable, and the
kinetic dendrite of Fig. 6(c) emerges during time develop-
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FIG. 6. (a) Surface-tension dendrite (A=0.375, t=23000); (b)
tip-splitting growth (A=0.475, t=4500); (c) kinetic dendrite
(A=0.50, t=2000). Arclength is measured in units of d,/A3
and time ¢ in units of d3 /D A5,
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ment of the needle crystal. Region II, however, corre-
sponds to the development of an effective “gap” in the
selected velocity. Near A=~0.46 the two competing an-
isotropies are closest in effective strength. The result is a
dramatic decline in the selected velocity for either
surface-tension or kinetic needle crystals. Moreover, Fig.
6(b) shows that for these undercoolings there is no stable
needle-crystal growth.

To close the gap of region II we assume that the select-
ed morphology for this range of undercooling is that of
the DBM, i.e., the tip-splitting morphology which corre-
sponds most closely to the unstable growth shown in Fig.
6(c). With this in mind, we have sketched in a possible
plot of the selected velocity for the DBM through the re-
gion of unstable needle-crystal growth. This sketch is of
course very speculative. The monotonic increase in ve-
locity shown for the DBM is physically motivated by the
increasing driving force provided by the undercooling.
On the other hand, at this writing it is unknown how to
compute the DBM velocity, or how to define it. Presum-
ably prior to tip splitting a branch may have a well-
defined velocity; however, during the tip-splitting event
simulations indicate that there is a slowing of the tip.
Despite all these difficulties, it seems sensible to us that
some working definition for the velocity of the DBM can
be arrived at, and that the one sketched here makes phys-
ical sense.

Two prominent features of Fig. 5 are (i) there is a criti-
cal undercooling A, below which there is no selected ve-
locity for a kinetic needle crystal, and (ii) there is a range
of undercoolings in which there is a selected velocity for
both surface-tension and kinetic needle crystals. With
respect to (i), it is important to emphasize that it is not
that the kinetic needle crystal is unstable for A <A, or
that the selected velocity goes to zero near A,. As dis-
cussed above, for a needle crystal to exist the mismatch
function must vanish for a selected velocity. Figure 7 is a
plot of the mismatch function A(s =0,v,) near A, =0.487
for the parameters of Fig. 5. It is evident that the
mismatch function fails to vanish at A,. As a result, if ki-
netic dendrites are the selected morphology for A> A, a
plot of morphology velocity versus A will very likely ei-
ther have a jump discontinuity, or at least a discontinu-
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FIG. 7. Mismatch function A vs v for 6, =0.5236, d, =0.15,
and f3,=0.40: ( ), A=0.4874; (— — —), A=0.4872; and
——.—., A=0.4871.
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ous derivative when the transition to kinetic dendritic
growth occurs. By contrast, observation (ii) is that for
surface-tension needle-crystal growth the mismatch func-
tion does vanish over the entire range of undercoolings
studied. However, as indicated by Fig. 6(b), the surface-
tension needle crystal is unstable and tip splits beyond re-
gion I of Fig. 5. In particular, for the undercoolings for
which there is a selected needle crystal due to either
surface-tension or kinetic effects time-dependent studies
show that the slower needle crystal (i.e., the surface-
tension needle crystal) is unstable and tip splits.

It is these observations which give rise to our hy-
pothesis that the selected morphology of the system is the
fastest growing one. This is analogous to the observation
that when the mismatch function has multiple zeros, i.e.,
several ‘“‘selected” velocities, the only stable dendrite is
the one with the largest velocity. Our first example of the
fastest growing morphology principle are the kinetic den-
drites in the BLM: the needle crystal for surface-tension
dendrites at the same undercooling is found to be unsta-
ble against tip splitting. Our hypothesis is that for pa-
rameters corresponding to region III of Fig. 5 only the
dendritic growth would be observed, as opposed to the
presence of a combination of kinetic dendritic growth
with tip-splitting growth on other branches arising from
unstable surface-tension growth. In a like manner, in the
region II gap of Fig. 5 the sketched DBM velocity is
greater than the selected velocity for the surface-tension
needle crystals (which are indeed unstable). If we could
compute the DBM velocity we might find that it too con-
tinues to increase through the kinetic dendrite morpholo-
gy regime, but having the smaller velocity it would not be
the selected growth. Again, our principle of the fastest
growing morphology is that within the gap only DBM
growth is observed. This growth is not intermixed with
“failed” surface tension dendrites. And within region III
only kinetic dendrites are observable; although there may
be a computable velocity for DBM growth in this regime
it will not emerge in the experimental context. Despite
our expectation of the rule of the fastest growing mor-
phology, for parameters near the transition between re-
gions experimental fluctuations in the local environment
will give rise to the simultaneous appearance of two mor-
phologies.

The behavior of the selected morphology as a function
of velocity as shown in Fig. 5 combined with the fastest
growing morphology hypothesis outlined above leads us
to an analogy between phase transitions?' and morpholo-
gy transitions. Using the hypothesized behavior of the
DBM selected velocity shown, the transition from
surface-tension dendrites to DBM growth is analogous to
a second-order phase transition: the selected velocity is
continuous as a function of undercooling, but shows a
discontinuity in its slope. In keeping with this analogy,
the transition from DBM growth to kinetic dendrites is
first order with the jump in v*. As indicated above, this
transition should be at least a second-order-like since the
kinetic mismatch function fails to vanish at the reentrant
transition from tip splitting to dendritic growth and it is
unlikely that the selected DBM velocity curve will have
the matching slope at this point. From Fig. 5 we can also
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logically conclude, and our numerical studies support,
that by varying the microscopic control parameters a
wide range of scenarios of morphology transitions can be
produced. In our example we find surface tension den-
drites, DBM, and kinetic dendrites with increasing un-
dercooling. With different microscopic parameters it is
possible for there to be no intermediate DBM morpholo-
gy and the transition between surface-tension and kinetic
dendrites with competing anisotropies can be first- or
second-order-like; or, for sufficiently weak surface-tension
anisotropy there may be no regime of surface-tension
dendrites but only a direct transition from DBM growth
to kinetic dendrites. Finally, in three dimensions first- or
second-order-like transitions between different crystallo-
graphic symmetries of kinetic dendrite growth are also
possible.

QUALITATIVE COMPARISON
BETWEEN THEORY AND EXPERIMENTS

The qualitative analogy between the computed mor-
phology transitions in the boundary-layer model and the
Hele-Shaw experiments reported in the earlier section are
self-evident. In both cases the competition between
surface-tension anisotropy and kinetic anisotropy gives
rise to surface-tension dendrites, tip-splitting growth, and
then kinetic dendrites as the driving force is increased.
More direct comparison to solidification experiments is
unfortunately not possible for two reasons. First,
solidification experiments for the higher undercoolings of
our computations have not been performed. Second, the
boundary-layer model for solidification may never have a
direct experimental realization: as discussed above, as a
local model it incorporates the physics of the diffusion
field, but may not translate directly to real experiments.
As a result, the primary profit to be had from the BLM
analysis is to recognize the correlation between micro-
scopic effects, morphology transitions, and how these
manifest themselves in the velocity of the interface, this
latter being an experimentally accessible number. In par-
ticular, the experimental data of Chan et al. 13 for the ve-
locity of growth of dendrites from supersaturated NH,Cl
solution fits well in the framework of morphology transi-
tions defined above. In their experiments they found that
corresponding to changes in crystallographic orientation
of the dendrite there was either a jump discontinuity or a
discontinuity in the slope in the plot of observed dendri-
tic velocity versus supersaturation. Thus, in our mor-
phology transition nomenclature, we would identify their
observed transition from (100) to (110) dendritic
growth as a second-order morphology transition (change
in slope), while their transition from {(110) to (111)
growth is a first-order morphology transition (a jump
discontinuity).

Experiments in growth by electrochemical deposition
(ECD) also produce results in qualitative agreement with
the characterization of morphology transitions advanced
here. Sawada et al.? have plotted the interfacial velocity
versus applied voltage. A comparison between their mor-
phology diagram and plotted velocities indicates that in
their experiments sudden changes in slope of v versus V

correspond to morphology transitions. In our own exper-
iments of electrodeposition of Cu from CuSO, we have
observed changes in interfacial velocity corresponding to
a change in microstructure.??> We are not suggesting that
these morphology transitions are necessarily due to com-
petition between surface-tension and kinetic anisotropies
as in the Hele-Shaw experiment or the BLM. The three-
dimensional nature of the growth adds a great variety of
competing effects to the problem. Just as in the Chan
et al. experiment, in ECD we expect competition be-
tween different crystallographic directions both in
surface-tension and kinetic attachment. These effects are
not accounted for in the BLM with the boundary condi-
tions used here. Nevertheless, as in the case of the BLM
and the Hele-Shaw cell, some of the morphology transi-
tions in ECD can be put into correspondence with
changes in slope in the interfacial velocity versus driving
force plot. This again demonstrates the utility of this
characterization of morphology transitions.

CONCLUSIONS

In the above we have combined experimental and
theoretical observations as a first step towards a coherent
picture of the underlying physics of interfacial pattern
formation in diffusion-controlled systems. Using the an-
isotropic Hele-Shaw cell we have provided experimental
realization of surface-tension and kinetic dendrites. We
generalized the insights gained from this system by solv-
ing a theoretical model for diffusion-controlled growth,
the boundary-layer model, for corresponding conditions.
Within the BLM we showed that tip-splitting growth
may arise as a result of competition between surface-
tension and kinetic anisotropies. More dramatically, we
found that in the BLM morphology transitions may be ei-
ther continuous or discontinuous as characterized by the
selected needle-crystal velocity. This follows from plots
of the interfacial velocity versus the driving force (i.e., the
undercooling). With this organization in mind we found
that in the BLM morphology transitions, by analogy to
phase transitions, may be either first- or second-order-like
depending upon whether the selected velocity was discon-
tinuous or showed a sudden change in slope at the under-
cooling for which the morphology transition was ob-
served. Following from these plots of the selected veloci-
ty is our hypothesis that it is the fastest growing mor-
phology which is selected. Although we do not know at
this time how to compute the interfacial velocity of the
dense-branching morphology, we deduce from our BLM
time-dependent simulations, and the results of our experi-
ments, that the selected velocity of the DBM is greater
than that of a dendritic needle crystal in the parameter
range of its observation.

Many questions remain unanswered. First, we still
lack a fundamental understanding of the tip-splitting in-
stability. Our time-dependent simulations indicate that it
is nonlinear in nature. The outstanding questions are
how to go beyond linear stability analysis to determine
the parameter range of tip-splitting growth, and the con-
current problem of a selection principle for the velocity
of the dense-branching morphology. The second ques-
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tion to be addressed is whether the solution for the select-
ed needle-crystal velocity for the full diffusion equation
gives results comparable to that of the BLM. Our pre-
liminary answer is yes, although at this time the matter of
scaling exponents with undercooling and the effect of
competition is a matter under investigation. More direct
comparison to experiment will also require a generaliza-
tion of the competition model presented here. In real
physical systems it is to be expected that the competition
may arise due to a competition of crystallographic sym-
metries. In addition, in three dimensions the morphology
space must be much richer than that of two dimensions:
the crystallographic symmetries of three dimensions are
simply greater than that of two dimensions. Of course it
is not only the geometry of our theoretical model which
must be improved. The competition as expressed in the
boundary conditions of our BLM model lacks the physics
of activation which a more realistic model must include.
It is at this level, the level of modeling the microscopic
dynamics, that the most research is required.
Throughout our presentation kinetic effects have been
emphasized. On the basis of the Hele-Shaw experiments,
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and other experimental observations, as well as the
heuristic of the BLM results, they must play an impor-
tant role in morphology selection. On the other hand, to
date there are no experimental measurements of kinetic
parameters. It is the quantification of such physical
effects which must be achieved in order to be able to un-
derstand and control morphology selection and transi-
tions.
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FIG. 2. Morphologies corresponding to the morphology diagram in the anisotropic Hele-Shaw cell. (a) Faceted growth. (b)
Surface-tension dendrites. With careful inspection it is possible to observe that the dendrite tips are pointed at an angle of 30° to the
ruling of the grooves. (c) Tip-splitting growth. In a larger and more regular cell we assume that this would be a dense-branching
growth. (d) Kinetic dendrites. The needle crystals grow parallel to the ruled channels.



