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Laser spectroscopy of (v=O, R=1)10Fand (v=O, R=1}106states of H2.
A test of the polarization model
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Rydberg states of Hz consisting of a 10For 10G electron bound to the v =0,R = 1 state of H2+ are

studied using Doppler-tuned laser spectroscopy of Rydberg-Rydberg transitions. The positions of
all such states are measured to a precision of better than 0.01 crn ' and are compared with the pre-

dictions of the polarization model. The polarization model is derived from first principles. Nonadi-

abatic corrections to the dipole polarization energies, calculated for the first time, are found to be

expressible in terms of the S 3-moment functions of Hz . Higher-order adiabatic polarization en-

ergies are estimated from calculated higher-order H2 polarizabilities.

I. INTRODUCTION

In recent years, new experimental techniques have
made possible the first observations of a new class of elec-
tronically excited states of H2, the Rydberg states with
large values of the orbital angular momentum (L )3). '

The structure of these states is found to be very different
from excited states with lower L. In particular, they con-
form closely to an "atomlike" coupling scheme in which
the angular momentum of the Rydberg electron (L) and
the total angular momentum of the H2+ ion core (R) are
both good quantum numbers, coupling together accord-
ing to the usual rules of angular momentum addition to
form N=R+ L, the total angular momentum of the sys-
tem (exclusive of spin). The Hz+ ion rotates freely
within the orbit of the Rydberg electron, acting much
like an atomic nucleus with spin R. Following Ref. 1, we
refer to these states with the notation (v, R )nLtv, where v
is the vibrational quantum number of the core and n is
the principle quantum number of the Rydberg electron.
The wave functions of these states are closely approxi-
mated by a product of eigenstates of the free H2+ ion and
of the hydrogenic Rydberg electron. Because both parts
of this system can be understood separately with great
precision, and since the coupling between them is weak,
these states of the H2 molecule should be amenable to
unusually precise theoretical description.

The highest-resolution experimental studies of these
states to date have been obtained using microwave spec-
troscopy on a fast beam of Rydberg states. Systematic
and extensive microwave spectroscopy in such states ap-
pears feasible with this technique and should soon result
in dramatic improvements in the precision with which
these structures are known. Eventually it may be possi-
ble to infer from such measurements new precise infor-
mation about the H2 ion. With this in mind, it appears
desirable to improve the precision of the optical spectros-
copy reported in Ref. 1 to the point where higher-order
corrections to the simple Rydberg fine-structure model
used there become significant. We report here improved
spectroscopy of the (0, 1)10Fand (0, 1)10G states of H2,

which establishes their positions to a precision of better
than +0.01 cm ' and allows a more precise comparison
with theory.

In Sec, II the theory of these high-L Rydberg states is
discussed and expressions for both adiabatic and nonadia-
batic parts of the dipole polarization energies are derived.
The effects of higher-order adiabatic polarizabilities on
the structure of the system are discussed, and the most
important uncalculated terms in a systematic polarization
model of H2 Rydberg structure are identified. In Sec. III
the improved measurements of the (0, 1)10F and
(0, 1)10G states are described. In Sec. IV the results are
compared with theory and conclusions are drawn.

II. POLARIZATION MODEL FOR H2 RYDBERG
STATES

Experiments have shown that the high-L Rydberg
states of H2 are described, at least approximately, by a
simple polarization model in which the deviation from
the hydrogenic structure is given by the expectation value
of
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where Q is the quadrupole moment, a, and ar are the
isotropic and anisotropic dipole polarizabilities of the
Hz+ core (each being functions of the internuclear sepa-
ration p), 8 is the angle between the internuclear axis and
the Rydberg electron's position, and r is the radial coor-
dinate of the Rydberg electron. The expectation value is
over a reduced wave function,
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is the coordinate of the electron 1, R, is the
coordinate of proton 1, etc., and m and M represent the
electron and proton masses. Introducing the relative
coordinates

R, —:(R&+R&)/2, p—:R& —R&,
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and neglecting mass-polarization terms, H0 can be
rewritten as
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where p=2Mm/(rn +2M) and Vcan be written as

1

I r, —p/21
1 1+V=e 2(1) The two electrons are distinguishable Electron . 2 is

the Rydberg electron.
(2) There is no penetration of the wave function of the

core electron by the Rydberg electron. 1

I
re+ p/21

In adopting these assumptions, the possibility of calculat-
ing the electronic exchange energy is forfeited, but since
the exchange energy is expected to be small in those
high-L states, ' this is not a major limitation. Small ener-

gy shifts due to core penetration are also neglected in this
approach. "

The Hamiltonian for the system may be written as

The eigenstates of H0 are products of eigenstates of the
nuclear center-of-mass momentum (which we henceforth
neglect), the hydrogenic Rydberg electron (rz), and the
free Hz+ ion. In the Born-Oppenheimer approximation,
the H2+ eigenstates can be written as
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where a and A ( =L, p) specify the electronic state, R is
the total angular momentum (exclusive of spin), v is the
vibrational quantum number, and 8 and P are the polar
coordinates of p in the laboratory. The coordinate r', is
defined with respect to the rotated coordinate system
which has z'Ifp. The functions d„~(0) are related to rep-
resentations of finite rotations' and are expressed in the
notation of Edmonds. '

The vector coupled eigenstates of total angular
momentum
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and

which has no dependence on the coordinate of the core
electron. All dependence on the core electronic structure
is contained in the coefficients g, a„and o.'r. We refer to
this model as the lowest-order polarization model
(LOPM). It was apparently first discussed by Jungen and
Miescher in connection with their description of Rydberg
states of NO, and has since been used by several workers
to describe Rydberg states of H2. ' ' ' ' Some aspects
of the theoretical justification for this approach were dis-
cussed by Eyler and Pipkin, but the polarization terms
have apparently never been derived from first principles.
In order to assess more carefully the limitations of this
model, such a derivation is provided in the following.
The expectation value of the potential of Eq. (1) lifts the
hydrogenic degeneracy of the zeroth-order states, giving
rise to a fine structure which is typically 10 of the ener-

gy spacing between adjacent zeroth-order states. We
refer to this structure as electric fine structure (EFS) since
it is totally due to Coulomb forces. A finer level of struc-
ture due to the inclusion of spins, the magnetic fine struc-
ture (MFS), has been discussed elsewhere and will not be
treated here.

A good share of the motivation for applying the polar-
ization model to high-L Rydberg states of H2 is derived
from the success that has been achieved in describing
similar states in the helium atom with this approach. "'
These studies suggest the adoption of two basic assump-
tions, which have been shown to be good approximations
in the case of high-L states of the helium atom, " and
which, in any case, become more nearly valid as L in-
creases.
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The assumption of no penetration may be expressed as
r2&r, and r2&p/2. For sufficiently high-L Rydberg
states these relations will be satisfied for all parts of the
configuration space (r&, rz, p) where the wave function is
nonnegligible. Using these relations, the perturbation V
can be written as

—[1+(—1)"],P (cos82 ),(p/2)"
7"

p

where Oz, is the angle between r1 and r2 and L92 is the an-

gle between rz and p. The matrix element of each term of
this multipole expansion can be evaluated with standard
angular momentum methods. '

The Rydberg-state energy may be calculated systemati-
cally using perturbation theory, starting with the set of
zeroth-order states of the form of Eq. (7) and using the
perturbation V [Eq. (8)]. Of particular importance in this
calculation are those matrix elements of V which are di-
agonal in the core electronic state, especially when that
common electronic state is the ground electronic state of
Hz+ (X Xg ), which we denote here by aA=X. In this
case the result is
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The result is
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C"(Q) is the spherical tensor of rank v' and P„L (r) is r
times the radial part of the hydrogenic wave function.
The reduced matrix elements of the operator r",C"(Q, )

can be evaluated using the transformation properties of
the spherical tensors,

Q,"(P)=f I
fx(ri'P)

I
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Note that because of the reAection symmetry of the elec-
tronic wave function Q,"(p)=0 for all odd a.

By explicit calculation with functions of the form of
Eq. (6), it can also be shown that

C,"(Q, ) = QD;.,(0, —8, —y)C;(Q', ) (11) (XvR ll(p/2)"C"(p)IIXv'R')

(where Q& denotes the angular coordinates of electron 1

in the laboratory and 0', its angular coordinates in the
molecule fixed coordinate system), along with the fact
that
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Thus the full result for matrix elements of V diagonal in
the ground electronic state of H2+ is



138 STURRUS, HESSELS, ARCUNI, AND LUNDEEN 38

oo R' L' N R a R' L a L'
(XvRnLNm

I

V
I

Xv'R'n'L'Nm ) = —e g ( —1)
a=2, 4, . . .

X [(2R +1)(2R'+1)(2L +1)(2L'+1)]'~

X nL ,+~
"'L' fgxvR(p)Q (p)g xv'g'(p)dp,

where

Q "(p)=2(p/2)" —Q,"(p) . (15)

These matrix elements may be written in terms of an
effective potential
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which gives
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with f,gr& given by Eq. (2).
Using this result, the first-order perturbation energies

can be written as
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The first term (a =2) in this expansion in the permanent

multipole moments of H2+ is just the quadrupole term in

Eq. (1). The next nonzero moment (ir=4) is the hexade-

capole moment. This and higher moments can contrib-
ute to the energy of a particular Rydberg state only if
both L and R are sufficiently large, so that the 6j symbol

in Eq. (15) is nonzero. IfJ is the lesser of R and L, then a

given ~ can contribute only if it satisfies the triangle in-

equality

b(J,J,a)&0 .

In the particular case of R =1 states, which is studied in

the following, only the quadrupole term has a nonzero
expectation value.

The second-order perturbation energies are given by
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and represents the effect of mixing between different Ryd-

This expression separates naturally into two parts, de-
pending on whether electron 1 (the core electron) remains
in its ground electronic state in the intermediate state. If
it does, setting aA=X, this part of Eq. (19) can be writ-
ten, using Eq. (17), as

Etx }(XvRnLN)

I

berg series. Energy shifts due to such mixing are quite
significant for Rydberg states of low L, ' ' but decrease
rapidly as L increases. In addition to their effects on the
Rydberg state energies, these mixings are also responsible
for vibrational and rotational autoionization via long-
range interactions in high-L Rydberg states. '

The part of the second-order energy [Eq. (19)] coming
from intermediate states, where the core electron is not in
its ground electronic states, leads to the polarization po-
tential, the leading terms of which are the adiabatic di-
pole polarization terms shown in Eq. (1). The separation
between "adiabatic" and "nonadiabatic" terms in this
context is based on an expansion of the energy denomina-
tor in Eq. (19),

1

E (XvRn ) E(aAv'R 'n ')— 1

[E (XvR) E(aAv'R')]+[E —(n) —E (n')]
1 E (n) —E (n')
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The first term in Eq. (21) gives the adiabatic polarization energies, while the second gives the first "nonadiabatic"
corrections.

For the portion of the second-order perturbation energy due to electronically excited core states, the second term in
Eq. (8} does not contribute because of the orthogonality of core electronic states. Successive terms in the multipole ex-
pansion of the first term produce effective potentials proportional to increasingly higher inverse powers of r2. We con-
sider here only the contributions from the lowest-order term in V, the dipole term. Evaluation of these terms requires
the matrix element

(
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Using Eqs. (21) and (10), the second-order dipole energy may be written as
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The sum over n, in both adiabatic and nonadiabatic terms, can be evaluated exactly using the properties of the hy-
drogenic radial eigenfunctions. The completeness of radial functions of fixed L' implies
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From the fact that the radial functions satisfy
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it can be shown, using integration by parts, that for L & 2,
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Following Brieger, ' we introduce definitions of the electronic branch polarizabilities,
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and, by analogy, define the nonadiabatic coefficients
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with which the second-order dipole energy may be written as
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To simplify further, it is necessary to note that while the
coefficients a(R, R') and P(R,R') do depend on R', the
dependence is a weak one arising from the centrifugal
distortion of the vibrational wave functions g (p) and the
rotational energies implied in the denominators of Eqs.
(27) and (28).

Again following Brieger, ' we introduce the definition
of the branch average polarizabilities and nonadiabatic
coefficients and, for the present, neglect the differences
between the individual rotational branches and the aver-
age. This gives

—:a~ "(R),

and similarly,
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and
With this approximation, Eq. (29) contains factors such
as
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Similar terms occur for p and can be written in terms of
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The sums over R' and L' in Eq. (29) may be evaluated with the results
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where S =R (R +1)+L(L +1) N(N +—1) and where the last form of Eq. (34b) identifies the expression in the previ-
ous parentheses as the expectation value of P2(cos8i ) in vector-coupled spherical harmonic eigenstates of R and L.

2p
Similarly, one can show that
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Combining these results, the final expression for the dipole polarization energy is

2 2
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The coefficients a, (R) and aT"(R), which occur in

Eq. (35) and are defined by Eqs. (27) and (32), may be ex-
pected to be approximately equal to the vibrationally
averaged scalar and tensor polarizabilities calculated by
Bishop and Lam. ' The connection is only approximate
since the calculations of electronic polarizability were
carried out for a number of fixed internuclear separations
and then averaged over the appropriate rovibrational
wave functions. The near equivalence of this approach to
the polarizabilities specified in Eqs. (27) and (32) is dis-
cussed by Schulman et al. , who conclude that errors on
the order of 10 in the polarizabilities may be expected
in this method of calculation. This is probably the same
degree of approximation which is incurred by neglecting
differences in the branch polarizabilities in Eqs. (30) and
(31).

With the same reservations regarding the manner of in-
clusion of the nuclear motion, the parameters p, "(R) and
PT"(R) occurring in Eq. (35) and defined by Eqs. (28) and
(33) are expected to be approximately equal to the "mo-
ment functions" S 3 defined and tabulated by Bishop
and Cheung. '

Summarizing to this point, a systematic perturbation-

l

theory treatment of the Rydberg state energy indicates,
in addition to the zeroth-order energy, contributions
from (a) the first-order perturbation energies due to the
static multiple moments of H2+, which are given by Eq.
(15); (b) the polarization energies due to the portion of the
second-order perturbation energy off-diagonal in the core
electronic state, which are given (in the case of ~=1) by
Eq. (35); and (c) the interseries perturbation energies due
to the static multipole potential (that is, the portion of
the second-order energy that is diagonal in core electron-
ic state}, which is given by Eq. (20). The first two of
these effects may be approximated as the expectation
value of a polarization potential, of which Eq. (1}
(LOPM) gives the leading terms. Higher-order terms are
generally proportional to a higher inverse power of r2
and so give smaller contributions, especially for high-L
states. The effects of (c) have, in the past, been estimated
by using Eq. (1) to couple different Rydberg series. ' ' '
This approach appears questionable in view of the
different origin of the static quadrupole and polarization
terms in Eq. (1). To second order in perturbation theory,
only the static multipole potential produces interseries
mixing. Mixing due to the dipole polarization potential,
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if it occurs, would be included in a systematic treatment
of higher-order perturbation terms, and whether the sim-

ple usage of the potential of Eq. (1) would be justified is
an open question.

As expected, the dipole polarization energy is approxi-
mately equal to the energy of the H2+ ion in the electric
field produced by a stationary Rydberg electron. There
are, however, significant "nonadiabatic" corrections to
this picture which lead to additional contributions to the
polarization potential, typically opposite in sign and pro-
portional to a higher inverse power of r2. As in the
atomic case, these nonadiabatic terms may also be
parametrized in terms of coeScients which are properties
of the free-core ion.

Another conclusion which can be drawn from the cal-
culation in the preceding is that when the rotation of the
core is properly included, the adiabatic dipole polariza-
tion energies are not strictly parametrized by two

coefficients (a„a&), but rather by a larger number (typi-

cally five) of parameters which we refer to as electronic
branch polarizabilities [Eq. (27)]. The reduction to the
two-parameter form is an approximation. Similarly, it is

an approximation to write the polarizability as an aver-

age, over core vibrational wave functions, of the polariza-
bility at fixed internuclear separation. These conclusions
are not unique to the application to Rydberg states, but
are similar to the conclusions reached by others' in

studying the polarization energies of free diatomic mole-
cules. Finally, it should be emphasized that in the calcu-
lation in the preceding, it has been assumed that the core
wave functions could be written in the Born-
Oppenheimer form [Eq. (6)] for both ground and excited
states of the core, and that corrections to this picture
could be ignored.

A. Higher-order extensions of the polarization model

A further extension of the polarization model, analo-
gous to the treatment of helium by Drachman, " would

I

calculate all terms in the polarization potential propor-
tional to a given inverse power of r2 through the sys-
tematic application of the following three separate expan-
sions.

Such a calculation is beyond the scope of this paper, but
certain aspects of the result may be anticipated from ex-
isting calculations. Terms of zeroth order in the third ex-
pansion are the "adiabatic" terms which are expected to
produce a result approximately equal to the energy of a
polarizable H2+ ion in the electric field of a stationary
Rydberg electron. Many of the consequences of such a
field have already been calculated. In the notation of
Buckingham, the perturbed energy of such a system is

E = E —
& QapFaFp —p47apygFaFpFyFg

0

68~pygF~FpFyg 6 C~py/F/pFyg + (36)

where a, y, P, and C are Cartesian tensors giving the di-
pole polarizability (a), hyperpolarizability (y), and quad-
rupole polarizabilities (B and C). The indices a, P, y,
and 5 denote the Cartesian components x, y, and z. F is
the electric field and F p the electric field gradient tensor.
If we consider the electric field exerted on the H2+ ion by
the Rydberg electron at a distance r and polar angle 0
from the internuclear axis p, and use the expressions of
Buckingham for the polarizability tensor components for
axially symmetric molecules, we find the expression

(1) The Rayleigh-Schrodinger perturbation expansion
of the state energy in powers of the perturbing potential
V.

(2) The multipole expansion of the potential V.

(3) The expansion of energy denominators, analogous
to Eq. (21).

O e —4 e —4
2 2 2 2 2 3

E = F. — a, r — aTr Pz(cos8) — Cor — C, r Pz(cos8) — C&r P4(cos8) — Bor
12e e

2 ' 3 10 7 35 15
3 —7 2ee —8 e —8

4 4 e 8
4

42
B,r P~(cos8) — Bzr P4(cos8) for p, r Pz(cos8) —

year P4(cos8),
35 24 126 105

(37)

where

a, —= —,'(a„+2a „},
aT —=a„—a

C, —=C, ,+8C...,+SC.„,,

C, =—5C„„+4C„,,—SC„„.„,
C2—=2C„„—4C, +C „

8, =—118„„+88,+28 „—168

yQ—= —(&y +3@ + 12@

'V 'Vxxxx + 3 xxzz

r2 —=r„+r....—6r..„
and in each case the Cartesian components of the polari-
zability tensors are defined in the frame whose z axis is
along the internuclear axis p. All of the relevant polari-
zability components needed to evaluate Eq. (37) in the
case of H2+ have been calculated by Bishop and Lam. '

One additional adiabatic polarization term, which also
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gives a contribution proportional to r2 but which is not
included in the expressions of Buckingham, is the dipole-
octupole polarization energy. ' This is expressed in
terms of a tensor E .&~& having two independent com-
ponents for an axially symmetric molecule, and gives a
contribution to the energy which can be written as

hE = ——,'[ 2E—„„,„(F. „F„,+F F „)
+Ez:zzz z zzz] &

where

~xzz =
2 ~x&

az

Again, substituting the electric field of the Rydberg elec-
tron, this reduces to the form

bE = ——,'E&Pz(cos8)e /rz —
3I E2P—&(cos8)e /rz, (38)

with

1 ~z:zzz 8~x:xxx ~ ~2 ~z:zzz + 8~x:xxx

The E tensor has been calculated for HF by Bishop and
Maroulis. The first calculations of the E tensor for H2+
have been carried out recently.

All of these terms would be expected to contribute to
the adiabatic portion of the polarization potential in an
extended calculation. In addition, nonadiabatic correc-
tions to each term would produce other contributions to
the potential, proportional to higher inverse powers of r2.
Ignoring, for the moment, the effects of interseries mixing
[Eq. (20)], the energy of a particular Rydberg state in the
polarization model is given by the expectation value of
this series. For Rydberg states built on R =0 cores, only
isotropic terms contribute, giving a structure which is
very similar to the helium atom. For states built on
R =1 cores, such as those reported here, terms propor-
tional to P2(cos8) also contribute, giving a structure of
the form

E((v, 1)nL„)= E (v, l, n)+ Ao(v, l, n, L)

+ Az(v, l, n, L)(RLN
l
Pz(cos0)

l
RLN ),

where (RLN
l
P2(cos8)

l

RLN ) is given in Eq. (34b).
The scalar ( Ao ) and tensor ( A 2 ) structure factors form

a convenient parametrization of the structure which facil-
itates comparison. with experiment. Each can be ex-
pressed as the expectation value of a series of terms pro-
portional to increasing negative powers of r2. Using the
results derived in the preceding, we get

2

Ao(v R n L)= — as "(R)[«ll» 'll«l+ le'aoPs'(R)[nLII» 'll«] —
—,'. e'Co(v, R)l«ll» 'll«]

2

—
—,', e Bo(v, R)[nL llr llnL] —,' e yo—(v,R)[n:L llr llnL]+

2

A, (v, R, n, L)= —eg(v, R)lnL llr -'llnL] — af."(R)[nL llr-'llnL]+ 2e'apr"(R)[nL llr-'llnL

—
—,'e C&(v, R)[nL llr llnL] ——,'e E&(v, R)[nL llr llnL] —,', e B,(v, R)—[nLllr llnL]

„',e y, (v, R)[—nL—llr llnL]+

In order to evaluate these expressions, the relevant
coefficients, for the (v, R) =(0,1) state of H2+, are needed.
For the quadrupole moment and dipolar polarizabilities,
we use the recent results of Bishop and Lam,

Q ( 0, 1 ) = 1.64257ea o,
a„(0,1 ) =5.8657a o,
a„„(0,1)=1.8384ao,

giving

as (1)=3.1809ao, az (1)=4.0273ao .

For the nonadiabatic dipole polarizability coefficients, we
use the S 3-moment functions calculated by Bishop and
Cheung. ' Calculation of the tensor component and
averaging over the appropriate vibrational wave function
have been carried out by Bishop, with the results

ps (1)=—,'[(S 3)1+2(S 3)~]=6.8406at/e

Pr (1)=(S 3)~~
—(S 3)z ——12.4906ao/e

The adiabatic quadrupole polarizabilities have been cal-
culated by Bishop and Lam, with the results

C„„(0,1)= 10.09ao,

C„,„,(0, 1)=1.34ao,

C„„„„(0,1)=3.37ao,

from which we get

Co(0, 1)=47.77ao, C&(0, 1)=28.83ao~ .

These polarizabilities are dominated by the vibrational
contributions (i.e., by the tendency of the internuclear
distance to change in the presence of an electric field gra-
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dient).
For the dipole-dipole —quadrupole polarizabilities 8

and the hyperpolarizabilities y, we again take the values
from the calculations of Bishop and Lam,

B,,„(0,1 ) =82. 72a 0 /e,

B,„,(0, 1)= —21.91ao /e,

B„„„(0,1 ) =26.49a o le,
B„„„„(0,1)= —23.93a 0/e,

y„„(0,1)=2222. 42ao/e

y„„„(0,1)= 134.82a o /e

y„„„„(0,1)=126.04ao/e

from which we get

Bo(0, 1)= —74. 18a 0 le,
B,(0, 1)=1171ao/e,

yo(0, 1 ) =619.6a o /e

y&(0, 1)=6568ao/e

The E tensor coefficients calculated recently by Bishop
are

E,„,=5.901ao, E,„=1.130ao,

This gives

E& ——8.663ao .

The expectation values of the several terms in the polar-
ization potential may be evaluated using these coefficients
and the expectation values of r ' in hydrogenic wave
functions tabulated by Bockasten. The results for 10F,
106, 10H, and 10I states of H2 are shown in Table I.

For the scalar structure constant, the leading term has
s = —4 and the leading correction terms have s = —6.
Two higher-order terms, s = —7 and —8, are included in
Table I, but since there are a number of uncalculated
nonadiabatic terms which are expected to give contribu-
tions of this order also, these are best regarded only as an
indication of the likely convergence of the series. Contri-
butions from successive terms decrease with increasing
powers of 1/r~ until some critical power, after which
they increase once again. This critical power increases
with increasing L. This behavior is similar to that found

by Drachman in his study of helium Rydberg states with
the polarization model. " In order to estimate the sum of
this asymptotic series, Drachman suggests grouping the
terms from each power of 1/r2, and estimating the sum
as the partial sum up to but not including the smallest
calculated term, plus one-half the smallest term, with an
estimated error that is one-half the smallest term. Using
this rule and the calculated terms proportional to r
and r, we obtain an improved estimate of the scalar
structure constant for these states,

(39)

where V, is the sum of all terms proportional to r2 '.
This improved estimate is included in Table I, where it is
labeled by HOPM (higher-order polarization model).
Also shown for comparison is the prediction of the lowest
order-model (LOPM). The principal advantage of the ex-
tended model is that it gives an indication of the probable
precision of the prediction.

For the tensor constant A2, the leading term is the
quadrupole term (s = —3), with additional contributions
from s = —4 and —6 terms. Combining these terms, us-
ing the same procedure to estimate their sum, we obtain
an improved estimate of the tensor constant A 2,

gHOPM (y +V + y )+ y (40)

which is shown in Table I under the heading HOPM.
Here the increase in precision with L is quite dramatic,
reaching 15 ppm for the 10I state.

III. EXPERIMENT

The method used to study the spectroscopy of n =10
Rydberg states of H2 is the same as that described in Ref.
1. A beam of Hz+, of about 11 keV energy, is neutralized
in a charge exchange cell. A portion of the fast neutral
beam emerging from the cell is in the Rydberg states of
interest, and can be sensitively detected by resonantly ex-
citing those states with a laser to a very weakly bound
state, such as n =27, and then immediately Stark ioniz-
ing the upper state and collecting the resulting ions in a
channel electron multiplier. The laser is a grating-tuned,
fixed-frequency cw CO& laser (Advanced Kinetics
MIRL-50), whose frequency is close enough to the
desired transition frequency that fine tuning can be ac-
complished through the Doppler effect by varing the an-
gle of intersection between the laser and the fast beam.
The frequency resolution of the laser excitation spectrum,
about 0.01 cm ', is determined by the angular spread in
the beam and by transit and power broadening of the
laser resonance. This gives sufficient resolution to show
rather clearly the Rydberg fine structure in a study of the
excitation spectrum. In Ref. 1, 19 different n =10 Ryd-
berg states were identified as contributing to the 10-27 ex-
citation spectrum on the basis of their energies, which
were shown to correspond to the predictions of the
lowest-order polarization model to within the experimen-
tal precision of +0.02—+0.04 cm

For the present work, lines in the excitation spectrum
corresponding to initial states (0,1)10F~ and (0,1)10G&
are studied more carefully. These states were chosen be-
cause their excitation spectra are complete and well
resolved. In order to improve the precision of the optical
spectroscopy, the Doppler-tuned laser frquency was
checked by observing the 10-27 transition in atomic hy-
drogen with several different CO2 laser lines, which
match the excitation energy at a wide range of intersec-
tion angles. This also provides an improved determina-
tion of the beam energy. Figure 1 illustrates the con-
struction of the Doppler-tuning stage, which is similar to
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TABLE I. Calculated contributions to the scalar and tensor structure factors of (0,1)10L states of H2
with 3 & L (6. Numbers in parentheses denote errors.

Coefficient

as
Ps
Co
80
Xo

10F

—1.0638
0.2288

—0.1065
0.0324

—0.0938

—1.0638

—1.003(61)

A (0,1,10,L) (cm ')
10G

—0.282 07
0.016 31

—0.007 59
0.000 97

—0.000 79
LOPM
—0.2821
HOPM
—0.2777(44)

10H

—0.097 640
0.002 103

—0.000 979
0.000 071

—0.000030

—0.097 640

—0.097 08( 56)

10I

—0.039 986
0.000 378

—0.000 176
0.000008

—0.000002

—0.039 986

—0.039 89( 10)

aT
Pr
C)
EI
8)
Xl

—8.5834
—0.8979

0.1393
—0.0918
—0.0276
—0.1824
—0.1895

A (0, 1,10L) (cm ')
—4.0056
—0.2381

0.0099
—0.0065
—0.0020
—0.0054
—0.0016

—2.184 87
—0.082 41

0.001 28
—0.000 84
—0.000 25
—0.000 40
—0.00006

—1.320 52
—0.033 75

0.000 23
—0.000 15
—0.00004
—0.000 046
—0.000 004

—9.4813

—9.471( 10)

LOPM
—4.2437
HOPM
—4.2430(7)

—2.267 28

—2.267 19(9)

—1.354 27

—1.354 26(2)

that used by Kugel et al. The CO2 laser enters the
high-vacuum chamber approximately along the rotation
axis of the stage and is directed to an intersection with
the fast beam, also approximately on the rotation axis, by
two plane mirrors. The rotational motion of the stage is
computer controlled through a precision rotation stage

l

t

I

I

I

I

I

High Vacuum
I

—Rotation Sfage

FIG. 1. Dopper-tuning stage. The CO2 laser enters and in-
tersects the fast Hz beam on the rotation axis of the stage. Ro-
tary motion is computer controlled through a precision rotation
stage.

(Newport model 499 with 855 controller). With an ideal
alignment of the incident laser beam, the relative inter-
section angle can be read directly from the rotation stage.
The incident laser beam alignment is monitored frequent-
ly and may be adjusted using removable pinholes, mount-
ed externally to the vacuum chamber, and a tracer
helium-neon laser beam. The rotary stage is initially
mounted so that a reading of 0' corresponds roughly with
antiparallel propagation of laser and fast beams.

Table II summarizes the observed angular positions of
10-27 transitions in atomic hydrogen observed with
several CO2 laser lines. The atomic hydrogen was ob-
tained from protons of nominal energy 10.98 keV, as
measured with a voltage divider (Data Precision model
V41-A). The first two columns of Table II identify the
laser line and give its known frequency. ' Since the laser
was not stabilized to the center of the gain profile, its ac-
tual frequency is expected to vary by about +0.001 cm
due to frequency drift within the 0.003-cm ' gain profile.
The free spectral range of the laser is 0.003 cm ', so that
at most two longitudinal modes were likely to be active.
The laser operated in a pure TEMOO transverse mode.
The calculated frequency for the 10-27 excitation in
atomic hydrogen is 946.327 cm '. The third column of
Table II gives the observed angular positions of this reso-
nance with the several laser lines, as determined from line
profiles plotted against the angular readout of the stage
controller. Measurement error is less than 0.01. All of
these observations could be accounted for with the
Doppler-tuning formula
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TABLE II. Calibration measurements for Doppler-tuned laser frequency.enc . Numbers in arenthesesP
denote errors.

CO& line
Transition is H(10—27) at 946.327 cm —1

vL (cm ') 0' ' (deg) gfit (deg)

P(14)
P(16)
P(18)
P(20)
P(22)
P(22)
P(20)
P(18)
P(16)
P(14)

949.479
947.742
945.980
944.194
942.383
942.383
944.194
945.980
949.742
949.479

—134.04
—108.18
—85.41
—61.59
—29.64

32.18
63.32
85.98

107.52
132.30

—133.97
—108.22
—85.48
—61.62
—29.56

32.26
63.20
85.94

107.60
132.28

Fit results: 8=0' '+ A +BcosO+ C sin8
A =0.139(29)', B =1.421(51)', C = —0. 101(34)', P=0.0048669(27)

vL [1+Pcos(8)]
p2

(41)

if 0, the actual intersection angle, is given in terms of the
angle measured by the rotation stage, O„,~„by

8=8„,,+ A +B cos(8)+ C sin(8) . (42)

The offset angle A reflects the initial rough setting of
9 t g 0, while the sinusoidal error is partially due to a
misalignment of the incident CO2 beam, which leads to
"walking" of the laser on the internal mirrors as the stage
turns, and partially due to a sinusoidal error in the angu-
lar readout from the rotation stage. Column 4 of Table II
s ows eh the best fit of the observed positions (column 3) us-

C. Theing Eqs. (41) and (42) and varying P, A, B, and . e
rms deviation from the fit (0.07') may be taken as a mea-
sure of the precision of the alignment procedure, since
each observation required independent alignment of the
laser with respect to the stage axis.

The value of p obtained from this fit was used to im-
prove the calibration of the voltage divider measuring the
beam energy, resulting in a calibration factor of
1.0124+0.0013, which is consistent with the expected 2%
precision o

'
ion of this component. Using Eqs. (41) and (42, the

frequency difference of two lines observed at an
8(2) ' with the same choice of laser lines, could be in-

ferred with somewhat higher precision than the absolute
frequency of either. For this calculation, it was assumed
that the angles 8(1) and 8(2) were given by Eq. (42, wit
the calibration constants given by

A =0.130(92)', B = 1.421(161)', C = —0. 101(108)' .

The larger errors reflect the uncertainty associated with a
single alignment of the laser.

Figure 2 illustrates the fine structure of a few n =10
and 27 Rydberg states of H2, showing the transitions
studied here. Each of the three (0, 1)10F~ states give rise
to a single strong transition, labeled in Fig. 2 by capital
letters A;. Several weaker lines which correspond to

different final states are labeled by lower-case letters a, .
A similar labeling scheme is used for the lines with lower
states (0,1)10G~. Representative excitation spectra show-

ing these lines are illustrated in Fig. 3. The angular posi-
tions of each of these lines, and comparable lines with
final states in the n =26 manifold, were measured. Table
III summarizes the observed positions of the strongest
lines. Also included is the position of the 10-26 (or 27)
transition in atomic hydrogen, labeled H, observed in
atoms produced by dissociation of Hz+ in the charge ex-
change cell. Since the frequency of this transition is
known, the relative angular positions of the H2 lines with

n=27

O. l cm

I.Q cm

10

FIG. 2. Level diagram showing the electric fine structure
(EFS) of n = 10 and n =27 Rydberg states of H&, and illustrat-
ing the optical transitions studied here.
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FIG. 3. Typical excitation spectrum of Doppler-tuned 10-27 Rydberg transitions in H2, using the P(16) line of the CO2 laser
(947.742 cm ). The vertical axis is proportional to the number of ions per second entering the channel electron multiplier. The hor-
izontal axis is the intersection angle between fast H& beam and the laser, as measured with the rotation stage.

respect to this line determine their energies with slightly
higher precision than direct use of Eqs. (41) and (42).
The intersection angles, shown in column 4 of Table III,
were inferred from the observed line positions using the
angular calibration constants discussed in the preceding.
Those shown in column 5 were obtained from measure-
ments of the relative angles, using the known frequency

of the hydrogenic transition H. The transition energies,
shown in column 6, were determined from Eq. (41) with
the beam velocity taken to be P=0.0034409(21), as
determined from the calibration of the beam energy dis-
cussed in the preceding. The last column of Table III
shows the deviation of the transition energy from the
zeroth-order hydrogenic value. These measurements, for

TABLE III. Measured frequencies of primary transitions in the excitation spectrum of (0,1}10Fand

(0,1)106states of H2. Line identifications refer to Fig. 2. Numbers in parentheses denote errors.

Run Line gobs (deg) g (deg) g' (deg) v, (cm-') 6 (cm ')

A3

A2

A2

B3
B2
B2
H

B,
Al

A3

A2

B3
B3
Bq
H
H
Bl
Al

10-26 transitions, using
42.537(5) 41.41(20)
60.040( 3 ) 59.27( 17)
60.129(4) 59.36( 17}
77.211{3) 76.86(15)
82.003(2) 81.77(14)
82.087(2) 81.86(14)
96.656(2) 96.79(14)

101.381(4) 101.64(15)
104.868(3) 105.21(15)

10-27 transitions, using
66.139(2) 65.51(16)
79.891(2) 79.60(15)
95.274(2) 95.38(14)
95.317(2) 95.42(14)

100.019(1) 100.24(15)
115.254(4) 115.83(16)
115.248{4) 115.83(16)
120.462(3) 121.15(17)
124.573(3) 125.35(17)

P(30) at 934.894
41.38(20}

59.24( 13 )

77.73(7)

81.65(5)
96.59(17)

101.43(2)
105.00(3)

P{16) at 947.742
65.55(17)
79.64(13)

95.42(7)
100.24(6)
115.83(3)
115.83(3)
121.15(3)
124.35(4)

cm
937.314(8)

936.546(6)
935.638(4)

935.367(3)
934.531'
934.262(1)
934.067(2)

cm-'
949.098(9)
948.335(7)

947.440(4)
947.168(3)
946.327'
946.327'
946.061(2)
946.861(2)

2.529(8)

1.761(6)
0.853(4)

0.582(3)

—0.523(2)
—0.718(2)

2.514(9)
1.751(7)

0.856(4)
0.584(3)

—0.523{2)
—0.723(2)

'Calculated value.
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n =27 upper states, can be compared directly with the
less precise determinations of Ref. 1.

A possible systematic uncertainty in these measure-
ments arises from the presence of electric fields in the re-
gion of laser excitation. Helmholtz coils were used to
cancel the earth's magnetic field to reduce motional
fields. Other fields, presumably due to charging of nomi-
nally conducting surfaces on the Doppler-tuning stage,
were sometimes present, but could be reduced by careful
collimation of the beam. In order to set experimental
limits on the actual electric field present in the interac-
tion region, a study of the effects of such fields on the
(0,1)10F4-(0,1)27G& transition was made. In the rather
large motional electric field which is present when the
current in the Helmholtz coil is turned off (0.25 V/cm),
this resonance was substantially altered, as shown in Fig.
4(a). The prominent feature at 948.35 cm ' is the Stark-
induced (0,1}10F4-(0,1)27H6 transition which becomes al-
lowed due to Stark mixing of the (0,1)27G5 and (0,1)27H6
states. The relative size of this feature and the dominant
peak, in Fig. 4(a), is consistent with simulations based on

EA

~~

Ch

U

the known electric dipole matrix elements connecting
these states, their calculated zero-field separation (0.017
cm '), and an electric field of magnitude 0.25 V/cm. In
the same region of the spectrum, observed under normal
experimental conditions, as shown in Fig. 4(b), very little
sign of this Stark-induced feature is evident, indicating an
ambient electric field which is much less than 0.25 V/cm.
More precise limits may be derived by fitting the spec-
trum to extract the size of the (very small) feature at the
position where the Stark-induced feature is expected. By
comparison with simulations, this gives an estimate of the
ambient electric field. This test was repeated periodically
during the period that data were taken for this experi-
ment. Within the precision of these determinations, no
significant changes with time were observed and the aver-
age field was estimated to be 0.06+0.10 V/cm. At this
field strength, Stark shifts were negligible ( (0.001
cm '},both for the upper and lower states of the transi-
tions shown in Table III.

The positions of the six n =10 Rydberg levels under
study can be inferred from the measured excitation ener-
gies, using calculated values of the upper state EFS. As a
check on this procedure, frequencies of the weaker lines
shown in Figs. 2 and 3, relative to the primary lines, were
determined and compared with the predictions of the
LOPM. The results of this study, shown in Table IV, in-
dicate that the upper-state structure agrees with the pre-
dictions of this model to within +0.001 cm, with the
exception of the line terminating on the (0,1)27Dz state.
Since only upper states with L & 4 are involved in the pri-
mary transitions, this is taken to indicate satisfactory
agreement between the upper-state structure and the
LOPM.

Table V shows the calculations used to determine the
n =10 Rydberg-level positions, relative to their zeroth-
order energy E(0, 1)—1097.074 cm '. The deviations of
the transition frequencies from their zeroth-order values,
6, from Table III, are shown in column 2 for both n =26
and 27 upper states. Column 3 shows the calculated
upper-state EFS in the LOPM. Column 4 gives the in-
ferred n =10 state EFS from each measurement, with the
average for each state shown in column 5.

IV. COMPARISON WITH THEORY

948.38 948.36 948.34 948.32 948.30
DOPPLER —SHIFTED LASER FREQUENCY (cm ')

FIG. 4. (0,1)10F4-(0,1)276, transition as it appears in the
presence gf a motional electric field of 0.25 V/cm (a) and under
normal operating conditions (b). The feature of 948.35 in (a) is
the Stark-induced (0,1)10F4-(0,1)27H6 transition whose strength
in (b) is used to estimate stray electric fields present in the re-
gion of interaction between the H2 beam and the CO, laser.

In order to compare the measured positions of the
(0,1)10F& and (0,1)10G& states with theory, we recall first
that, with the exception of the portion of the second-
order energy represented by Eq. (20), i.e., that part due to
mixing with different Rydberg series, the energy of each
state is expected to be of the form

E((v,R)nL„)= E (v, R, n)+ Ao(v, R, n, l. )

+ A2(v, R, n, L)(RLN
~
P2(cos8)

~

RLN ).

Before the observed energies can be fit to extract the two
structure factors ( Ao and

A 2 ), the energy shifts due to
Eq. (20) must be calculated and subtracted. These energy
shifts were estimated using only the leading order mul-
tipole term in V, the quadrupole term. In this approxi-
mation they are given by
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TABLE IV. Determinations of upper-state EFS from lines in the 10-27 excitation spectrum having a
common lower state. Line identifications refer to Fig. 2. Numbers in parentheses denote errors.

Line

al
a3
A2

a2
Bl
bi
b3

B2
b2

0 ' (deg)

124.573( 3 )

126.153(5)
125.421( 5 )

79.891( 1 )

78.843(47)
120.462(2)
121.273(4)
119.987(9)
100.019(1)
99.474( 35 )

AI9 (deg)

1.611(8)
0.865(7)

1.075(47)

0.828(6)
—0.485( 10)

—0.559( 35 )

AE (cm ')

—0.075(1)
—0.040( 1)

0.060(3)

—0.040(1)
0.024(1)

0.031(2)

gELQPM ( m
—1)

—0.074
—0.032

0.059

—0.039
0.023

0.032

Interval

63-G4
D2-62

64-Gs

H4-H5
F3-H)

H5-H6

AE((0, 1)10L~)=
v', R', n', I-'

i
(v'R'n'L'N

i
eQ(p)P2(cos8)1'r~

i
(0, 1)10L&) i

E (0, 1, 10)—E (v'R'n')

This expression contains contributions from many
different Rydberg series satisfying the selection rules
hN =0, hR =0,+2, and hL =0,+2. For each such
series, the sum over n' implicitly includes both discrete
and continuum hydrogenic states with a fixed value of L'.
The contribution from discrete states was estimated by
explicitly calculating the contribution from each n' & 25
and extrapolating to include states with n

' ~ 25. The con-
tribution from continuum states was calculated for a
sufficient range of E p 0 that the integral over E could be
estimated numerically. An independent check of the to-
tal shift was obtained by calculating the total shift from a
particular series using differential equation methods.
Table VI illustrates the results of such calculations for
the (0,1)10G5 state. In most cases, the total contribution
from a particular perturbing series is dominated by the
contribution of the single state with an energy closest to

l

the level in question. For instance, 95% of the total shift
of the (0, 1)106~ state due to the (0,3)nG5 series comes
ftom mixing with the (0,3)9G5 state.

Only the v'=0, 1, 2, and 3, R'=1,3 series were includ-
ed in this estimate. The necessary matrix elements of
Q (p) were taken from the compilation of Bishop to be

(0, 1
i Q(p)

~

0, 1)=1.6426eao,

(0, 3
i Q(p) i 0, 3) =1.6618eao,

(0, 1
I Q(p) i

1, 1)=0.3431eao,

(0,3
i Q(p) i

1,3) =0.3460eao,

(0, 1
i Q(p)

~

2, 1)= —0.0264eao,

(0,3
~
Q(p)

~

2, 3) = —0.0267eao,

TABLE V. Determination of n =10 EFS for (0,1)10Fand (0,1)10G states from measured transition
energies. All values in cm '. Numbers in parentheses denote errors.

Line

A 3(26)
A 3(27)
A 2(26)
A, (27)
A, (26)
A l (27)
B3(26)
B3(27)
B2(26)
B2(27)
Bl (26)
B,(27)

6 (cm ')

2.529(8)
2.514(9)
1.761(6)
1.751(6)
0.718(2)
0.723(2)
0.853(4)
0.856(4)
0.582(3)
0.584(3)
0.523(2)
0.523(2)

Upper-state EFS

—0.052
—0.046
—0.035
—0.031

0.031
0.028

—0.023
—0.021
—0.016
—0.014

0.020
0.018

n =10 EFS

—2.581(8)
—2.560(9)
—1.796(6)
—1.782(6)

0.749(2)
0.751(2)

—0.876(4)
—0.877(4)
—0.598(3)
—0.598(3)

0.543(2)
0.541(2)

Average

—2.570(6)

—1.789(4)

0.750(2)

—0.876(3)

—0.598(2)

0.542(2)

State

(0,1)10Fq
(0,1)10Fq
(0, 1)10F4
(0,1)10F
(0,1)10F3
(0,1)10F3
(0,1)1063
(0,1)1063
(0, 1)1065
(0,1)1065
(0,1)1064
(0,1)1064
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TABLE VI. Energy shifts of the (0,1)10G& state of Hz due to (quadrupole) coupling to other Rydberg
states. Values are in 10 cm '. The numbers in parentheses are uncertainties due to sensitivity to
short-range (r2 (2ap) contributions to the matrix elments of r2 . Contributions from series with
v=2, 3 were also evaluated and were in all cases less than 10 ' cm '. Numbers in parentheses denote
errors.

Series

(0,1)nG5
(0,1)nI5
(0,3)nD5
(0,3)nG5
(0,3)nI5
(1,1)nG5
(1,1)nI,
(1,3)nD5
(1,3)nG5
(1,3)nI5

n'&25

2.7
—0.1

65.4(3)
—238.7

0.0
—0.5

0.0
3.5( 1 )

—1.9
0.0

n'& 25

—0.5
0.0
0.0

—3.0
0.0
0.0
0.0
0.0
0.0
0.0

E&0
—6.0

—39.1

—0.2
—39.4
—6.4
—0.2
—1.4

0.0
—1.1
—0.2

Total

—3.8
—39.2

65.2(3)
—281.1

—6.4
—0.7
—1.4

3.5(1)
—3.0
—0.2

Total —267. 1(4)

(0, 1
~
Q(p) ~

3, 1)=0.0037eao,

(0, 3
~
Q(p)

~
3, 3 & =0.003gea02

Matrix elements of Q(p) off-diagonal in core rotational
quantum number 8 were approximated by the geometric
mean of rotationally diagonal matrix elements. For in-
stance,

(0, 1
i Q(p) i

1,3) -=0.3445eao .

Energy levels of the free H2+ ion were taken from the
compilation of Hunter et al. In calculating the re-
quired integrals of r2 between hydrogenic wave func-
tions, the integrand was sufFiciently small at small r2 that
the integral was relatively insensitive to the short-range
behavior of the perturbing potential V [Eq. (5)], which is,
of course, poorly approximated by the quadrupole term
alone. In order to estimate the sensitivity of the result to
short-range e8'ects, the integrals were cut off at the
minimum radius r;„=2ap, and the result was considered
uncertain by the di8'erence from the full integral. This is
the origin of the errors in the total calculated shift of
each of the (0,1)10Fand (0,1)10G states shown in Table
VII. Note that the calculated shift is smaller for the

larger L state. This is to be expected since the positions
of the perturbing levels are relatively constant with L but
the coupling matrix elements decrease as L increases.

Using these calculated values of the contributions to
the Rydberg-state energies from Eq. (20), the remainder
can be fit to determine the structure parameters Ap and
A2 for the (0,1)lOF and (O, l)10G states. The results of
this procedure are shown in Table VII. The fitted values
of Ap and A2 given an excellent agreement with the ob-
served structure. The estimated (1 standard deviation)
errors in these parameters are derived from the errors
shown in column 4 of Table VII, but without assuming
that these errors are uncorrelated. This is necessary since
they are derived from largely common systematic errors.

Table VIII compares the measured structure factors
with the predictions of the polarization model (from
Table I). For the scalar constants, measured and predict-
ed values agree within the (6%) uncertainty of the theory
for the 10F state, but the measured scalar constant for
the 10G state is slightly lower than the predictions of the
model. For the tensor constants, measured and predicted
values agree to within about 1% for both the 10F and
10G states, though in each case the agreement is slightly
outside the estimated combined errors of theory and ex-
perirnent. In general, however, the measured structure. of

TABLE VII. Determination of the structure factors Ap and A2 for the 10F and 10G states from
measured level positions. Numbers in parentheses denote errors.

State

(0,1)10Fq
(0,1)10F4
(0,1)10F3

Position

—2.570(6)
—1.789(4)

0.750(2)

Eq. (20)

—0.038(5)
—0.147(7)
—0.152(1)

Net

—2.532(8)
—1.642(8)

0.902(2)

Fit

A p
———1.006(6)

A 2
———9.539(32)

(0,1)10G3
(0,1)10Gq
(0,1)10G4

—0.876(3)
—0.598(2)

0.541(2)

—0.0096(1)
—0.0267(1)
—0.0318(1)

—0.866(3)
—0.571(2)

0.574(2)

A p = —0.2658( 21 )

A 2
———4.200(15)
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TABLE VIII. Comparison of measured scalar and tensor structure constants for the (0,1)10Fand
(0,1)10G states of H2 with predictions of the polarization model. All values in cm . Numbers in

parentheses denote errors.

LOPM
HOPM
obs
obs/HOP M

Ao(10F)

—1.0638
—1.003(61)
—1.006(6)

1.003(61)

Ao(10G)

—0.2821
—0.2777(44)
—0.2658(21)

0.957(18)

A 2(10F)

—9.4813
—9.471(10)
—9.539(32)

1.007(3)

A 2(10G)

—4.2437
—4.2430(7)
—4.200(15)

0.990(4)

(O, l)10F and (0,1)10G states agrees remarkably well with
the predictions of the polarization model. The agreement
is comparable to that found in analogous studies of the
helium atom, "to this level in the theory.

Much higher spectroscopic precision, in states of
higher L, will be possible in future studies of this system
using microwave spectroscopy. The polarization model,
complete through terms of order r2, will be increasingly
precise when applied to states of higher L, as Table I il-
lustrates. The precision of the polarization model could
be further improved if all terms up to order r2 could be
calculated systematically, as has been done for helium. "
Combined with advances in experimental precision, this

could lead to precise determination of the quadrupole
moment and isotropic dipole polarizability of H2+.
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