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Evaluation of retardation energy shifts in a Rydberg helium atom
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The microscopic system best suited to the high-precision confirmation of a retardation (or
Casimir) effect —originating in the finiteness of the speed of light —would seem to be the Rydberg
helium atom (a helium atom with one electron in its ground state and the other in a high-n state,
preferably with I =n). For the helium atom, calculation of the retardation energy shift EE„t(n, l)

that arises from the retardation effective potential V„„(r)seen by the outer electron, where r is the
separation of the nucleus and the outer electron, is not limited to the case of a Rydberg outer elec-
tron. We evaluate AE„„(n,l) numerically in the dipole approximation for a range of values of n and
1. The dynamic electric dipole polarizability of the He+ core is approximated using pseudostates (a
finite number of effective excitation energies and oscillator strengths for the core). We also show
how the evaluation can be performed analytically, again using pseudostates. Finally, we give V„,(r)
as an expansion in powers of 1/r; this often provides an easy means of estimating DE„,(n, I) quickly
and relatively accurately, and we present various results of use for the Rydberg helium atom, in ta-
bular and graphical form. The effects of exchange, higher multipoles, and of the finite nuclear mass

have not been included. As experimental capabilities improve, other systems, such as an ion corn-

posed of a nucleus with Z & 2, a single core electron, and a Rydberg electron, may someday prove
as useful as helium. The formalism for helium can readily be adapted to this case.

I. INTRODUCTION

The measurement best suited to the high-precision
confirmation of a retardation (or Casimir) effect —an
effect that originates in the finiteness of the speed of
light —would seem to be the measurement of an energy
shift of a microscopic system, and, in particular, of the
Rydberg helium atom (a helium atom with one electron
in its ground state and the other in a high-n state, prefer-
ably with l =n) The effe. ct as first calculated' was valid
only for n rather large compared to (137)'~ . A fully rel-
ativistic quantum electrodynamic calculation extended
inward the region of validity. ' The essential results of
this extension were reproduced by a nonrelativistic treat-
ment of the electrons; this latter approach is incapable of
estimating corrections such as pair production effects
(which are in any event small for the helium system ), but
is much simpler than the full QED approach, and is the
basis of the present analysis. Recent experimental work
finds no evidence for a retardation energy shift in the
Rydberg helium atom, but there is no contradiction.
Further improvements in the experimental accuracy are
required if the shift is to be detected. In addition, there
are many effects that do not originate in the finiteness of c
and that are very much greater than the retardation
effects; these effects must be evaluated with very high pre-
cision if retardation effects are to be extracted. Calcula-
tions for many nonrelativistic and relativistic '

contributions have been carried out.
Here we present several means of estimating and

evaluating the retardation energy shift bE„„(n,l) for
Rydberg helium atoms and heliumlike Rydberg ions.
Some of the material given here is intended to allow the

nonspecialist in this subject, experimentalist or theorist,
to rather quickly obtain a reasonably accurate estimate of
bE„,(n, I) for the Rydberg systems just noted. A rough
estimate follows immediately from Fig. 1. Should greater
accuracy be desired, or should a system other than the
ones noted above be under consideration —an a particle
or Li +, a muon, and an electron, for example —recourse
can be had to the analytic and numerical approaches dis-
cussed below.
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FIG. 1. The retardation energy shift EE„„(n,l) for helium (in
kHz) plotted as a function of I for various values of n.
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II. RYDBKRG SYSTEMS WITH HYDROGENIC
OR NONHYDROGKNIC CORES

Estimates of retardation effects for a Rydberg atom of
He and estimates for the Rydberg ions Li+, Be +, . . . ,
all systems that have a hydrogenic core, follow from the
material in Sec. III below. These estimates are accurate
not only for I =n ~&1, but also for much smaller n. We
will return to the hydrogenic cores shortly, but the ques-
tion of how to estimate retardation effects for systems
with nonhydrogenic cores naturally arises. There may be
some additional effects for such systems, but it is reason-
able to believe that retardation effects for a multielectron
core can be expressed in terms of the characteris-
tics ' "" of such a core —the dynamic electric dipole
polarizability ad(k), where k is the wave vector, and the
frequency or wave-number-dependent nonadiabatic
correction p(k}. (We follow very closely the notation of
Refs. 1 and 4; references to equations' of Ref. 4 will be
preceded by the symbol I.) However, for cores with more
than one electron it often will be exceedingly difficult to
obtain the characteristics of the core —ad(k) and p(k),
or equivalently, F(k)—necessary to determine the retar-
dation effect if the point particle is close to the core; F(k)
is defined by

F(k)= —', e
Euo+E~

(2.1)

where g„represents an infinite sum and continuum in-

tegration. It is for this reason that for many-electron
cores the analysis is relatively simple only for the Ryd-
berg electron at a great distance, for then the only
relevant core characteristic required is the static electric
dipole polarizability ad(0)=F(0). While ad(0) for a
many-electron core can itself be difficult to obtain with
great accuracy, it is reasonably well known for a number
of cases. Furthermore, since the energy shift
b,E„„=b,E,«(n, l) is—a function of the quantum numbers
n and l of the outer particle, ad(0) can be treated as an
open parameter in a study of experimentally determined
values of the energies F. (n, l) for a set of values of n and 1;
the E(n, l) contain as components EE,«(n, l) [The ex-.
traction of b,E,«(n, l) for a set of values of n and 1 for
which the outer electron was nearby rather than in the
distant regime would require the introduction of many
open parameters to characterize F(k). See below the dis-
cussion of approximations to F(k) in the one-electron
core problem. ]

III. EVALUATION OF THE RETARDATION
ENERGY SHIFT h,E„,(n, l)

FOR A ONE-ELECTRON CORE

For a one-electron core and an outer electron, such as
a Rydberg helium atom, the retardation effective poten-
tial V,«(r), with r the coordinate of the outer electron,
will be identified' as Eq. I-(4.30); we make this
identification on the basis of previous calculations and
physical arguments. "' The potential V„,( r ), which
arises from the exchange of two transverse photons or of

one transverse photon and one "instantaneous"
photon —the latter is not quite the usual longitudinal
photon since it generates the interaction
(e Ir) e—I

~
r2 —r, ~, where r2=r and r, is the coordi-

nate of the inner electron, and involves quantities of elec-
tric dipole origin —is a subset of the two-photon interac-
tion V(r} between the helium core and outer electron.
For example, the usual polarization potential
V& ~

———,'ad—(0)e Ir, with ad(0) the static electric di-

pole polarizability of the core, and other potentials, such
as that given by Eq. I-(4.12}, generated by the exchange
of two instantaneous photons, which are independent of
the value of c, are excluded from V„,(r) The. complete
two-photon interaction contains terms attributable to
electric and magnetic multipoles of all orders, ' spin,
and relativistic effects, but for truly Rydberg-like sys-
tems, that is for all but very small values of n, the electric
dipole terms strongly dominate, and those are the only
contributions with which we will be concerned. In addi-
tion, we can understand most of the electric dipole con-
tributions, especially those at large distances, through
physical arguments that involve only the dynamic electric
dipole polarizabilities ad(co) and vacuum ffuctua-
tions.

The retardation effective potential, and the associated
energy shift that it generates, are calculated with the nu-
cleus considered to be of infinite mass; the effect on hE„„
when the nuclear mass is taken to be finite has been ana-
lyzed, ' but will not be discussed in the present paper.
The retardation energy shift AE„, is the diagonal matrix
element of V«(r) taken between shielded hydrogenic
wave functions associated with the outer electron with
quantum numbers n and l, with an effective nuclear
charge Z,~, which here reduces to Z=Z —1 for a nu-
clear charge Z.

Expressions for V,«(r) in the form of an integral over
virtual photon frequency, or an integrated form
containing the auxiliary functions' f and g, have been
given before; however, both forms contain the infinite
sum and continuum integration over inner electron wave
functions such as occurs in the definitions of ad(co) and
related quantities. In particular, we showed in Eq. I-
(4.27) that V„«(r) could be written as an integral over the
virtual photon wave vector k using F(k), defined by Eq.
(2.1). [Both ad(k) and the frequency-dependent nonadia-
batic coefficient p(k), the extension of p„,„,d —=p(0), can
be expressed in terms of F(k); see Eq. I-(4.32).] Karplus
and Kolker' evaluated the infinite sum and continuum
integration g„ in F(k) and reexpressed F(k) in terms of
an infinite but discrete summation. While their result for
F(k) converges rapidly, its dependence on powers of
(2Fk+ 1)' and other irrational forms makes the integral
over k difficult to compute. On the other hand, if F(k) is
left as in its definition Eq. (2.1) and the k integration is
carried out, we obtain Eq. I-(4.30) for V„,(r). To calcu-
late b,E„, we must then at some point carry out the g„,
but now f and g appear in the sum-integrand —again
difficult to compute. Fortunately, an alternative to the
above procedures exists. We have previously outlined
how the use of "pseudostates" —a set of P pairs of
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P g.
F(k)=e ao g (3.1)

effective oscillator strengths and effective excitation ener-
gies, with P usually small —enables one to replace the
sum-integral by a finite sum; we now discuss in more de-
tail the use of such a technique in the numerical evalua-
tion of AE„,.

Using pseudostates for a hydrogen atom, but scaled for
a hydrogenic ion of nuclear charge Z such as He+, we
can approximate F(k), by

c03 0.901 46, 94——2.604 97 gI =0.445 60, g2 ——0.291 85,
g3 ——0.20838, and g4

——0.05417. However, a more pre-
cise set consisting of ten pairs (P =10), due to Johnson,
Epstein, and Meath, ' was used in our evaluations of
4E„, reported here.

Using the pseudostate approximation for F(k), Eq. I-
(4.30), and screened (effective nuclear charge Z =Z —1)
hydrogenic wave functions for the matrix element, we
can express AE„„ for the outer electron with quantum
numbers n and I as

where EI, ——Akc, E; =co,-Z e /a0 is an effective excitation
energy, co; is dimensionless, and g; is an effective oscilla-
tor strength. [Note the presence of Z, not Z; F(k)
characterizes the inner (unshielded) electron. ] We have
found the pseudostates with P =4 of Dalgarno and Vic-
tor' to be very useful, especially for preliminary investi-
gations. They give 9]=0.376 46 ct)2=0. 517 11,

b,E„«(n, l, Z)=(nl
~

V„(r)
~

nl)

+ f ds e '4(s;n, l, Z),
0

(3.2)

where, with the exponential from the squared outer elec-
tron wave function factored out, 4(s)—=4(s;n, l, Z) is
given by

'6
264e Z
nI

P
s2' 4F„'&(s) g [f(2y)(y —5y +3)+g(2y)(6y —2y )+ —",y —

—,'y ];

A„I and I'„I are the outer electron wave-function normal-
ization constant and Laguerre polynomial, respectively,

y =(Z /2Z)(e /Pic)co;ns, and V„(r) is given by Eq. I-
(4.28). The first term of Eq. (3.2) can be evaluated readily
using hydrogenic expectation values for powers of I /r.
The integral over s appearing in Eq. (3.2) for EE„„canbe
evaluated numerically or analytically. As the numerical
approach is less tedious to apply, in general, and thus
more practical, we discuss it first.

A. Numerical evaluation

The integral over s in Eq. (3.2) is of a form suited to nu-

merical approximation using Laguerre polynomial quad-
rature. ' Using a J-point quadrature we write

1% greater than theirs. For example, for helium with
n =10 and l =4 we find AE„„=62.7 kHz, while they find

61.8 kHz. Even a comparison of results for Z =70 [al-
though the expression Eq. (3.2) used for V„,(r) is of ques-
tionable validity for such a high Z] shows the 1%
difference. For example, for Z =70, n =10, l =4 we
find hE„,=486 MHz, while they find hE„,=479 MHz.
Au and Feinberg have informed us that, if the results of
Ref. 3 are in fact too low, it may be due to the truncated
spectral distribution used. We emphasize that the retar-
dation energy shifts presented in this paper do not in-

clude the effects of exchange, higher multipoles, or the
finite nuclear mass. Exchange effects may well be
significant for low-lying levels.

J
b,E„«--g w~@(sj),

j=l
(3.3) B.Analytic evaluation

where w is a weighting factor and s is a polynomial
root; w and s have been tabulated for many values of J.
In the present work we quote results for which J =20
was used, but J =15 yielded comparable precision. In
the numerical computation we used the ten-pair approxi-
mation to F(k) and an additional approximation; the
auxiliary functions f (x) and g (x) were approximated by
series expansions for x ~1 and rational approximations
for x ~ 1. In this work we used the four-pair rational ap-
proximations for f and g of Ref. 16 for x & 1. We present
results for hE„, in Table I for a somewhat wider range of
values of n and I than do Au, Feinberg, and Sucher;
where their results are available, our values for AE„„,ob-
tained using the above procedure, were typically about

OC cV
dx e ""x'g(x)=(—1)

0 Bp'
(m /2)+ p lnp

1+p
(3.4)

and

QC ajf dx e ""x~f(x)=( —1)~
0 Bp'

(m p, /2) —lnp
+p2

(3.5)

The shift EE„„canalso be calculated analytically. We
again use Eq. I-(4.26) and screened hydrogenic wave
functions for the outer electron, but now evaluate the
second term of Eq. (3.2), after some rearrangement, using
the integrals
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TABLE I. Retardation energy shift EE„„(n,l) for helium (in kHz) for various values of n and I. Numbers in brackets represent
powers of ten.

EE„t

4.5969[4]
2.1924[4]
2.9692[3]
1.1824[4]
1.7194[3]
3.8205[2]
7.0312[3]
1.0575[3]
2.4932[2]
7.3077[1]
4.4993[3]
6.8967[2]
1.6770[2]
5.1720[1]
1.8132[1]
3.0452[3]
4.7232[2]
1.1699[2]
3.7118[1]
1.3609[1]
5.4123

10

2
3
4
5

6
7
8

2
3

4
5

6
7
8
9
2
3
4
5

6
7
8
9

10

2.1537[3]
3.3668[2]
8.4395[1]
2.7256[1]
1.0258[1]
4.2466
1.8556
1.5779[3]
2.4802[2]
6.2686[1]
2.0486[1]
7.8425
3.3268
1.5074
7.0875[-1]
1.1898[3]
1.8778[2]
4.7742[1]
1.5734[1]
6.0940
2.6274
1.2181
5.9206[-1]
2.9526[-1]

12

13

2
3
4
5
6
7
8

9
10
11
2
3
4
5
6
7
8

9
10
11
12

hE„„

9.1899[2]
1.4548[2]
3.7150[1]
1.2319[1]
4.8118
2.0984
9.8808[-1]
4.9072[-1]
2.5235[-1]
1.3212[-1]
7.2436[2]
1.1493[2]
2.9451[1]
9.8118
3.8566
1.6960
8.0754[-1]
4.0709[-1]
2.1364[-1]
l.1508[-1]
6.2772[-2]

The operations involved in computing Eq. (3.4) or (3.5)
rapidly become unwieldy when n is large, the more so if I
is small, for then many parametric differentiations are
necessary in computing the necessary integrals. The pro-
cess can be automated using a symbolic manipulation
program such as MACSYMA. We have used MACSYMA
to carry out differentiation, simplification, and conversion
to FORTRAN statements, which are then inserted into a
program for evaluation. [Note that the pseudostate ap-
proximation to F(k) is used in both the numerical and
analytical approaches; the analytic approach is analytic
in the sense that the integral over the outer electron coor-
dinate in the matrix element is carried out without the
use of numerical integration. Note too that there are
reasons for maintaining more significant figures for
AE„„(n,I) than might seem to be warranted, see Table I,
in that corrections such as the reduced mass effect have
not been taken into account. For one thing, corrections
can often be expressed as known factors multiplying the
uncorrected result. Further, more accurate results for
bE„,(n, l), in a given approximation, allow us to better
compare our analytic and numerica1 results and allow
others to check their codes. Note finally that very accu-
rate results for bE„,(n, I) are required, since experiments
measure differences —normally for fixed n and different
I—of the retardation energy shifts. ]

C. A more approximate, but simpler, evaluation

Finally, to conclude our discussion of the calculation of
AE„„we describe a method that allows one to readily
determine AE„, approximately to a precision good
enough for most practical cases and allows one to ascer-
tain whether more precise calculations are warranted.
Our main interest here is in the behavior of AE„, in the
"distant regime, "defined by

(Ek )/(E„o) =[Z/(Z n )](iiic/e ) «1, (3.6)

where (Ek ) is a characteristic energy of a transverse
photon and ( E„o) is a characteristic excitation energy of
the inner electron, and which is moderately well satisfied
for helium by such cases as n =12 and 1=11. In this
domain we use Pic/(rE„o) as a small expansion parameter
in Eq. I-(4.30) and find

V„„-(11/4m.)(iii/mc)[e a (0d)/r ],
and a r correction term. However, for most experi-
mental studies one has (Ek ) /(E„o) ~ 1, for which
rE„o/Ac is an appropriate small expansion parameter in
Eq. I-(4.30).

The experiments on helium —no experiments have yet
been performed on heliumlike ions —have been for n and
1 of the order of 10 and 4, respectively, for which

V„,(r) = (e /iiic) ~o

z 2 f

3

7(e /Pic) ~o Z (e /itic) ao
+6n r 3

2

ao
(3.7)
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28 e Z n (2l —1)(2l+3)
3~ «Z [3n' l(l—+1)]

(3.8)

For a helium atom, we thereby arrive at
0 087n . (2I —1)(21+3}rather less than 3n —l(1+1) as
the condition for which the first term by itself is at least a
rough approximation, and for 1=(n —1), this condition
reduces to 0.087n (2n —3} rather less than unity, which
is true only for n (3. However, a comparison of E, with

bE„„for various values of n and i indicates that requir-

ing
~
Ez/E,

~
to be rather less than one is too restrictive

a condition for E& to be a rough approximation.

IV. SOME ONE-ELECTRON CORE RETARDATION
RESULTS IN TABULAR AND GRAPHICAL FORM

We have applied the numerical approach discussed in
Sec.II using Eq. (3.2) to calculate bE„, for various values

of Z, n, and 1. F(k) was approximated by 10 pairs of
pseudostate parameters' as in Eq. (3.1) and the numeri-
cal integration was carried out by means of Laguerre

Au' has pointed out that use of only the r term of Eq.
(3.7) for V„, provides an approximation for b,E„„good
to within a factor of 2, but since the first three terms are
available one can easily do better, especially when n and I
are small. For example, for helium with n =3 and I =2
we find bE„,=46087 kHz using Eq. (3.7) compared to
45969 evaluating Eq. (3.2) analytically or numerically;
the first term alone of Eq. (3.7) gives bE„„=48063kHz.
Also, since we have the first three terms available, we can
delineate domains of n, I, and Z for which the first term
alone provides a reasonable approximation to hE„,. Us-

ing screened hydrogenic matrix elements for inverse
powers of r and denoting the matrix elements of the
first and second terms of Eq. (3.7) by E, and Ez, respec-
tively, we find

7 e~Z~ ( p
—i)

6n. iricao (p
—4)

quadrature (J =20). In Table I, we give a short tabula-
tion of values of b,E„,(n, l) in kHz for helium for some
values of n and I that are or probably could be experi-
mentally accessible. In Fig. 1, we present a plot of iso-n
curves of AE„, versus I for helium, which illustrates the
rather smooth behavior of AE„, as a function of I for n

and Z fixed. The smooth behavior can be attributed to
the leading term of the expression Eq. (3.7) for V„„. For
fixed I, we denote the ratio of AE„, for n „Z„and I to
hE„, for nz, Zz, and I by

b,E„,(n „Z„l)R=
bE„,(ni, Z~, I)

5 4
ni Zi 3n i

—I (l +1)
n, Zz 3nz —l(1+ I)

(4;1)

For I small compared to both n, and nz, we have the sim-

ple scaling law

R =(nzln~ ) (Z, IZz)

which reduces further, for Z&
——Zz, to

R =(n, ln, )' .

Note added in proof. E. A. Hessels, W. G. Sturrus, and
S. R. Lundeen have obtained (unpublished) results with
much smaller error bars than those quoted in Ref. 6.
They state that their result for the 10I-10K interval in
helium "is in good agreement with theory, and while it is
not very conclusive evidence for the presence of retarda-
tion effects, it appears to be the best evidence to date. "
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