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We introduce a new nonsingular scattering integral equation, which is suitable for the investiga-

tion of the total (also off-shell) transition matrix in arbitrary dimension n )2. In particular, the

low-energy properties are derived and lead, in connection with spin-polarized atomic hydrogen H $,
to the low-temperature behavior of two- and three-body surface processes. In addition, for three di-

mensions the method leads in a natural way to a separable approximation to the T matrix for all en-

ergies, with the possibility of formulating a procedure for optimizing this approximation. To show

the practicability of the equation we also present numerical results for both n =2 and n =3.

I. INTRODUCTION

In the last decade the preparation and study of two-
dimensional systems has attracted a great deal of atten-
tion. Surface physics with its development of new sensi-
tive detection techniques such as the scanning tunneling
microscope, two-dimensional electron gases exhibiting
the integral and fractional quantum Hall effect, and
high-T, superconductors, in which the layer structure of
the lattice may play an important role in the pairing
mechanism, are just a few example of the increasing in-
terest in this Geld of physics.

Another experimentally accessible two-dimensional
system is low-temperature spin-polarized atomic hydro-
gen (H J, ) that is adsorbed at a surface of liquid helium. '

The two-dimensional gas plays a vital role in connection
with experiments aiming at Bose-Einstein condensation:
At temperatures below about 0.3 K the density of the ad-
sorbed gas is so high that the stability of the gas sample
as a whole is mainly determined by two-dimensional re-
laxation and recombination processes. Indeed, the
three-body recombination on the helium surface is the
main cause of the inability of the conventional compres-
sion experiments to achieve the Bose-Einstein transition
in the H$ gas. To circumvent this dominant decay pro-
cess, it is important to understand the physical mecha-
nism through which the recombination proceeds and
hence to be able to predict the magnetic field and low-
temperature behavior of the surface recombination rate
constant I, . However, formulating a Faddeev formalism
for this three-body problem in two dimensions, as was
done in the volume case, leads to substantial problems
caused by the logarithmic energy dependence of the two-
dimensional two-body T (transition) operator.

As a first step in solving the above-mentioned problems
and arriving at a three-body effective-range theory, we in-
troduce in Sec. II a new method to study the complete T
matrix and in particular its energy dependence. The
most important results, needed for subsequent applica-
tions, are given in Eqs. (4) and (7). We formulate the

method in arbitrary dimension and apply it to two and
three dimensions. Sections III and IV are devoted to
two-dimensional scattering and we here discuss the com-
plete agreement of our method with the effective-range
theory formulated previously and derive some prelimi-
nary results on the low-temperature behavior of the
three-body decay rate L, . After that we turn in Sec. V to
the three-dimensional case and derive a separable approx-
imation to the T matrix for both positive and negative en-

ergies. This approximation may be of some use in con-
nection with the solution of Faddeev or Alt-Grassberger-
Sandhas (AGS) equations in, for example, nuclear phys-
ics, where a one-term separable expansion is already
highly accurate.

II. r MATRIX

The T matrix in dimension n & 2 and for a (integer-
valued) partial wave 1 obeys a Lippmann-Schwinger equa-
tion that in the momentum representation takes the
form

~l(P P' E)= Vl(P P')+ f "P"(P")" Vl(P P")
0

X
1

&+ —(p")'/2p

X Tt(p",p', E) .

Here p is the reduced mass of the two colliding particles,
E is the total energy available, and the angular momen-
tum associated with the partial wave 1 is &l(1+n —2)tri.

We assume the interaction to be local and rotationally in-
variant, in which case all partial waves are decoupled
from one another and the (real) momentum representa-
tion of the potential V(r) turns out to be

oo

V (ptp') = f dr r" 'jt „(pr/A') V(r)
I ( ,'n)(2')" —0

Xjt „(p'r!fi) .
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The functions j& „(z) play an important role in a generali-

zation of quantum-mechanical scattering theory to arbi-
trary dimension. They are the solution of a radial
Schrodinger equation with the centrifugal barrier

[(l+—,'n —1) ——,
'

)
2pl'

2j „(z)—:I ( ,'n)—
Z

Jl+(1/2)n —1(z) .

and are related to Bessel functions of the first kind J„(z)
by

(1/2)n —1

The coefficient is chosen such that jo„(0)=1. Further-
more, with this choice these functions reduce in three di-

mensions to the conventional spherical Bessel functions

j&(z). For general n relations (1) and (2) iinply the sym-

metry of VI(p,p'} and TI(p,p', E) in the moinentum vari-

ables. For convenience we use from now on units such
that 6=2JM = 1 and in addition suppress the subscript l.

In the case of positive energies E)0 the notation
E+ =E +i 0 used in Eq. (1) specifies the usual integration
contour around the singularity associated with the energy
denominator. However, this singularity can be avoided

by introducing a real and symmetrical ~ matrix by the
equation

n —1

r (p,p', E)= V(p,p')+ f dp", [V(p,p")r (p",p', E) 8(A—p")V—(p, k)~ (k,p', E)] . (4)
0 2

We denote the on-shell momentum by k =&E and the Heaviside unit-step function by 8(x). Note that at p"=k,
where the denominator vanishes, the quantity in square brackets also vanishes. Moreover, the cutoff parameter A & k is
needed to obtain a convergent integral and will turn out to have an additional advantage in Sec. V for the purpose of
optimizing a separable approximation. The relation between the T and ~ matrices is easily found by subtracting and
adding

V(p, k)T(k,p', E)I~(E)= V(p, k)T(k,p', E}f dp"
o E+ (p" )

to the right-hand side of the Lippmann-Schwinger equation (1), which leads to
n —1

T(p p', E)=V(p p')+V(p, k)IA(E)T(k p', E)+f dp", [V(p p")T(p",p') 8(A p"—)V(p, k—)T(k p', E] .
0 2

T(p,p', E)=r (p,p', E)

+~ (p, k, E)I (E)T(k,p', E) . (6)

From the right-hand side we can eliminate T(k,p', E) by
applying the same equation for the special choice p =k.
The result of the manipulations is

This equation for the T matrix is identical to that
satisfied by

r (p,p', E)+r (p, k, E)IA(E)T(k,p', E),
which can be obtained by using Eq. (4) once with p' re-
placed by k and once with p' itself. We thus find the rela-
tion

r"(p, k, E)r"(k,p', E)
v (k, k, E)

r (p, k, E}r (k,p', E)
[~'(k, k, E)]'

1

[ I /r (k, k, E)] I„(E)—
Note that the T matrix is complex only via the function
I~(E).

To see that the right-hand side of Eq. (7) is indeed in-

dependent of the cutoff parameter A, we rewrite the
defining equation for r"(p,p', E) as

r"(p,p', E)= V(p,p')+ V(p, k)r (k,p', E)[I„(E)—I„(E)]
~~)n —i

dp" V p,p" p",p', E —e A' —p" V p, k k,p', E
0 2

and, similarly to the derivation of Eq. (6), we obtain a re-
lation between the ~ matrices with different cutoffs

~ (p,p', E)=r" (p,p', E)+r (p, k, E)r"(k,p', E)

x [IA (E) IA(E)] . (9)—
This result implies the A independence of the expressions

r (p,p', E) H(p, k, E)r (k,p', —E)/H(k, k, E),
r (p, k, E)/r"(k, k, E),
[1/r"(k, k, E)] IA(E) . —

Hence we have also proven the A independence of Eq.
(7).
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T(k, k, E)= 1

[ I /r ( k, k, E)]—I„(E)
(10)

In connection with effective-range theory it is of in-
terest to note that we expect r&(p,p', E) to be well

behaved as a function of its arguments and to possess an
expansion in p,p', and E close to p =p'=E=0, with only
even (odd) powers of p and p', if I is even (odd). We are
led to this because the integral equation for the ~ matrix
is nonsingular and the interaction V&(p, p ) has a similar
Taylor expansion around p =p' =0. For a rigorous proof
of this conjecture in the most important case of two di-
mensions we refer to the Appendix, but in addition our
numerical results presented in Sec. III confirm the expec-
tations mentioned. Together with Eq. (7) this property
indicates that the singular energy dependence of the T
matrix in even dimensions is given by the function I„(E),
which can be calculated analytically. In two dimensions
this leads to a logarithmic behavior of various kinds of
scattering quantities, such as the phase shift and the wave
function itself.

Finally, we note that the connection (7) between the T
and v matrices reduces to the single expression

for the on-shell T matrix. Comparing with the more fa-
miliar expression for T(k, k, E) in terms of the phase shift
for n-dimensional scattering, i.e.,

T(k, k, E)=
mikn-~

1

If —2

cot5(k)
2

following from the relation

S(k, k, E)=1 ni—k" T(k, k, E)

III. LOW-ENERGY SCATTERING:
ON-SHELL T MATRIX

We now apply the formalism discussed in Sec. II to
low-energy scattering. To this end we calculate the func-
tion I„(E)to be

between the S and T matrix elements, we are able to re-
late cot5(k) to the smoothly behaving r matrix and the
simple function I„(E). In Sec. III we will study this rela-

tion for two-dimensional scattering to derive the
effective-range formula of Ref. 4.

I„(E)=— At? —2 An —4
—k + '''+ '''—

n —2 n —4 k"-' A' —k'
2

ln
k2

n =even

l2 —2 A —kln, n =odd
2 A+k

(12)

where the last term included before the curly bracket is —k" A (n =odd) or —k" A (n =even). For odd dimen-
sions this yields an analytical behavior near k =0, with

A —E k 2 k
ln ——2——— +A+k A 3 A3

while for even dimensions a logarithmic dependence results,

ln
A' —k'

k

k k2 1 k4——21n — —— +
A A2 2 A4

Restricting ourselves to the lowest partial wave, we also expand 1/r (k, k, E) in k,

I/r (k, k, E)=ao(A)+a2(A)k +a4(A)k +
Equation (10) then leads to

tl —2

1/T(k, k, E)=
2

c„~k" '+, n =odd
k" ln( k)+c k"+ n =eve (13)

where the last term before the curly bracket is c„3k"
(n =odd) or c„~k" (n =even). This agrees completely
with the k dependence of cot5(k) found in Refs. 4 and 6.
For n =2, in particular, Eq. (13) may be cast into the
form

1/T(k, k, E)= —y —In(ka /2) —,'r,k—(14)

with a the scattering length, r, the effective range, and
@=0.577215665. . . Euler's constant. The values of a

and r, can be calculated from the on-shell ~ matrix via
the equations

ln(ka /2) = —y —ao(A)+ln(k /A),

r, = —4a~(A)+2/A
(15)

The numerical results to be presented here and in the
following for n =2 are all associated with hydrogen b
atoms (having both electron and proton spins down with
respect to an external magnetic field) adsorbed on a
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ment with the values found by integrating the
Schrodinger equation and examining the phase shifts
6(k). We conclude that the r method leads to a low-

energy dependence of the on-shell T matrix that is in ac-
cordance with effective-range theory and can also be used
to find accurate results for the expansion parameters.

Also for all other dimensions Eq. (13) may be rewritten
in the standard form of the low-energy expansion intro-
duced in Ref. 4. It is of interest to recall that the expan-
sion parameters occurring in this elegant standard form
all have the dimension of length; each of them is defined
as the radius of an equivalent hard sphere giving rise to
this same specific term in the expansion. Adhikari et al.
point out in a recent publication' that such a definition
has the disadvantage in the special case of dimension
n =2 that a varies between 0 and + ~ when the potential
is changed. This contrasts with n =3 where a is known
to vary between —~ and + ~, its sign reflecting the
repulsiveness or at tractiveness of the potential. The
latter connection thus being lost for n =2, Adhikari
et al. introduce an alternative scattering length parame-
ter a~oL related to a by a~oL ———in(a/R, ), where R, is
the "range" of the potential. Apart from the vagueness
implied by the arbitrariness in the choice of R„especially
for interactions decaying slowly with r, it is of interest to
note that the positive definiteness of a for n =2 is not as
difficult to understand from the physical point of view as
Ref. 10 suggests; n =2 is the only integer dimension for
which the lowest partial wave l =0 has a negative centri-
fugal "barrier" extending over a long range.

Also the sign of the phase shift is an aspect in which
n =2 differs. For any weak potential, whether predom-
inantly attractive or repulsive, 5 is always negative. Fur-
ther smooth changes of the potential to arbitrary strength
cause 5 to change continuously, taking negative values
only.

Another point of view illustrating the fundamental
difference between two- and three-dimensional concepts
of scattering length is the following. In varying the depth
of a potential well V (r) for n =2 a bound level enters the
well precisely at the same potential depth where the
phase shift vanishes. In three dimensions this happens at
different well depths. This difference is naturally
reflected in the different behavior of the corresponding
quantity a; the two a values 0 and —~ for n =3 merge
into a single value 0 when the dimension changes to 2.
The quantity aA&L, however, goes through zero for a well

depth without a clear-cut physical significance.

superfluid helium surface, in which case the 2 —,
'-

dimensional model is commonly used to find the interac-
tion potential of the H atoms. This potential is shown in
Fig. 1 and is calculated by assuming a Mantz-Edwards
interaction potential between the hydrogen atoms and the
helium film. We find a =2.4ao and r, =13ao, in agree-
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IV. LOW-ENERGY SCATTERING:
HALF-SHELL T MATRIX- -10

After the treatment of the on-the-energy-shell quanti-
ties, we turn to the half-shell T matrix. As is well known
the half-shell T matrix determines completely the two-
body scattering wave function +I@+ '(r). The latter in turn
determines, for instance, the probability for relaxation in-
duced by magnetic dipole interactions in adsorbed Hl,
via its role as an initial or final state in a distorted-wave
Born integral. With that application in mind we special-
ize in this section to n =2. In the restricted portion of

-15
0

-15
15

FIG. 1. (a) Potential (2~-dimensional model) among two hy-

drogen atoms in the
~

b l state and adsorbed on the superfluid
helium surface. (b) Modified version with expanded vertical
scale showing the shallow potential well due to the van der
%'aals interaction.

NONSINGULAR INTEGRAL EQUATION FOR TWO-BODY. . .
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space contributing effectively to the Born integral and for
the relevant low collision energies q))z+'(r) is to a very

good approximation rotationally symmetric and given by

qIz+ '(r) = f dp pJo(pr)
&2m.

x + T(pkE)5(p —k) 1

p E+ ~2

Our purpose in this section is to describe the E depen-
dence of %@+'(r) by means of one overall factor, which
offers a definite advantage in predicting the temperature
dependence of the rate of decay of H l due to surface di-
polar relaxation.

To that end we start from Eq. (16), subtract and add
IA(E)Jo(kr) T(k, k, E) and express the halfshell T tnatrix
in ~-matrix elements by means of

(16)

in terms of the half-shell T matrix for the lowest partial
wave. The result is

r (p, k, E} 1

r"(k, k, E) [I/r (k, k, E)] IA(E—)
(17)

Jo(kr)

&27r [I/r (k, k, E)] IA(E) —r (k, k, E) o E —p r (k, k, E)
(18)

q)(+ )(r)
[I/r"(k, k, E)] I„(E) &—27r

(19}

in which the energy-independent function P(r) is given by

Jo(pr ) 6(A —p )—dp r (p, o, o)

p r'(0, 0,0)
(20)

In Fig. 2 the function P(r) in the case of two colliding b

atoms is presented. Equation (19) is in agreement with a
result obtained earlier, i.e., for small E the energy depen-

We then take the limit E,k ~0 in the expression between
square brackets, which is possible because it is a smooth
function of these variables. (See Sec. II.) Hence in the
domain E «1/ro (for radii r & r~ V(r) is significantly
different from zero) and r « I l&E the wave function is
well described by

C, (T)= 1

[ I /r (k, k, E)] I A(E)—
1

7r /4+[in(ka/2)+} +O(k )]
(21)

dence is given by a simple factor

[7ri l2 ln(ka —l2) —y+O(k )]

The explicit expression (20) for P(r) is an extension with
respect to the ln(r/a) dependence outside the range of
the interaction (r & ro), which was found in Ref. 9.

As mentioned before, the E dependence (19) of the
two-body wave function may be used to calculate the
temperature dependence of magnetic dipole relaxation
rates in adsorbed Hl. Suppose that the energy released
in the reaction is large. In that case the E dependence of
the final state may be neglected at the low temperature
considered. Then the temperature behavior of these
two-body decay rates is governed by the factor

0
3

0
0

io
3

0
10

in which the thermal average is over the relative energy E
of the colliding particles. If, on the contrary, the amount
of energy released is small, such as for the process
bb ~ah, the I =0~1 =0 contribution (usually denoted
by m =0~m =0) to the rate dominates and the final-
state wave function also has a significant logarithmic en-

ergy dependence. Therefore the thermal average in Eq.
(21) should be replaced by one over the product of two
factors, both for the initial and final channels, to obtain
more accurate results. Again this agrees with the con-
clusions of Verhaar et al.

Another application is the recombination of three

~

b )-state hydrogen atoms adsorbed on the helium sur-
face. In analogy to two-body scattering we can show that
the exact symmetrical initial state +++'(r, R) takes the
form

r (a )

FIG. 2. The energy-independent part g(r) of the scattering
wave function of two b atoms at low energies [Eqs. (19) and
(20)].

(22)

where [p;,q; ] are the Jacobi momenta of the incoming

eg+ '(r], R] ——
X(r,R;, )i~pi Qi

I [I/7(p, ,p, ,p, )] IA(p, ). —
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XFz (r~)F (r2)F (r3), (23)

where the summation is over all possible permutations of
the three particles. Note that the variables r; and p, in
Eq. (23), contrary to x; and k;, are numbered according
to the spectator-index notation. The Jastrow factors
F (r) tend to 1 for large separations and depend on the
asymptotic relative momenta among the particles. They
are of such a form that the r, part of %@+

', i.e.,

e ' 'F& (r; ) =—Gz (r;)

is identical to a two-body scattering state. Applying this
same idea in two dimensions we have [cf. Eq. (19)]

Gp(r) = 1 f(r)
[1«'(p p p')] IA(p') +2~— (24)

Thus the wave function (23) becomes a product of three
6 functions multiplied by an exponential. In the low-
temperature limit the latter can be replaced by 1, the
dominant energy dependence being contained in the
product

&
[1/r"(p;,p;,p, )] Iw(p, )—.

The behavior at low temperatures of, for instance, a
three-body recombination decay rate is therefore given by
a Boltzmann average of this quantity, which can be eval-
uated readily without detailed knowledge of the wave
function %E+ (r, , R, ).

V. SEPARABLE APPROXIMATION
TO THE T MATRIX

In this section we will only consider three dimensions,
although the discussions can immediately be generalized

particles obeying the on-shell condition E =p; +3q, /4
and [ r, , R, l stands for one of the three particular choices
of Jacobi coordinates. Unfortunately the precise behav-
ior of X(r, R;p;, q; ) as a function of p, and q; is difficult to
analyze, because the kernel of the Faddeev equations con-
tains singularities due to the free propagator

1/(E+ —p —3q /4)

that are not damped out by phase-space factors in the
limit E~O, in contrast with the three-dimensional situa-
tion. Furthermore, the T matrix with its logarithmic en-

ergy dependence is also involved in the kernel and may
induce a strong p; and q; dependence. In view of these
difficulties, it does not seem possible at present to make
general statements concerning the properties of 7 for
small p, and q, on the basis of the Faddeev formalism.

However, such statements are possible in the context of
a simple Jastrow-type ansatz for 4~++'(r&, R, ), which has
proved to be excellent for E =0 in three dimensions. "
Including also the center-of-mass wave function
exp(iK R) and denoting the position and momentum of
particle j by x and k, respectively, it reads

eiK Rqg(+)(r R ) y Pe'
cp

to arbitrary dimension. In the context of three-body cal-
culations it is favorable to dispose of separable expres-
sions for the two-body T matrix. As is well known the
Faddeev equations then reduce to a two-body problem.
Our aim is to find such a separable approximation by
neglecting the r (p,p', E) term in the right-hand side of
Eq. (7) that contains A as a free parameter. Minimizing
this term, in a certain sense, as a function of A, one might
hope that the separable part

sw, r (p, k, E)r (k,p', E)
r (k, k, E)

X
1 —1 (25)

1 —I~(E)r (k, k, E)

of the right-hand side constitutes an accurate approxima-
tion to the T matrix. Neglecting the —1 term one would
be led to the separable expression obtained by using the
Noyes-Kowalski method. ' As is well known this term
has unphysical poles whenever the on-shell T-matrix ele-
ment T(k, k, E), or equivalently r (k, k, E), is equal to
zero. In our case they are canceled by including the —1

term. Actually, it was already shown by Osborn' that
such a pole could be avoided by adding an additional se-
parable term to the approximation. Because his method
involves the eigenfunctions of the Noyes-Kowalski ker-
nel, it is rather laborious in contrast with our method,
where only the r" matrix is needed. A second advantage
of our approach is connected with the possibility of ap-
plying it to negative energies, which are unavoidable in
three-body calculations; Eq. (25) can be used for both
signs of E if we define for example k =

l

E
l
. Actually,

if E &0 any k can be used, because in this case the in-
tegrant of Eq. (4) contains no singularities. We thus do
not need to solve integral equations as in the Noyes-
Kowalski method, where the V matrix for complex mo-
menta is required with all associated complications in the
case of long-range potentials (like the van der Waals in-
teraction decaying as 1/r )

It is also possible to find a connection with the 8'ma-
trix of Bartnik et al. ' The W matrix too has the impor-
tant disadvantage that it does not contain a free parame-
ter, making it impossible to optimize the separable ap-
proximation. One is therefore completely dependent on
the specific features of the potential which should make
the remaining nonseparable part sufficiently small.

One way to optimize our separable approximation
would be by minimizing the norm squared of the neglect-
ed v. term,

(26)

using some measure p(p) to evaluate the integrals in-
volved. For example, the measure p(p)=p "In results in
the usual Hilbert-Schmidt norm, since the ~ matrix is real
and symmetric in the momentum variables. Actually, the
choice of p(p) is a second degree of freedom in addition
to the value of A, to optimize the separable approxima-
tion; it can be used to emphasize specific regions of the
(p,p') plane where the approximation should be accurate.
To find an algorithm for actual calculations that accom-
plishes the minimalization, we recall that the matrices
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r", i.e., the difference between T and T . Apparently,
the latter is relatively small in the part of the (p,p') plane
where the T matrix is large. Furthermore, we note that
in this way the unphysical poles in the r" matrix, which
are introduced because A is finite, are always avoided be-
cause the norm (~r"(E)

~(
would else be infinite.

Finally, we would like to point to the huge amount of
freedom available to improve in particular on the last
comparison by extending the ~ method in a similar way
as proposed by Adhikari the function 8(A —p') in Eq.
(4) defining r can in principle be replaced by any func-
tion with the value 1 for p =k without invalidating the
method. Note, however, that the approaches still differ.
Our proposal leads to an explicit energy dependence of
all scattering observables, without resorting to Jost func-
tions which have to be evaluated numerically. It would
be interesting to find out to what extent further improve-
ments of the separable approximation may be achieved in
this way.

VI. CONCLUSIONS

Summarizing, we recall that the nonsingular equation
for the ~ matrix is numerically easy to handle and has a
solution that is well behaved close to the energy E =0.
Due to this feature the ~ matrix can be used to formulate
an effective-range theory in arbitrary dimension and to
find the (small-E) energy dependence of all kinds of im-
portant scattering quantities, such as the wave function
and the phase shift.

I

In the context of three-body calculations, the method
introduced may be useful for analyzing the singularities
involved in the kernel of the Faddeev equation for three

asymptotically free particles and to find a satisfactory se-
parable approximation to the T matrix that avoids un-

physical poles and is applicable to negative energies.
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APPENDIX

In this appendix we study the behavior of the r" ma-
trix as a function of the momentum and energy variables
in the special situation of n =2 and I =0, which is the
most important case with respect to applications in the
context of low-energy scattering. Moreover, we will
prove that r"(p,p', E) and also its on- and half-shell coun-
terparts are well-behaved functions of energy, with an
asymptotic expansion for E $0.

Studying the E dependence by means of Eq. (4) is not
very convenient, because it is not an integral equation of
the Fredholm type. To avoid this problem we introduce
a new matrix p"(p,p', E), which is defined by

p (P,P', E)= V(P,p')+ dP" V(P,P")—8(A —p") '
k k

'
p (P",P', E)

p" „„V(p,k) V(k,p")
E —(p") t

and in terms of which r"(p,p', E) can be expressed as

(Al)

T"(p,p', E)=p (p,p', E)

tl

p"(p, k, E)f dp" [V(k, k)p"(k, p', E) V(k, p")p"(p—",p', E)]
p E ptt 2

It

V(k, k)+ f dp" [ V(k, k) "(k,k, E) V(k,p")p"—(p "k,E)]
p E ti 2

(A2)

Due to the last relation, which involves only proper in-
tegrals with regular integrand, r" is found to be a well-
behaved function of energy with an asymptotic expansion
for ELO, if the same is true for the dependence of the p
matrix on all its arguments. We start by considering the
explicit energy dependence and return to the problem as-
sociated with the momentum variables later on.

We consider Eq. (Al) as a problein in the Hilbert space
L2(R+ ) of the p variable and rewrite it in an abstract no-
tation,

~

p"(p', E)) =
~

V(p'))+KA(E)
~ p (p', E)), (A3)

where we explicitly show the special role of p' as a dum-
my variable, which plays no role in the integral equation
itself. Note that the phase-space factor p" in Eq. (Al) is
included in K„(E).

Our proof is now based on the following theorem. If (i)
KA(E) is bounded for 0 & E & E; (ii) [ I K„(E)] ' exists—

m

~

p"(p', E)) = g E'
~ p; (p'))+

~

o (p', E)),
i=o

lim
// /

o (p', E) ) /[/E =0 .
Elo

(A5)

Here ~~O~( is the usual notation for the norm of the opera-

I

for 0(E &e, which means that 1 should not be in the
spectrum of K„(E);and (iii) K„(E)has an asymptotic ex-

pansion,
m

K~(E)= g K, E'+RA(E),
i=0

(A4)
lim //R„(E)///E =0,
ElO

with bounded operators K, , then Eq. (A3) has a solution
in L2(R+) equal to [I K„(E)] '

~

V(p')—) having an
asymptotic expansion given by
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+(1—Ko )
' g K,"E'+R„(E)

X [1 K/,—(E)] (A6)

and substituting it into

I p (p', E)) =[1—K„(E)] '
I

V(p'))

to find the equation

I p (p', E) ) =(1—K& )
'

I
V(p') )

+(1—K() )
' g K, E'+R„(E)

i=0

X
I

p"(p', E)) .

Iterating m times leads to an asymptotic expansion of the
form given by Eq. (A5), because all vectors and operators
involved are bounded due to the assumptions of the
theorem.

Furthermore, if KA(E) is bounded, if
I

V(p') ) has an

asymptotic expansion that is schematically denoted by

tor O. The theorem is easily proved by using the resol-
vent identity

[1—KA(E)] '=(1—K() )

and therefore also

I
V(p p')

I
&

C
(A9)(I+

I p —p'
I

}'"+"
which is sufficient to show that

I
V(p')) is indeed for all

p' an element of the Hilbert space L2(E+). To show that
the kernel is bounded we look at the Hilbert-Schmidt
norm IIKA(E)IIHs. As in the treatment of Osborn' we
write the norm squared as the sum of terms L„(E)and
MA(E),

LA(E}=f dp f
MA(E)= f dp f dp'

I KA(p, p', E)
I

Furthermore, because of our interest in low-energy
scattering we assume for simplicity 0(E & e & 1.

Using Eq. (A9) we find that L„(E)& ~, but to analyze

M/, (E) we need the smoothness condition

I v(p+~p p'} v(p p')—
I

&
(I+

I p —p'
I

)'"'"
(A10)

because of the pole involved in the integration over p'.
This condition is easily derived by applying the mean
value theorem and using

1«p')) —y (p'}"
I
v„)+«(p'}"},

p'l0;
8 V(p,p') C'

(1+
I p —p'

I

)'"'" (A 1 1)

and if all the vectors
I V2; ) are elements of L2(R+ ), then

we find by substituting this expansion into the formal
solution of Eq. (A3) that

I p (p', E)) has a similar
asymptotic expansion in p for p'LO.

To complete the discussion about the energy and
momentum dependence of p"(p,p', E), we will now show
that for a realistic potential V(r) the requirements of the
above theorems are fulfilled. The transformation to
momentum space of the potential (n =2 and l =0) is
given by

for V(r) obeying the requireinents of the Riemann-
Lebesgue theorem. On the basis of Eq. (A10) we can now
show that M„(E) is finite and therefore that the operator
K„(E)is bounded.

Finally, we need to consider the operators

d'K„(E)
dE' E=0

and the vectors

V(Q)= f dr rV(r)J&(Qr),
0 (A7)

1 d'
I

V(p') )
p'=0

Q }i/2+@
V( ) (A8)

V(p,p') = f dP V[(p +p —2pp'cosP)'/2] .

The lemma of Riemann-Lebesgue' states that
V(Q}-o(1/i/Q ) as Q~~, if V(r) is continuous and
the integral

f dry'r V(r)

is absolutely convergent. In particular, the potential of
the 2—,'-dimensional model (Fig. 1}behaving as —In(r) for
small r and r for large r, obeys these conditions. Be-
cause V(Q) exists for every Q )0 we can formulate the
following upper bound with a proper positive value for p:

a'V(p, p')
Bp p'=0

C;

(1+p )i+1/2+y, (A12)

with C, =0 for odd i. This leads to the conclusion that
K; (p,p') decreases for large p and p' at least as fast as

Kr, (p,p'). Because of this and the fact that K; (p,p')
contains no poles its Hilbert-Schmidt norm exists, so that
the operator K, is bounded. In addition, Eq. (A12} is
sufficient to prove that also the norm of

I V, ) is finite.

The problem for K~ =K„(0)and
I V~ ) =

I
V(0) ) has al-

ready been solved, but in the case of i &0 the partial
derivatives O'V(p, p')/Bp 'I o come into play. They
have the upper bound
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Summarizing, we have shown that p (p,p', E) and
therefore r"(p,p', E) is a well-behaved function of energy
and momentum, with an asymptotic expansion for E LO.

This has also been shown to be true for the on- and half-

shell z-matrix elements. Our conclusion, formulated in
Sec. II, that the singular energy dependence of the T ma-
trix is concentrated in the function IA(E) is therefore
justified.
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