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The stimulated Compton scattering of photons between two oppositely propagating coherent
lights by a relativistic electron moving along the same line is studied analytically. The system is de-

scribed in a moving frame so that the electron becomes nonrelativistic and the frequencies of the
two lights coincide. Except for the replacement of the static wiggler by a propagating light, our sys-

tem is essentially the same as a free-electron laser working in the Compton regime and described in

the usual Bambini-Renieri frame. The g representation of two-mode coherent states is adopted to
describe the radiation fields, and the electron states are expressed in terms of plane waves. A per-
turbative solution, with the quantum recoil of the electron as the perturbation parameter, of the
time evolution of the system is carried out far beyond the first order. It demonstrates that two non-

classical effects, i.e., squeezing and photon antibunching, occur as results of the scattering. It also
confirms once more the fact that quantum recoils play the exclusive role in generating such nonclas-
sical photon states. A very important improvement in the present treatment is that the electron
part of the density matrix is traced out before the calculation of the squeezing effect. As a result, it
is found that there is no squeezing if the initial state is a vacuum. This is, perhaps, a significant new

discovery. Many-electron effects are ignored in the present study.

I. INTRODUCTION

As the experimental techniques become ever more so-
phisticated, it is now possible to investigate very-fine-
scale phenomena in the nonlinear interaction of light
with matter in the laboratories. Two very exciting exam-
ples are photon antibunching and squeezed states, relat-
ed, respectively, to the particle and wave aspects of light.
They are intrinsically quantum-mechanical phenomena;
and radiation fields with such unusual characteristics are
called nonclassical photon states. In a sense, the well-
known coherent states can be considered as the border-
line between classical and nonclassical states. Therefore
the coherent states can serve as the natural reference in
our discussion of nonclassical photon states.

It is well known that the photon statistics of a coherent
light has the Poisson distribution, which implies that the
detection of a photon does not change the probability for
the detection of the next photon, one way or the other.
For a chaotic classical light, this probability is always
enhanced; hence it is described as photon bunching.
That the same probability can be reduced in the reso-
nance fluorescence from a single two-level atom driven by
a laser light was first predicted theoretically by Kimble
and Mandel' and by Carmichael and %alls in 1976; it
was observed experimentally by Kimble et al. in 1977.
Since the latter is the opposite of the former, it is logical-
ly called photon antibunching. It should be pointed out
that the photon statistics of a light with photon bunching
must have a probability distribution broader than the
Poisson distribution, while that corresponding to photon
antibuncing must be narrower than the Poisson distribu-
tion. Therefore the alternative terms for photon bunch-
ing and antibunching are super-Poissonian and sub-
Poissonian, respectively. Since, in the Poisson distribu-

which means that the variance of the photon numbers is
less than the mean of the photon numbers.

It is also well known that coherent states as well as
vacuum states are minimum-uncertainty states; that is,
the uncertainties in the two quadrature components of a
radiation field in one of these states are equal and their
product assumes the minimum value allowed by the
Heisenberg principle. It has been speculated since 1971
(Refs. 5 and 6) that the uncertainty in one component can
be reduced below the symmetrical lower limit of a vacu-
um state, at the expense of increased uncertainty of the
other component, without violating the Heisenberg prin-
ciple, Such highly unusual states of radiation are called
squeezed states and have been generated in laboratories
very recently. ' An excellent review on this subject was
published very recently by Loudon and Knight.

To give squeezed states more precise definition, let us
express the cavity electric field operator in terms of quad-
rature operators as follows:

E(z, t ) = —,
' 6'(z)[a exp( i cot )+a exp(i cot—)]

= 6'(z)[X cos(cot )+ Y sin(cot )], (1.2)

where a and a are, respectively, the annihilation and
creation operators of photons in the radiation field, and

X—:(a+a )/2, Y=(a a)l2i— (1.3)

are the two quadrature operators satisfying the commuta-
tion relation

tion, the variance equals the mean value exactly, the ex-
istence of photon antibunching can be determined by the
criterion

(n') —(n )'«n ),
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[X,Y]=i/2, (1.4) II. BASIC FORMULATION

with their variances satisfying the uncertainty relation

Then the criterion for the existence of squeezing is either

((AX)'& &-,' or ((AY)'& & —,
' . (1.6)

The fact that photon antibunching and squeezing are
intrinsically quantum-mechanical phenomena can best be
seen in terms of the Gluaber-Sudarshan P representation
of coherent states' '" corresponding to the normal order-
ing of operators. Arranged in the normal ordering of
operators, Eqs. (1.1) and (1.6) become

(:(hn )'. & &0,

(:(bX):& &0 or (:(b Y):& &0 .

(1.7)

(1.8)

The inequalities (1.7) and (1.8) can be true only if the
"probability distribution" in the P representation as-
sumes negative values somewhere; this would make no
sense at all in the classical world. Unfortunately, the
probability distributions in the P representation are usu-
ally very much singular. On the other hand, the proba-
bility distributions in the Q representation, corresponding
to the antinormal ordering of operators, are positive
definite and, hence, easier to handle; so we will use the Q
representation exclusively in this article.

Many nonlinear radiation-matter interactions have
been studied as possible ways of generating nonclassical
photon states, as reviewed by Refs. 4 and 9. In this pa-
per, we will show analytically that nonclassical photon
states can be generated by the stimulated Compton
scattering of two oppositely propagating coherent lights
by a relativistic electron moving along the same line. A
similar problem was studied by Perinova et al. ' They
treated the electron as a two-level system and their solu-
tions have been obtained in the short-time approxima-
tion. We treat the electron as a multilevel system with
energy varying nonlinearly and our solution is valid for
much longer time, especially when the quantum recoil of
the electron is small.

Very closely related to our problem are the recent in-
tensive studies of the nonclassical effects in free-electron
lasers (FEL's) working in the Compton regime. ' ' In
the usual quantum theory of the FEL, ' one of the
"lights" is actually the static periodic magnetic field of
the undulator which becomes a quasi-plane-wave radia-
tion only after a relativistic Lorentz transformation
(Weizsacker-William approximation). If we trace out the
counterpropagating light, our solution will reduce to that
of the FEL. However, there is a very important point
that should be mentioned. In Refs. 13—16, the quantum
state of the electron is locked with that of the laser pho-
tons and the squeezing effect was calculated from the
combined electron-photon states. This practice makes
the true meaning of squeezing very doubtful. In our
present treatment, we trace out the electron part of the
quantum states; and the meaning of squeezing becomes
clear and unquestionable.

We consider a one-dimensional problem of two
coherent lights propagating along the z axis in opposite
directions. Photons are scattered back and forth between
the two lights by a relativistic electron moving in the pos-
itive z direction. We will describe this system in a mov-
ing frame so that the electron becomes nonrelativistic
and the frequencies of the two lights coincide. This is the
so-called Bambini-Renieri frame in the terminology of
the FEL. The Hamiltonian of the system in this frame
can be written as

H = +AQ7(tifttf +ttbttb )
p

2me

+ /A(g tg e 2ikz+
—

g tg e 2ikz)f b b f (2.1)

m=0
( it 0 //m()y(UO //n()~m&bn&f

n=0

(2.2)

where
~

m &b (
~

n &f ) is the photon number state of the
backward- (forward-) propagating radiation and Ko is the
normalization constant. The quantum state evolved from
the initial state

~
i}/0& can always be written as

~

P(t) & =Koexp( ipot /2m, fi—+ipoz/fi)

( t )e
—2ilkz —i ( m + n )un

I m =On =0

X ~m&b ~n&f . (2.3)

Substituting Eq. (2.3) into the Schrodinger equation

iA
~

ll/(t)&=H
~

g(t)&
a
at

(2.4)

with the Hamiltonian given by Eq. (2.1), we obtain the
following partial-difference-differential equation:

+Av m( +n1)Ct+), „+)(t)

+Av'(m+1)n C, , +, „,(t), (2.5)

where p is the operator for the electron momentum, m, is
the electron mass, af (ab ) is the creation operator for the
forward (backward) propagating field, A is the coupling
constant, and A'k =%co/c is the momentum of a photon.
This Hamiltonian implies the conservation of photon
number and linear momentum.

We assume that the initial quantum state of the com-
plete system can be written as the product of a plane
wave of momentum po for the electron and coherent
states identified by complex numbers uo and vo for the
backward- and forward-propagating light, respectively;
i.e.,

ipoz/k — uo I
/2 —

I uo I
/2,&—=K,e ' e



1232 CHING TSUNG LEE 38

and

l
c, „(t) l'=1,

l m=On=0

where C& „(t) is the joined probability amplitude that
the electron has had 1 net recoils (a recoil corresponding
to the process described by the term afabe ' ' in the

—2ikz

Hamiltonian is considered as + 1, while that correspond-
ing to abafe '"' is considered as —1), and the backward-
and the forward-propagating lights have I and n pho-
tons, respectively, at time t, with the normalization con-
dition

(2.8)

as implied by Eq. (2.2). Equation (2.5) is the type of
Raman-Nath equation' characterized by a term propor-
tional to I which is the stumbling block in the attempt to
find exact solutions to this type of equation. Fortunately,
a good approximate solution to Eq. (2.5) can be obtained
quite easily by using the Q representation of two-mode
coherent states.

A=kpo/m„E:—26k /m, (2.7)

are two constants related to the initial momentum and to
the quantum recoil, respectively, of the electron.

Our task is to find the solution to Eq. (2.5) with the ini-
tial condition

III. PROBABILITY AMPLITUDE
IN Q REPRESENTATION

Suppose the solution of Eq. (2.5) is available; then we
can construct the density matrix for the system as fol-
lows:

p(t)=gg g g g g c,', , „.(t)ci .(t}11&1 m&b ln&f&n'If&m'lb &1'

I l' m =0 n =0 m'=0 n'=0
(3.1)

&1'
l

1 & =Ko f exp[2i(1' —1)kz]dz =St t . (3.2)

On the other hand, a two-mode coherent state is defined
as

where
l

1 & denotes the quantum state of the electron with
i(po fA —2lk)z

wave function I(:Oe ' satisfying the orthogonal
condition

d d vK z zu u'v v't =1 36

Using Eq. (2.5) we can obtain a partial differential
equation for A (z, u, u, t ) as follows:

i —i— +A, e v +e u
. a . s a „„a „„a
a~ u az Bv

l
u, v &=—exp

fu l'
2 2

1—E A (z, u, v, 7)=0, (3.7)
4k2 gz2

x g g (u v "/&m!n!)
l

m &b l

n &f,
m =On =0

(3.3)

5:—b /0, A,
—=A/II, e =E/II, 7=Q—t, (3.8)

where we have introduced the following dimensionless
parameters:

where u and v are two complex variables. Following
Kano' the probability density function in the Q repre-
sentation can be written as

Q(z, u, u', v, v*, t)—:& u, v
l
p(t)

l
u, v &

—:exp( —lu l~ —lv l')

X A*(z, u*, v*, t)A(z, u, v, t),
(3.4)

where

A(z, u, v, t)=g g g C,* „(t)e
I m =On=0

with A=(b +A )'i, which implies that 5 +A, =1. The
initial condition for Eq. (3.7) can be obtained by using Eq.
(2.8) as

A(z, u, v, 0)=exp( —
l

uo l
/2 —

l
vo

l /2+uou+vov) .

(3.9}

IV. PERTURBATIVE SOLUTION

Our task is now to find the solution to Eq. (3.7).
Without the second-derivative term, the solution can be
easily obtained; with it, exact analytical solution is ap-
parently impossible. Therefore, let us consider a pertur-
bative solution, with e as the parameter, of the form

& u v'/&m!n t (3.5) A(z)u, v, 7)= Ao(z, u, , U) 7E+lA(z, u, v, 7)

is in a sense the probability amplitude in the Q represen-
tation. It is much easier to calculate in our problem than
the probability distribution itself. The normalization
condition for the distribution function is

+e A2(z, u, v, 7)+

satisfying the initial condition

At(z, u, U, O}=61OA (z, u, U, O) .

(4.1)

(4.2)
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Substitution of Eq. (4.1) into Eq. (3.7) yields

BpAp(z&u&v&r)=0,

Bp Al+)(Z, u, V, 7 )+8) Al(Z, ll, V, r) =0,
where

(4.3)

d
i f4 2—5f4+Af2 =0,

d T

with the initial conditions implied by Eq. (3.9) and
(4.4)

f, (0)=0, f,(0)=u,', f,(0)=v,', f,(0}=0.

(4.9d)

(4.10)

Bp=l —l +A, e ''v +e ''u~ a . s a „„, a
a~ k a2& Bu Bv

1

4k2 (}Z2

(4.5)

(4.6)

The solution to Eq. (4.3) can be expressed in the form

f ) (r) =iv() A(sinr)e' ',
f2(r) = up (COS7 +i 5 sinr)e

f3(r)=v p (cosr i—5 sinr)e' ',
f4(r) =iu p A(sinr)e

(4.11a)

(4.1 lb}

(4.11c)

(4.11d)

The solution to Eqs. (4.9) can be easily obtained to be

with

I up
I

'
Ap(z, u, v, r)=exp

+F2(Z, 7 )V

I Vp I

'
+F)(z, r)u

(4.7)

Let us assume that
I up I

+ I vp I
=N » 1, where N is

the expectation value of the total number of photons in
the system. We then also have

I
u

I
+

I

v
I

=N because
the probability that this condition is not satisfied is negli-
gible. Then, as long as I ((N, the higher-order terms can
be approximated by an expression of the form

F) (z, r):f ) ( r )e "—"'+f2 ( r ),
F2(z&r)=f3(r)+f.(7 )e

(4.8a)

(4.8b)

Al(z, u, v, r) = Ap(z, u, v, r)[G(z, u, v, r)]'/1!,

where

(4.12)

G(z, u, v, r):G, (z, r—)u '+ G2(z, r)uv + G3(z& 7 )v
Substitution of Eq. (4.7) into Eq. (4.3) leads to the simul-
taneous equations for the f's as follows:

with
(4.13)

d
i f, +25f, +kf3=0,

d 7

i f2+Af4 ——0,
d 7.

~ d
i f3+if, =0,

d 7.

(4.9a)

(4.9b)

(4.9c)

G, (z, r ) =g, ( r )e ""'+g, ( r )e ""'+g, ( r ),
G, (z, r) =g, ( r)e""'+g, (r) +g, (r)e

(4.14a)

(4.14b)

G3(z, r)=g7(r)+gs(r)e '"'+gs(r)e '"' . (4.14c)

As will be verified later, using Eq. (4.12) we have

a'
[4k 2g2s)n2r( e

—l(5r+ 2&)u e
v el (5r+ 2&)v e u )2][1 +0 ( I /N ) ] .1 I (4.15)

Substituting Eq. (4.12) into Eq. (4.4) and using Eq. (4.15)
under the condition that I ((N, we obtain

d
i g6 —25g6 + 2A,g3 +2kg9 0

d 7.
(4.17f}

BVG(Z, u, V, r) =&)(2Sin2r(e -"5r+2"'u() V

ei(sr+2ks)v eu )2Uo u (4.16)

g, +45g, +Ag4 =A, (vp ) (sin r)e

~ d
l g2 +25g2 +kg) =0

d 1.

(4.17a)

(4.17b)

which leads to the following simultaneous equations for
the g(r)'s:

d
l g7+Ag4 =0,

dv

d
i g 5

—25g() +A,g 3
——0,

d ~

(4.17g)

(4.17h)

g, (0)=g2(0) = =g9(0)=0, (4.1 8)

i g9 —45g9+kg5=A, (u() ) (sin r)e " ' . (4.17i)
d~

The solution to Eqs. (4.17), satisfying the initial condi-
tion

~ d
l g3 +Ag6 =0

d 7.

~ d
i g4+25g4+2Ag) +2Ag7 0

d 7.

(4.17c)

(4.17d)

can be easily obtained as follows:

g, ( r ) =—A, ( v p ) e ' '[h "(r )+2i 5h '( r ) +2A. h (r )],2

i g5 +2kg2 +2Ag8 ———2A, uo Uo sin
d 7.

(4.17e)
g2(1 ) =A. u p v p [h '(r)+2i5h(r)],

(4.19a)

(4.19b)
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h '(r) = —r'/3!+g3(r) = —i A,(up ) e 's'h(r),

gz(r)= —A, (up ) e ' '[h'(r)+2i5h(r)],

gs(r)= —iA, (up } up [h "(r)+45 h(r)],
g6(r)= —A, (u() ) e ' '[h'(r) —2i5h(r)],

g7(r}= i—A(u, p ) e ' 'h(r),

g ()( r ) =}( u p u p [h (r ) —2) 5h (r )],

(4.19c)

(4.19d)

(4.23b)

(4.23c)h "(r)= 4—r /3!+. . .

(4 19e} and, for r —1 or r »1, we have

(4.19f}

(4.19g)

(4.19h)

(4.23d)h(r)-h'(r)-h "(r)-r .

g9(r)= —
A, (up ) e ' '[h "(r) 2i5—h'(r)+2k, h(r)],

(4.19i)
where

On the other hand, from Eqs. (4.19) we can see that all
the q(r)'s are proportional to up, upvp, or vp; therefore,
putting the definitions of Eq. (4.13) and Eqs. (4.14) to-
gether, we can see that G(z, u, u, r) is of quartic form in

up, up, u, and u. Since we have ~u
~

+ ~u
~

—
) up ) + ( up )

—=N, the time-independent parts of
G(z, u, v, r) should be of the order of N . Putting all
these factors together, we have, for r g&1,

h (r) = [3 sin(2r) —4r —2r cos(2r)/16,

h'(r):—[cos(2r) —1+rsin(2r)]/4,

h "(r)=—[—sin(2r)+2r cos(2r)]/4 .

(4.20a)

(4.20b)

(4.20c)
and, for w-1 or ~gy1, we have

G(z, u, u, r)-A, N r, BG(z, u, u, r)/Bz-k«) N r

(4.24a)

Examining Eqs. (4.19) we observe the existence of the
symmetric relation G(z, u, u, r)-N r, BG(z, u, u, r)/Bz -kN r . (4.24b)

g((r«up «vp «5)=g)p ((r' v()««up «5) (4.21)

where up, up, and 5 are parameters; and examining Eqs.
(4.20) we also observe that h'(r) and h "(r) are the first
and the second derivatives, respectively, of h (r).

We have now completely determined the expression for
A((z, u, u, r) in the form given in Eq. (4.12); we can use it
in Eq. (4.1) to obtain

h(r)= 4r /5!+— (4.23a)

A(z, u, u, r) = Ap(z, u, u, r) g [eG(z, u, u, r)]'/I!+
1=0

(4.22)

where the upper limit of the summation is still uncertain;
if it can be extended to infinity, then the summation will
give a very simple exponential function. What we have
to worry about is that the expression we have obtained
for A((z, u, u, r) is valid only when I «N

The most critical factors in evaluating the accuracy of
our perturbative solution are the time-dependent parts of
G(z, u, v, r); i.e., h (r), h '(r), and h "(r). From Eqs. (4.20)
we have, for ~&~1,

-k(sinr)NAp .

From Eq. (4.12) we obtain

Gl
A)(z, u, u, r) =

Bz

Ap I BG
a, +AoG 8

(4.25)

(4.26}

Using Eqs. (4.23) and Eqs. (4.24) we can estimate the or-
der of the magnitude of the ratio between the two terms
in Eq. (4.26) as

A (I/ )BG/8 r I/N for r«1
—'I IN for r-1

p z
rl/N for r»1 .

Therefore, for ~ ~& 1 or ~-1, we can write

(4.27a)

(4.27b)

(4.27c)

We are now in the position to verify Eq. (4.15). Using
Eqs. (4.11) and Eqs. (4.8) in Eq. (4.7) and taking the
derivative, we have

aA,
z 0= 2k «)«, sjnr(e «(sv+2kz)u —

au ei(sv+2kz)v eu )0 0

a G'
A, (z u u r)= A [2k', sinr(e ' '+ "'u'u —e' '+ "'u'u)][1+0(l/N)] . (4.28)

EA((z«u«v«1 )/A) (( zv««ur«)=eG(z u u r)«/I««

From Eqs. (4.24) we have

(4.29)

Repeating a similar procedure once more, we verify Eq.
(4.15).

Let us then consider the ratio between two consecutive
terms in the perturbation series. From Eq. (4.12) we have

eG(z, u, u, r)

eA~N r -fi(kAN) t /m, for «&1
for ~-1

eX ~ for v))1.
L

(4.30a)

(4.30b)

(4.30c}

We can now examine the behavior of the summand in Eq.
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A(z, u, u, r)= Ao(z, u, u, r)exp[eG(z, u, v, i)] . (4.31)

(4.22) as a function of I under the following three different
situations.

(1) eG &1, the summand will decrease monotonically
as 1 increases.

(2) eG ~ 1, the summand will increase first, reach a
peak, and then decrease rapidly as 1 increases; the peak
will occur at 1=1O when two consecutive terms are about
equal; i.e., eG/lo —1; and we have lo «N.

(3) Same as the second situation except that lo -N.
Under the first two situations, it is safe to extend the

summation of Eq. (4.22) to infinity. Then we can have

Let w—=x+i be the complex variable of the phase
space and let a (a) be the creation (annihilation) operator
for a single-mode radiation. Then, according to the rule
of Q representation, any operator expressed in terms of a
and a in antinormal order can be replaced by a corre-
sponding function of the complex variable as follows:

F(a, a )~F(w, w*) . (5.1)

Using this rule, we can derive the classical expressions
corresponding to some important operators as follows.

(1) From the definitions of X and Y by Eqs. (1.3), we
have

Using Eq. (4.31) in Eq. (3.4) we can obtain the probability
distribution function in Q representation. Under the
third situation, the exponential expression as an approxi-
mation to the perturbation series will break down; this
will occur when

X~(w+ w*)/2=x,

P~(w —w')/2i =y,
X ~(w +2ww'+w' —1)/4=x

$' ~—(w —2ww'+w' +1)/4=y ——,
' .

(5.2a)

(5.2b)

(5.3a)

(5.3b)

eNv=—ENt —1 . (4.32)
(2) Let h —=a a be the photon number operator, and we

have

V. STATISTICS OF A GAUSSIAN
DISTRIBUTION IN PHASE SPACE

&~ww' —1=(x +y ) —1,
(fi') ~w w* —3ww*+1

=(x +y ) —3(x +y )+1 .

(5.4)

(5.5)
The solution obtained in Sec. IV will lead to Gaussian

distributions in the phase space of Q representation for
both the forward- and the backward-propagating radia-
tion. Therefore it will be convenient to derive the general
expressions for the various expectation values of physical
quantities relevant to the nonclassical properties of radia-
tion with arbitrary Gaussian distribution in phase space.

An arbitrary Gaussian distribution in phase space can
be expressed as

P (x,y ) cc exp[ (ax +2bx—y +cy +dx +ey ) ] . (5.6)

Using the normalized P(x,y) we can evaluate the follow-
ing expectation values:

(x ) = —(cd be)/D, —

(y ) = —(ae bd )lD—,

(x ) =(cd be) /D +c/—D,
(y ) =(ae bd) /D +a/—D,
(x ) =(cd be) /D +6c(—cd be) /D +—3c /D2,

(y ) =(ae bd) /D"+6a(—ae bd) /D3+3a2—/D2,

(x y ) =ac(ae +cd 2bde) /D +—[(6ac+bde)(ae +cd ) (ae +cd —) l2 12abcde]/—D

+[3ac+2bde —5(ae +cd )/2+d e /4]/D —1/D,

(5.7)

(5.8)

(5.9)

(5.10)

(5.1 1)

(5.12)

(5.13)

where

D:—2(ac b) . — (5.14)

(n ) =[(ae bd) +(cd be)—]/D—+(a+c)/D —1,
(5.17)

Using Eqs. (5.7)—(5.10) we obtain and using Eqs. (5.9)—(5.13) in Eq. (5.5), we obtain

(5.15a) ((bn) ) =4(a+c) (ae +cd 2bde)/D—
(5.15b)

Substitution of Eqs. (5.15) into Eq. (1.6) gives the cri-
terion for the existence of squeezing as either

c/D & —,
' or a/D & —,

' .

+[4bde 4(ae +cd ) 2(ad—+ce )]/D—
2/D —(n ) —1—. (5.18)

The existence of photon antibunching is determined by
the condition

Using Eqs. (5.9) and (5.10) in Eq. (5.4), we obtain q=[&(bn)'& —&n &]l&n & &0, (5.19)
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where q is the parameter introduced by Mandel. '

It should be pointed out that the parameters a, b, and c
are each of the order of 1, while (d +e ) is of the order
of (n ). Therefore, when (n ) ))1, the expressions in
Eqs. (5.17) and (5.18) can be simplified as

d = — F~ +F2+ [F;G~+F,G2H

+2e(F*, G, G2 +F, G*, G2)]

(n ) =[(ae —bd) +(cd be—) ]/D

((hn) ) =4(a+c) (ae +cd 2bd—e)/D

+[4bde 4(ae —+cd ) 2(ad —+ce )]/D

—(n) .

(5.20)

(5.21)

e =i Fz F2 —— [F—i Gz —F,GzH

—2e(F;G, G2 F, G—,"Gq )]

(6.6d)

VI. STATISTICS OF THE FORWARD-PROPAGATING
RADIATION

d Q
Pf(x, y)—=Ko f dz f Q(z, u, u", v, v*,r), (6.1)

where we let U =—x+iy. However, it is not easy to carry
out the integration with respect to z. Therefore, assum-
ing that the order of integrations is exchangeable, the in-
tegration with respect to z will be the last step in our cal-
culation of various expectation values. Let us define an
intermediate distribution function

d Q
Rf(z, x,y, )—=rf Q(z, u,

u', ,v"v, )r, (6.2)

and let the intermediate expectation value of an expres-
sion F(x,y ) be denoted by

((F(x,y })),—:f dx f dy F(x,y )Rf(z, x,y, ~),

The photon statistics of the forward-propagating radia-
tion mode should be calculated from the marginal proba-
bility distribution

(6.6e}

where the F's and the G's are defined by Eqs. (4.8) and
(4.14) and

H=l —4e iG, i
(6.7)

A. Squeezing efFect

Using Eqs. (6.6a) —(6.6c) in Eqs. (5.15), we have

Because of this last expression in the denominators of
Eqs. (6.6), we will have a singularity as e

~
Gl

~

~—,
' or,

roughly, as eN&~1. This is the same condition as that
of Eq. (4.32) when the exponential expression as an ap-
proximation to the perturbation series breaks down.

Substituting the expressions in Eqs. (6.6) into Eqs.
(5.15), (5.20), and (5.21), we can obtain the corresponding
intermediate expectation values. However, the existence
of exponential functions of z in the denominators of these
intermediate expectation values still makes it very
difficult to carry out the final integrations with respect to
z. So from now on we will keep only the first-order terms
in e in all the analytical expressions.

(6.3) «(~X)'», = —,'+ —,'(G, +G, ), (6.8a)

where a, b, c, d, and e are functions of z and v. as follows:

a =1 e(G3 +G3)—
2—~ I I G2 I

'+&[Gi (Gz)'+Gi(Gf )'ll (6.6a)

where the subscript z is to emphasize the fact that this
"expectation value" is still a function of z. Then the true
expectation value is finally obtained as

(F(x,y ) ) =—Ko f ((F(x,y) )),dz . (6.4)

Using Eq. (3.4) in Eq. (6.2) we have

Rf(z, x,y, r) &x exp[ (ax +2bxy+cy—+dx+ey)],

«(&y)')), =———(G" +G ) .
4 2

(6.8b)

We then have to carry out the integration with respect to
z. Using Eqs. (3.2) and (4.14c) we obtain

(G3 +G3 &:—ko f {G3 +G3)dz =g7 +g

=2Nf A, sin(25m+ 2P )h (r),
where we have used Eq. (4.19g) and let

(6.9)

vo:QNfe— (6.10)

with Nf being the expectation value of the photon num-
ber in the forward-propagating radiation initially. Using
Eq. (6.9) in Eqs. (6.8) we obtain

2

b=ie G3 —G3 ——[Gl (G2) —Gi(G~ ) ]0
c= 1+e(G3 +G3)

(6.6b)
((AX) ) = ,'+eANfS(~), .—

((hY) ) = ,' eANfS(r), ——,

with

(6.11a)

(6.11b)

2
——

I I G2 I' —&[Gl (G2}'+Gi(Gf }'lI0 (6.6c)
S(r )—:sin(25r+ 2P )[3sin(2~) —4r —2r cos( 2r )]/16,

(6.12)
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where we have used Eq. (4.20a). It is obvious that S(r)
plays the key role in determining the squeezing effect; if it
is positive then squeezing occurs in the y quadrature, if
negative, it occurs in the x quadrature; either way,
squeezing always exists as long as both e and Nf are not
vanishing. This last point is very interesting because it
implies that no squeezing is possible without considering
quantum recoils of the electron or if the initial state of
the radiation is a vacuum state. It should also be pointed
out that the appearance of P in the expression for S(r)
means that the phase angle of the initial radiation also
plays an important role in squeezing, as expected.

From Eqs. (6.11) we can see that the degree of squeez-
ing will increase as the initial photon number Nf in-

creases. But, of course, it will not increase to the point
that we have a negative value for either ( ( hX ) ) or
((b, Y) ); firstly, this point will not be reached before our
exponential expression as an approximation to the per-
turbation series breaks down when eN~-1, since we
have Nf &N, A, &1, and S(r)—v-, secondly, even before
this breakdown, we might have to include higher-order

terms in e to be accurate enough. Therefore we must
keep in mind that expressions in Eqs. (6.11) are reliable
only for short-time behavior.

A plot of S(r) as a function of r with /=0, tr/4, tr/2,
3m./4 with fixed 6=1/&2 is presented in Fig. 1.

B. Photon antibunching

We now substitute Eqs. (6.6) into Eq. (5.20) to obtain

((rt )),=
~
F&

~

'+ej [F&F2G2 +2(F&)'G3 ]+c
(6.13)

(((& )')), =
~
F,

+e([F,F2G, +4(F, ) G3 ]+c c

(6.14)

where c.c. stands for complex conjugate. The next step is
to carry out the integration with respect to z.

Using Eqs. (4.8) and (4. 14) we have

Jo(r)—:(
~
F2

~

)—:Ko f Fz
~

dz=
~ f3 ~

+
~ f4 ~

=
~

vo
~

(cos r+5 sin r)+
~

uo
~

X sin r,
~, (~)—:(F,F,Gz ) +c.c. =[f,f3g4 +(f,f4+f2f, )g5 +fzf4g6 ]+c.c.

=2M. (
~

uo
~

—
~

Uo
~

)sinr[(sins)h'(r)+2(cosr)h(r)],

Jz(r)=((F2) G3 )+c.c. =(f3) g7 +2f3f4gs +(f4) g9

=45k,
~

Uo
~

sinrcosrh(r) —2M.
~

uo
~

(sin r)h'(r)

+45k.
(

uo
) )

Uo
(

sinr[(sins)h'(r) —2(cosr)h(r)],

(6.15a)

(6.15b)

(6.15c)

1.5

/=0
y= r/4
y = ~/2
y = 3~/4

0.5-

—0.5-

~ ~~
~ ~~ ~ ~

L

Wr'

~ X/

~

/

YM

—l.5
0.5 1.5 2.5 3.5

FIG. 1. S(r) vs r The lines correspo. nd to /=0, tr/4, tr/2, and 3tr/4, while 5=1/&2. S(r) is the indicator for squeezing. When
it is negative, squeezing occurs in the x quadrature; otherwise, in the y quadrature.
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where we have used Eqs. (4.11) and (4.19) to obtain the
last expressions in each of Eqs. (6.15).

Substituting Eqs. (6.15) into Eqs. (6.13) and (6.14), we
have

(n ) =Jo(r)+E[J,(r)+2J2(r)],
((An )') =Jo(r)+e[J, (~)+4J,(r)] .

We now use Eqs. (6.16) in Eq. (5.19) to obtain

2 eJ 2(T)IJ o(T)=2E5k'~ &o
~

T(r)

where

(6.16a)

(6.16b)

(6.17)

T(r) = p(p —2)sin(2~)h(r)+(2p —1)(sin r)h'(r)
A, sin r+p(cos v+5 sin r)

(6.18)

with

p= I Uo I /I &o I =&f/&b (6.19)

being a parameter which is the ratio of the expectation
values of initial photon numbers in the two lights.

From Eq. (6.17) we can see that the condition for the
existence of photon antibunching is that 5 and T(r) must
have opposite signs. Since 5 can have either sign, de-
pending on whether the initial momentum of the electron
po is positive or negative in the moving frame, we con-
clude that photon antibunching is always possible, one
way or the other. We must again keep in mind that Eq.
(6.17) is reliable only for short time because we only con-
sider the first-order perturbation. A plot of T(~) as a
function of r with 5 =A2= —,

' and p=0,0.5, 1,2 is present-

ed in Fig. 2. From Eq. (6.17) we also notice that if e van-
ishes, q will vanish too; this implies that quantum recoils
of the electron are essential for the occurrence of photon
antibunching.

VII. SUMMARY

We have analytically studied the stimulated Compton
scattering (SCS) in a one-dimensional system consisting of
a relativistic electron apd two oppositely propagating
lights. The two lights are both in coherent states initially
and are of quite different frequencies in the laboratory
frame. We have adopted a convenient frame, moving
along the same direction as the electron, in which the two
frequencies become identical due to the Doppler effect.
We have considered only a narrow range of the speed of
the electron, such that it is nonrelativistic in the moving
frame adopted and still has an initial momentum much
greater than that of the photon. This is essentially the
same as the so-called Bambini-Renieri frame popular in
free-electron laser theory.

We have described the time evolution for the exchange
of photons between the two lights by SCS in terms of the
Q representation of two-mode coherent states. Our main
interest has been to see whether the nonclassical phenom-
ena such as squeezing and photon antibunching occur as
a result of SCS.

We have obtained a perturbative solution far beyond
the first order of the perturbation parameter e which is
related to the quantum recoil of the electron. As long as
eN~ &g 1, we can extend the perturbation series to infinite
order to obtain a simple exponential expression for the
distribution function in phase space. However, in the last

2

'l.5

0.5—
/.

//
/y

—0.5-

-1.5
0 0.5

0 ~ ~ I
/ /. /

//
y r'/

/

.r
~ 0

2.5 3.5

FIG. 2. T(~) vs v. The lines correspond to p=0, 0.5, 1, and 2, while 5=1=1/&2. T(r) is the indicator for photon antibunching.
When it is negative, the initial momentum of the electron po must be positive for photon antibunching to exist; otherwise, po must be
negative.
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stage of our calculations, we have kept terms only up to
the first order of the perturbation parameter. Our main
conclusions are that, within this limitation, squeezing al-
ways exists and photon antibunching is always possible if
we are free to pick the right initial electron momentum.

Unlike the various studies of the closely related prob-
lem of the FEL in the literature, we have treated the
quantum states of the electron as separated from those of
the photons. A very important result of such treatment
is the revelation that squeezing is not possible if the ini-
tial quantum state of the radiation is a vacuum state, con-
trary to the conclusion of the various studies mentioned
above.

We have also reconfirmed that quantum recoils play
the exclusive role in generating nonclassical photon states

by SCS.
There exists a symmetry between the two lights.

Therefore, although we have carried out the detailed cal-
culations for the forward-propagating light only, the cor-
responding formulas for the other light can always be
easily obtained by exchanging u& and Uz and replacing 6
by —6.

We have completely ignored many-electron effects in
the present study. In a possible future publication, we
will include these effects.
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