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Time-dependent aspects of electron degradation. II. General theory
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The well-known Spencer-Fano theory of electron-degradation spectra treats time-independent
cases, in which the medium is subjected to stationary irradiation. We present a generalization to
time-dependent cases, showing how to calculate the temporal behavior of the electron-degradation
spectrum and of related quantities such as the yield of ions or excited states that are produced under
nonstationary irradiation. The generalized theory indicates new aspects of electron-degradation
phenomena, which are basic to radiation physics and chemistry as well as to applications such as
gaseous electronics, upper-atmospheric physics, and astrophysics.

I. INTRODUCTION

The electron-degradation spectrum {or the track-length
distribution} y ( T) is important in the microscopic
analysis of radiation actions on matter. As originally
defined by Spencer and Fano, '

y (T)dT represents the to
tal track length of all the electrons having energies be-
tween T and T+dT in a medium under stationary irradi-
ation. We supposed that the medium consists of a single
species of molecules at the number density n We .let
U( T}dt represent the number of source electrons having
energies between T and T+dT. Then y(T) obeys the
Spencer-Fano equation of the form

nKzy ( T)+ U( T)=0
where Kz is a linear integral operator having the dimen-
sion of the cross section (i.e., the length squared). More
specifically, Kzy ( T) represents the net gain and loss of all
the electrons at energy T, and may be expressed as

Kry(T)= fdT'y(T')cr(T'~T)

—y ( T)fdT"tr( T~ T"),
where cr(T, ~Tz) represents the cross section for all the
processes in which an electron of energy T, collides with
a molecule and an electron of energy Tz emerges. The
subscript T indicates that the cross-section operator Kr
depends parametrically on T. Equation (1) can be solved
by starting with the highest T and using descending
values of T.

Knowledge of the degradation spectrum is crucial to
the microscopic analysis of radiation actions. For exam-
ple, the mean number N, ( To }of ions generated as a result
of the absorption of a single electron of energy To is ex-
pressed as

0
Ã, (To)=n f dTy(TO, T}o;(T),

where cr;{T} is the cross section for the ionization of the
molecule by an electron of energy T, and y (To, T) is the
solution of Eq. (1) when the source is monoenergetic, i.e.,
when U(T)=5(T —To). Recent developments in the

electron-degradation theory are summarized elsewhere.
The purpose of the present article is to generalize the

Spencer-Fano theory to time-dependent cases. This work
was motivated by recent experiments that pertain to
the behavior of subexcitation electrons and other tran-
sient species at short times after pulsed irradiation. To
interpret some of the findings, one must develop a frame-
work suitable for evaluating the time dependence of the
electron-degradation spectrum and of the yield of tran-
sient species. One application has been reported in the
first paper of the present series. Section II will present
the general theory for a chemically pure medium, Sec. III
the extension to chemical mixtures, and Sec. IV special
cases where the continuous-slowing-down approximation
is useful.

II. THEORY

Sections IIA-IID will treat the basic concepts, and
Secs. II E-II H will present additional comments.

A. The incremental electron degradation spectrum

We consider first a chemically pure and electrically
neutral medium that consists of a single species of mole-
cules at the number density n The mediu. m may be a
gas, liquid, or solid. We use the term "molecule" to
mean a structural unit appropriate for consideration of
single-electron scattering. Our formalism applies to any
neutral medium, including mixtures (which we treat in
Sec. III).

We suppose that a time-dependent source of electrons
is characterized by the function u ( T; t } as follows:
u ( T;t)dTdt represents the number of source electrons in-
troduced into the medium in the time interval between t
and t+dt that have kinetic energies between T and
T+dT. The source electrons initiate the degradation
process by colliding with molecules and produce secon-
dary electrons through ionization.

We further suppose that z ( T;t)dTdt represents the in-
crement, during the time interval between t and t +dt, of
the track length of all the electrons having kinetic ener-
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gies between T and T +d T. Then the function z ( T; t )

obeys the equation

v 'az(T;t)lat =nK z(T;t)+u(T;t), (4)

B. The cumulative electron degradation spectrum

Let us define the quantity

Z(T;t)= f dt'z(T;t') .

We write the lower limit of the t integration as —~; in

where vz- is the speed of an electron of kinetic energy T.
[See Sec. II H for further elaboration on the meaning of
Eq. (4).]

The meaning of Eq. (4) is simple. Each side, when mul-
tiplied by d T, represents the rate of change in the number
of electrons at energy T and time t. The reciprocal of the
speed vz- is a necessary factor because the operator Kz is
a cross section as defined by Eq. (2). We call z(T;t) the
incremental electron-degradation spectrum.

When the source is monoenergetic at To and is sharply
pulsed at to, we set

u(T;t)=5(T Tp)5(t——tp) .

We call the solution of Eq. (4) with this u (T;t) the stan
dard solution and designate it as z(Tp; T;tp, t) The so. lu-
tion for an arbitrary u (T;t) can be expressed as a super-
position of the standard solutions, since Eq. (4) is linear.

To consider the yield of ions produced as a result of
electron degradation initiated by the same source, we
suppose that the increment of the yield during the time
interval between t and t+dt is written as v;(Tp, t, tp)dt.
Then we may write

Tp

v, (Tp;t, tp)=n f dTz(Tp, T;tp, t)o, (T), (6)

where o, (T) is the total ionization cross section of the
medium molecule for an electron of energy T, and the in-
tegration is over the T interval from the (first) ionization
threshold I to the source energy To.

The use of the term "incremental" might have given an
impression that z(T;t) at fixed T should invariably in-
crease with t This imp. ression is false. Indeed, z(T;t)
may increase or decrease with t depending upon the sign
of the right-hand side of Eq. (4). Notice that Krz ( T; t) is
either positive or negative depending upon the cross sec-
tions involved. Moreover, there are in general mecha-
nisms for loss of electrons. For instance, the electron at-
tachment to molecules leading to the production of nega-
tive ions certainly depletes electrons. This process often
occurs in the subexcitation domain, which we shall treat
at some depth in Sec. IV B. In our general theory, such a
depletion effect is readily incorporated into the source
term u(T;t) Then u. (T;t) is in general a functional of
z ( T;t). In the simplest case of the electron attachment
for instance, u(T;t) includes a term of the form

n tr, «( T)z ( T—; t ), where o,«( T) is the cross section for
the attachment of electrons at energy T. Another exam-
ple of the treatment of electron depletion effects is seen in
paper I (Ref. 8) of the present series.

practice, the integral begins with the time at which
z(T;t') is nonzero. Then Z(T;t)dT signifies the track-
length of all electrons that are present at time t and have
energies between T and T+dT B. y combining Eqs. (4)
and (7), we readily see that Z ( T; t) obeys the equation

v, 'aZ-(T;t) tat =nKrZ(T;t)+ U(T;t), (8)

where U(T;t) is the integrated source function defined as

U(T;t)= f dt'u(T;t) . (9)

We call Z(T;t) the time depe-ndent cumulative electron
degradation spectrum.

When the source is monoenergetic and pulsed [i.e.,
when u ( T; t } is given by Eq. (5)], we have

U(T;t) =5(T T, )B—(t —t, ),
where e represents the Heaviside function,

1 for to &t
B(t t )= 0 f

(10)

We call the solution of Eq. (8) with this U(T;tp) the
standard solution, and designate it as Z(Tp; T;tp, t).

The integral

1V (Tp'tp t}='f dt v (Tp't tp} (12}

represents the cumulative yield of ions, the total number
of ions present at time t resulting from the monoenergetic
pulsed source. The cumulative yield may be expressed al-
ternatively as

Tp

N;(Tp;tp, t)=n dTZ(Tp, T;tp, t)rr;(T) .
I (13)

C. The connection with the stationary case

When the source term u (T;t) is independent of time,
the incremental spectrum z ( T; t) eventually approaches a
stationary value, which we may denote as z ( T; oo ). This
clearly satisfies Eq. (1), i.e., the Spencer-Fano equation in
the stationary case, and thus may be equated with y ( T)
of Spencer and Fano. At the same time, the incremental
yield v, (Tp;tp, t) approaches the yield X,(Tp) of the sta-
tionary case.

When the source term u ( T; t) vanishes after a period,
the integrated source function U ( T; t) becomes indepen-
dent of time. Then the cumulative spectrum Z(T;t)
eventually approaches a stationary value Z(T; oo ), which
may be equated with y(T) of Spencer and Fano. At the
same time, the cumulative yield X,.(Tp;tp, t) of ions ap-
proaches the yield N, ( To) of the stationary case.

A remark is in order on the meaning of the stationary
spectra. Our entire treatment is limited to electron ener-
gies T above a fixed value that corresponds to the lowest
threshold E;„for the excitation process that we explicit-
ly include in the I{ z- operator. The stationary spectra,
Z( T; oo ) and z ( T; oo ), are defined for T ~ F. ;„. A treat-
ment of the region below E;„, to cover the electron
thermalization, is outside the scope of the present article.
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D. The time-dependent Fowler equation

Much earlier than the Spencer-Fano work, Fowler
showed how to calculate N;(T) directly in the stationary
case. Therefore, it is customary to call an equation for
the yield a Fowler equation. Rau, Inokuti, and
Douthat' showed the precise connection between the
Spencer-Fano equation and the Fowler equation. Before
treating time-dependent cases, we will recapitulate the
main point of Rau, Inokuti and Douthat.

We set the source U(T)=5(T —To) in Eq. (1). Then
we take an inner product with N, ( T). In other words, we
multiply Eq. (1) by N;(T) and integrate the result over
the T interval I & T & 00. Then we obtain

n TN; TK&y Tp T+ TN; T T —Tp ——0.
(14)

We rewrite the first integral as

f d T N~( T)K&y ( To, T) =f d T [K&N; ( T) ]y( To, T) .

(15)

Here we have introduced a new operator K„ that acts on
N;(T). The operator Kr is the adjoint of Kr, and its ex-
istence has been established for a large class of linear
operators and function spaces. "

The second term of Eq. (14) is readily equated with
N; ( To ), which is given by Eq. (3). Thus, we have

=n fdt fdT [K&v;(T;tu, t))z(TO, T;tu, t) .

Using Eq. (6), we write the second term as

dt dT v, T'tp t T —Tp t —tp

T t —tp 0' T z Tp T'tp

(20)

(21)

The left-hand side of Eq. (19) shows a new aspect. We
integrate the left side by parts in t. The resulting bound-
ary terms may be dropped with the assumption that the
incremental spectrum vanishes at t~ —00 and t~~.
This is justified as long as the source acts for a finite time.
Thus, we have

f dt fdT v, (T;to, t)uz. 'c}z(Tu, T;to, t)ldt

T vy' v T'tp t t z Tp T tp

(22)

space of T and t. In other words, we take integrals over
—Oo & t & 00 and I & T & ~. Thus, we write

f dt fd T v; ( T;t, t)u 'c)z ( T,T;t, t) /c}I

= n dt dTv; T;tp, t Ezz Tp T tp

+fdt fdTv;(T;to, t)5(T —To)5(t t —
o) . (19)

We treat the right-hand side virtually in the same way
as the stationary case. We rewrite the first term as

n fdt f dT v;(T;to, t)K&z(T&, T;to, t)

n T K~N; T+o; T Tp, T =0. (16)
Combining Eqs. (19)—(22), we arrive at

KrN; ( T)+o; ( T) =0 (17)

The relation holds for every value of Tp. So long as

y ( To, T) is a well-behaved function of T, we must have
t T —vz vl T'tp t t z Tp T'tp

= fdt fdT[nKrv, (T;to, t)

+n5(t t )ur;c(T)]—z(T uT;to, t) . (23)

For this equation to hold, we must have

—u& 'c}v;(T; to, t) lc}t=nK&v; ( T;to, t)+ n 5(t to)cr; ( T)—

at every value of energy T. This is the Fowler equation.
A general form of the operator Kz- adjoint to Ez of Eq.
(2) is

KrtN, (T)= fdT'N;(T')o(T~T')

N;(T) fdT"o(—T~T") .
(24)

(18)
at every t and T. This is the desired Fowler equation for
the incremental yield.

The physical meaning of Eq. (24) is that the time t runs
from ao to —ao, as is always the case with the adjoint of
an equation that contains the time derivative of any odd
order. An example is the well-known partial differential
equation for diffusion; its adjoint is the same equation
with the time direction reversed. " Thus, the incremental
ion yield v, (T;to, t) satisfies Eq. (24) with —t correspond-
ing to the physical time.

Similarly, we can derive an equation for the cumulative
ion yield, as defined by Eqs. (12) and (13). The result is

uz 'dN, (T;to, t—)lcjt =nKJN, (T;tu, t)+ncr;(T),

(25)

in which —t again represents the physical time.

To derive this result, one inserts Eq. (3) into Eq. (15), and
changes the order of repeated integrations.

The physical meaning of Eq. (17) is that the quantity
KzN, (T)+o;(T) represents the net change of the num-

ber of ions due to all collisions experienced by an electron
of kinetic energy T. In particular, the first term on the
right-hand side of Eq. (18) represents the production of
ions by all succeeding collisions. The Fowler equation is
solved by starting with the obvious condition N; ( T)=0 at
T=I and ascending in T. This is in contrast to the
Spencer-Pano equation, Eq. (1), which is solved by des-
cending in T.

We now treat the time-dependent equation, Eq. (4).
We set the source term as u(T;t)=5(T —To)5(t to)—
and take an inner product of Eq. (4) with v, (T;to, t),
defined by Eq. (6). The inner product is in the combined
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and

Ur 'BN;(T;to, t)IBt=nKrN, (T;to, t)+no;(T) .

These equations are to be used in numerical work.

(27)

E. Yields of excited species

For simplicity, we have thus far discussed the yield of
ions. However, discussing the yield of any excited species
s is straightforward. We let the cross section for the pro-
duction of s by a collision of an electron of energy T be
cr, ( T). Then the incremental yield v, ( To, to, t) is given by

TQ

v, (To, to, t)=n f dTz(TO, T;to, t)cr, (T), (28)

and the cumulative yield N, (TO,'t, to) by
TQ

N, (TO', to, t)=n f dTZ(TO, T;to, t)cr, (T) . (29)

These expressions are formally similar to Eqs. (6) and
(13); the only difFerence is the replacement of o;(T) with
rr, (T). Likewise, v, (To', to, t) and N, (To;to, t) satisfy
Fowler equations formally similar to Eqs. (24) —(27).

F. Formal solutions

The equations for the incremental cumulative spectra,
as well as those for the ion yields, are all linear
differential equations of the first order in t. Therefore, we
can write their solutions. For instance, we can write the
solution of Eq. (4) as

z(T;t)= f dt'D(t, t')u(T;t), (30)

where D (t, t') is an operator defined as

To prevent misunderstanding, we may introduce the
physical time t = —t, which runs from —~ to + ao, and
rewrite Eqs. (24}and (25}as follows:

Ur 'Bv, (T;ro, r)IBt=nKrtv;(T;to, t)+n5(t t—o)o;(T)

(26)

D (t, t') =exp[(t —r')nurKr]vr . (31)

G. Detailed expression for the cross-section operator

The operator Kr is defined by Eq. (2) in a compact
form. For some considerations (e.g., those in Sec. II H},
it is useful to write a more detailed form. Let
q(T;T&)dT& be the cross section for the collision in
which an electron of energy T leads to an electron of en-

ergy between T& and T&+dT„and no other electron;
this collision is an excitation process. %'e let
q(T; T&, T2)dT, dT2 be the cross section for the collision
in which an electron of energy T leads to an electron of
energy between T& and T&+dT& and a second elec-
tron of energy between T2 and T2+d T2', this collision is
a single ionization process. Then we let
q(T; T&, T2, T3)dT, dTzdT3 be the cross section for the
collision in which an electron of energy T leads to an
electron of energy between T~ and T, +dT&, a second
electron of energy between T2 and Tz+ d T2, and a third
electron of energy between T3 and T3+dT3', this col-
lision is a double ionization process. Likewise, we can
define the cross section q ( T; T„T2, . . . )d T,d Tz of a
higher multiple ionization process. Then, we may ex-
press the Kz operator as

To derive this solution, we merely need to recognize that
exp( tnu—rKr)vr is an integrating factor for Eq. (4).
(This operator cannot be written as vrexp( t—nurKr ), be-
cause Kr and Ur are not commutable. )

Similarly, the solution of Eq. (8) is written as

Z(T;r)= J dr'D(r, r')U(T, r') . (32)

Forrnal solutions are also possible for the equations
[Eqs. (26) and (27)] for the yields of ions. The formal
solutions may not be suitable for numerical studies, but
they are useful for analytical studies. We recall that
Z ( T;t) in the limit t ~ ~ is the Spencer-Fano degrada-
tion spectrum in the stationary case. Equation (32) pro-
vides a new avenue toward an approach to the stationary
problem.

Kr(T)= fdT'y(T') q(T', T)+ f dTzq(T', T, T2)+ f dT~q(T', T, , T)

+ fdT2 fdT3q(T', T, T2, T3)+ f dT, fdT3q(T', T„T,T3)

+ f dT, f dT2q(T', T, , T2, T)+

—y(T) fdT&q(T;T~)+ f dT~ f dT2q(T;T&, T2)+ J dT~ f dT& fdT3q(T;T, , T2, T3)+ . (33)

The first group of terms represents the increase of electrons at energy T and the second group of terms the decrease
of electrons at energy T, resulting from all the collisions. Integration of Eq. (33) over T, followed by suitable changes of
variables, gives

dT K&y T = dT y T d»] d»2~ T Ti »2 +2 d»i dT2 d»39» Ti »2 »3

+3fdT, f dT2 J dT3 fdT4q(T;T, , T2, T3, T4)+ (34)

We note that the result does not include q ( T; T, }, and that it represents the multiplication of the electrons due to ioniz-
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ing collisions.
It is straightforward to show that the adjoint of Kz is given by

KrtN(T)= fdT&q(T; Ti)N(Ti)+ f dT& f dT2q(T; T~, Tq)[N(T&)+N(T2)]

+ f dTi f dT2 f dT&q(T;T&, T2, T3)[N(T~ )+N(T2)+N(T3)]+ (35)

To prove this, we insert Eq. (33) into Eq. (15) and change
the order of repeated integrations.

Equations (33)—(35) indicate the precise meaning of the
operators Kr and Kr, and the operands y(T) and N(T)
represent any well-behaved functions.

H. Connection of the degradation spectrum
~ith the electron energy distribution

F(T;t)= f dr f sin8„d8„ fdp„f (r, vr,'r) . (37)

This integration reduces the Boltzmann equation to an
energy-transport equation,

Bp(T;t)ldt =nKrurp(T;t)+ u (T;t),
where u ( T; t) is the same source term as in Eq. (4). Com-
parison with Eq. (4) shows that

z(T;t)=urp(T;t), (39)

p(T;t)=(2Tlm)'i F(T;t), (36)

by integrating f over both the configuration space and
the electron direction. In other words,

A more general treatment of the electron behavior in
gaseous or condensed media requires the solution of the
Boltzmann equation for the density distribution function,
f (r, vr , t), whi'ch describes the electron flow in the phase
space. ' Specifically, f (r, v r; t)d rd v r represents the
number of electrons having velocities in the range be-
tween vz- and vz-+dvz. and positions in the range be-
tween r and r+dr at time t. When the position is ir-
relevant, we may define an electron energy distribution
function,

which we take to be the elementary definition of z. Al-
though the dimension of z in Eq. (39) is
length)& energy ')& time' by its connection with the
Boltzrnann equation, it is evident that these units may be
changed by altering the definition of p in Eq. (38). For
example, if we give p in units of concentration
)& energy ', then z must have units of length
)& energy ' &(time ' and u must be changed accordingly.
An essentially equivalent point of view is given in Ref. 1,
where the units of z are dictated by the units of the
source term without reference to Eq. (38).

One consequence of Eq. (38) is noteworthy. If we in-
tegrate both sides of that equation over T with the use of
Eq. (34},the result is

dldt f dTp(T;t)=n f dTury(T) f dTi f dT2q(T;T~, T2)+2f dT, fdT2f dT3q(T;T„Tz, T3)

+3f dT, f dT~ f dT3 fdT4q(T;T„T&, T3, T4)+ +fdTu(T;t) . (40)

This equation shows the rate of increase of the total elec-
tron number due to ionizing collisions and to the source
term.

III. EXTENSION TO MIXTURES

Virtually a11 the problems of practical interest in radia-
tion physics, chemistry, and biology concern mixtures
that contain various chemical species. Therefore, the
theory must be extended to treat mixtures.

We let the medium consist of n"' molecules per unit
volume of species 1, n' ' molecules per unit volume of
species 2, and so on. We define

To
N ~'(Tu)=n' ' f dT y (Tu, T)o';"'( T),

0
(43)

is the total number density of molecules. The symbol
Kz ' is the cross-section operator for the molecule of
species A, , defined as in Eq. (2), but referring to collisions
only with species A, . Then, the Spencer-Fano equation
[Eq. (1)], as well as the time-dependent equation [Eq. (4)],
is valid. The solution of the Spencer-Fano equation de-
pends upon the composition, i.e., the whole set of n' '.

The expression for the yield of ions, Eq. (3), must be
generalized. The yield N '(To) of ions of molecules of
species k is written as

nKr= g n' 'Kr ',
A,

where

n = n"'

(41)

(42)

where o', '(T} is the cross section for the ionization of a
molecule of species A, by an electron of energy T. Writing
an expression for the time-dependent yield is likewise
straightforward.

The general structure of the Fowler equation for the
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yield is formally the same as for a chemically pure medi-
um. However, an expression for the adjoint of the opera-
tor nK&- is complicated. It includes all the terms
representing a series of processes in which an electron
collides first with a A, molecule and next with A.

' molecule.
The Fowler equation for binary mixtures has been writ-
ten in detai1 by Eggarter, ' as well as by Kimura and
Inokuti, ' who also gave numerical solutions for Ar-Hz
mixtures.

IV. THE CONTINUOUS-SLOWING-DOWN
APPROXIMATION

A. Generalities

where o ( T) is the cross section for the collision in which
an electron of energy T transfers energy E to the medi-
um. The sum over j includes the integration over the
ionization continuum, which usually dominates in prac-
tice. We assuage that E && T and retain only the terms
linear in E . Then we obtain

K y(T)=BIBT[s(T)y(T)],

where s ( T) is the stopping cross section

s(T)= QE, o (T) .
J

(45)

(46)

Now K~ is a first-order differential operator. This
simplification is known as the continuous-slowing-down
approximation (CSDA).

Within the CSDA, the Spencer-Fano equation for the
stationary monoenergetic source becomes

nBIBT[s(T)y(TO, T)]+5(T—To)=0 . (47)

From this we see that y(TO, T) is the reciprocal of the
stopping power ns(T). Historically, Spencer and Fano'
looked for a quantity that replaces the reciprocal stop-
ping power to remove the limitation of the CSDA, and
thus arrived at the degradation spectrum.

B. Subexcitation electrons

Another energy region in which the CSDA is often
justifiable is T &E„where E, is the lowest electronic-
excitation threshold of the medium. In this energy region
no secondary electrons are produced. Moreover, elec-

Under certain conditions we may greatly simplify the
cross-section operator. An example occurs in the interval
Tp /2 & T ( Tp where the source energy Tp is much
higher than most of the possible energy-transfer values.
In this interval, no secondary electrons are produced be-
cause by definition the highest energy of a secondary elec-
tron resulting from a primary electron of energy T is
( T I)l2, I b—eing the ionization threshold.

For convenience, let us write the energy transfer as a
discrete variable EJ. Then we may rewrite Eq. (2}as

Kry ( T) = g cr& (T +E .}y ( T +E }—g crJ ( T)y ( T),
J J

(44)

trons in this region experience much feebler moderation
than those at T ~E, , and therefore warrant separate
consideration. Platzman' called these subexcitation
electrons and pointed out their roles, e.g., in exciting im-
purity molecules that have excitation energies lower than
E, . They are numereous because their total number is
equal to the total energy of ions produced in any initially
neutral medium. Subexcitation electrons are precursors
for some radiation-chemical products such as solvated
electrons and negative ions. The behavior of
subexcitation electrons is also important in some atmos-
pheric and astrophysical problems, as exemplified by the
recent work of Douthat. ' Our initial application of the
time-dependent theory was an analysis of the behavior of
subexcitation electrons in rare gases admixed with trace
nitrogen.

The moderation of subexcitation electrons occurs
through vibrational excitation, rotational excitation, and
elastic scattering upon collisions with molecules in a gas,
or through the excitation of phonons and other low-
energy quanta in condensed matter. Here we consider
the case of a pure gas in some detail. For a summary of
current cross-section data, see the work of Stephens and
Robicheaux. '

The mean energy loss per collision due to vibrational
excitation is ordinarily not much greater than the vibra-
tional quantum, typically about 0.1 eV, because the exci-
tation of many quanta in a single collision is highly un-
likely. (Exceptions arise at resonance energies at which
an incident electron is temporarily captured by a mole-
cule; then probabilities are substantial for multiquantum
excitation. '

) Thus, with respect to vibrational excita-
tion, the fractional energy loss per collision may be taken
as small, provided that the electron energy T greatly
exceeds 0.1 eV.

The mean energy loss due to rotational excitation is
much smaller, i.e., typically of the order of meV. There-
fore, the fractional energy loss per collision is even small-
er. (For gas at room temperature, there are also possibili-
ties that rotational deexcitation of a molecule may result
in an energy gain of an electron. What counts for our
purpose is the net energy loss, which, for brevity, we call
the energy loss due to rotational excitation. )

Therefore, the energy losses due to vibrational and ro-
tational excitation may be treated within the CSDA so
long as 0.1 eV &&T &E„as in Sec. IVA. Specifically,
the contributions to Kry (T) are expressed in the same
form as Eq. (45), and s ( T), the stopping power due to vi-
brational and rotational excitation, is given in the same
way as Eq. (46).

Each energy loss due to elastic collisions with mole-
cules is even smaller, and therefore the CSDA is even
more justifiable as long as the electron energy T is much
higher than the translational energy of molecules in
thermal motion. Here we treat contribution to Kry(T)
from elastic collisions.

We suppose that an electron of energy T collides elasti-
cally with a molecule. Then the molecule receives
translational kinetic energy 6, which depends upon the
angle 0 of electron scattering. We know' that the mean
value 5 is given by
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Z =A,(1—cose) T, (48)

where A, =2m/M (twice the ratio of the electron mass to
the molecular inass). Explicitly, we may write the proba-
bility of energy transfer values between 6 and 6+d 6 as
p ( T, b, )dh; then we may write

fdb hp (T,b, ) =A(1 cos—e)T, (49)

This is a linear partial differential equation of the first or-
der in both t and T. Therefore, we can always solve it
analytically by use of an elementary method.

To be specific, we multiply both sides by urs ( T) and
obtain

aIat [s(T)z(T;t)]= nurs(T)alaT[s(T)z(T;t)]

where

fdb, p(T, b)=1 . (50)

+urs(T)u(T;t) .

Here we introduce a new variable ~ such that

dT—/dr=nvrs(T) .

(56)

(57)
The mean value of 1 —cos8 is often expressed as the ratio
of the momentum-transfer cross section o (T) to the to-
tal elastic scattering cross section o, ( T).

Thus, we may express the contribution of elastic col-
lision to the KT operator as

Kry(T) = fdh cr, (T+5)p(T+h, h)y(T+6)
elastic

—fdb cr, (T)p(T, E)y(T)

In other words, we use
E

r= nVTS
' ' T' (58)

T

instead of T. The variable represents the time for an elec-
tron of initial energy E, (the highest energy of subexcita-
tion electrons) to reach energy T within the CSDA. We
may call r the CSDA time No.w Eq. (56) takes a com-
pact form

=a/aT o,(T)f db bp(T, A)y(T)

within the CSDA. We use Eq. (49) to obtain

K y(T) ~,&„„,——a/aT[&Tir (T)y(T)] .

(51)

(52)

(a/at +a/ar)s ( T)z ( T; t) =w (r; t),
where we have defined w (r; t) as

w(r;t)=urs(T)it(T;t) .

(59)

(60)

Combining this with the vibrational and rotational
contributions, we arrive at the total expression

Kry(T)=a/aT[s(T)y(T)], (53)

Here the second term represents the stopping cross sec-
tion due to rotational excitation, and the third term the
stopping cross section due to vibrational excitation.

C. Time-dependent degradation spectra

Within the CSDA, the equation for the incremental de-
gradation spectrum takes the form

where s ( T) is the stopping cross section for subexcitation
electrons, defined as

s(T)=ATcr~(T)+ QE„cr„(T)+QE„cJ„(r) . (54)

The precise meaning of the definition is the following: to
determine w(r;t) at given value of r, we first find a corre-
sponding value of T, which we write g(r}, by inverting
Eq. (58), and then evaluate the right-hand side of Eq. (60).
The inversion is always possible and unique because ~ is a
single-valued monotonic function of T.

The general solution of Eq. (59) is

s(T)z(T;t)=P(r t)+ f dt'w—(r t+t', t')—, (61)
0

where P is any differentiable function of the combined
variable r t. The corre—ctness of Eq. (61) is most easily
seen by inserting it into Eq. (59).

The function P is determined if z ( T; t) at a particular
time (e.g., at t =0) is given. In this event, we have
$(r) =s (T)z(T;0), or more precisely,

4(r) =s(g (r) }z{g(r);0} .

ur 'az(T;t)/at =nalaT[s(T)z(T;t)]+u (T;t) . (55) The particular solution in this case is then

s(T)z(T;t)=s(g(r t)}z(g(r t);0)+f dt'vs——~„,+, ~
(g(sr t+t'))u(g(—r t+t');t') . —

0
(63)

Another special case is the standard solution
z ( Tp' T ' t p t ), i.e., the solution for the source terin given
by Eq. (5). We easily write

The standard solution for the cumulative spectrum is
then written as

s(T)z(Tp, T;tp, t)=vs~, , +, p(g(r t +tp))—
X&{g(r—t+tp) —Tp) . (64)

Z(Tp, T;t)= f dt'z(TpT;tp, t)

=e(t r)I[ns(T)] . — (65)
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This result is consistent with the solution of the steady-
state equation, Eq. (47), as it should be.

The foregoing illustrates our general conclusion.
Whenever the CSDA is applicable, the equation for the
incremental spectrum or the cumulative spectrum is a
partial differential equation of the first order in T and t;
therefore, it is solvable analytically. In the initial applica-
tion of the method, we treated an even more general case
in which some of the subexcitation electrons collided
with impurity molecules, caused their electronic excita-
tion, and thus were removed from the energy domain of
interest. In this case, the partial differential equation cor-
responding to Eq. (55) had an additional term of the form
—k ( T)z ( T; t), where k ( T) is proportional to the cross
section for the impurity excitation. However, the equa-
tion was still analytically solvable.

V. CONCLUDING REMARKS

We have shown a general theory of time-dependent as-
pects of electron degradation. An application has been
already published. Other applications are seen in papers
III and IV of the present series (Refs. 18 and 19). Fur-
ther work now in progress will amply illustrate the rich
physics that the general theory implies.
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