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Loosely bound states of three particles
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The adiabatic hyperspherical technique is applied to a three-body system interacting via a short-
range potential. Analytical expressions for the effective hyper-radial potential have been obtained
without explicit use of the two-body potential. Possible loosely bound states of the system have

been analyzed quantitatively and the result confirms the prediction by V. Efimov (Yad. Fiz. 10, 107
(1969) [Sov. J. Nucl. Phys. 10, 62 (1970)]). At the same time, some new characteristics of the three-

body system are obtained.

I. INTRODUCTION

The three-body problem has long been investigated
from widely different perspectives. ' Up to now, how-
ever, most atomic and molecular problems are still stud-
ied using the well-established principles for two-body sys-
tems or their extensions. Although the success of the
new conventional multiple-scattering expansion' is
recognized, such methods have not revealed some impor-
tant physical properties of many-body systems. This was
made clear by Efimov in 1970 when he found theoreti-
cally that loosely bound states exist for systems of three
bosons interacting via short-range two-body potentials.
The number of bound states which Efimov predicted is
given by

leo l

N =—ln
m ro

where co and ro are, respectively, the scattering length
and the effective range for the assumed two-body poten-
tial. As co goes to infinity, an infinite number of loosely
bound states with an exponential condensation towards
zero suddenly appear. But for a finite co, the number of
bound states decrease sharply because of the logarithmic
relation between N and co, with the result that only one
or two bound states can be observed in general. This
mathematical model has been used to analyze the struc-
ture of clusters such as '

C3, helium trimers, etc. Several
groups have studied the Efimov states in such systems
numerically and the number of bound states they find is
approximately the same as that given by Eq. (1) as long as
N is rounded up to an appropriate integer. Although
there is no corresponding experimental data to confirm
these results at present, the theory is nevertheless of great
interest because it predicts some new physical properties
of three-body systems, among which the most remarkable
one is the existence of 1oosely bound states in such sys-
tems, even though the interaction potential between the
particles has no wells strong enough to bind any two of
the three particles separately. Because of this, and since
the three-body system is the simplest model in many-
body problems, it seems desirable to use the three-body
system (instead of two-body) as the basic block of the

U„(R)=—

II. METHOD

A. Jacobi coordinates and the kinematic rotation

For a system of three particles with mass m,.(i=1,2,3)
as shown in Fig. 1, the Jacobi coordinates have been

many-body system. This requires more extensive study of
the three-body system.

In a previous paper, ' Macek developed the theory of
Efimov by applying the adiabatic-hyperspherical-
coordinate approximation to study the dynamics of three
neutral atoms interacting with each other on a general
potential surface. Under this approximation, Efimov's
result for finite scattering length can be reproduced by
the variational method. The effective potential in hyper-
spherical coordinates thus obtained is exactly the same as
Efimov's, namely,

4+t
as R~ao (2)

2mR

with the variational constant t= 1.006 24. Evidently,
such a potential will support an infinite number of bound
states condensing to zero energy.

Equation (2) holds only when the two-body scattering
length is infinite. This paper considers the more general
situation where the scattering length is finite but greater
than the range of the two-body forces. We seek the po-
tential U„(R) in this case. Using this potential we then
solve the hyper-radius equation in the outer region for
R & ro and obtain the logarithmic derivative B(E) on a
surface R =Ro. Knowledge of B(E) versus E then en-
ables one to estimate the number of bound states by using
the standard assumptions of Wigner's R-matrix theory.
It is also possible to estimate the energies of the bound
states.

In Sec. II, we introduce some mathematical ap-
proaches which are frequently used when dealing with
three-body systems and briefly review the adiabatic-
hyperspherical-coordinate approximation. Section III is
devoted to the analytical calculation of the potential
curve, while the numerical analysis of the possible loosely
bound states is given in Sec. IV. In Sec. V, we discuss the
results obtained.
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and

Qmp rjl = —cosy (Qm, ~rj. )+slny (Qm, j I r i I ),

Qm I, , r I, ,
———siny'(Qm;Jr, ") —cosy'(Qm, "&r," I, },

(12)

with

FIG. 1. Definition of Jacobi coordinates.

mjtany'=
Qm, ~m~) I,

(13)

For the particular case of three identical particles with

mass mp we have

shown to be suitable to describe its physical behavior. "
Generally, they are defined in Fig. 1 as

m;. =—,mp,1 (14)

r"=r —rij j i (3) ~ij k 3t7lp—2 (15)

m;r;+m rr" =r-ijk k m +m J
(4)

Pl rfl .

m+m
(m;+m )m&

mij k m;+m +mk

Since

(6)

m;m mk
m;m; k

——

m, +m, +mk
(7)

the product of m; and m;. k is independent of the permu-
tation of i, j, and k. This property is useful in simplifying
the formula expressed in Jacobi coordinates.

By permuting the subscripts i, j, and k, we can get
different sets of Jacobi coordinates. But, since

r = —r"
ij ji

where (i,j,k} form a cyclic permutation. Obviously, r,j is
the displacement vector of the particle j relative to i, and
r,J k is the coordinate of the particle k relative to the
center of mass of the other two particles. Corresponding
to these coordinates we have two different reduced
masses

y=y'=
3

(16)

Now, in terms of Jacobi coordinates, the kinetic energy
operator in the center-of-mass system can be expressed as

2 2P; P; k
Hp —— +

2m, J 2Plij k
(17)

where P; and P; k are, respectively, the conjugate mo-
menta of r;~ and r," I, . The physical interpretation of Eq.
(17) is straightforward. The first term corresponds to the
relative kinetic energy of particles i and j in their own
center-of-mass system and the second term accounts for
the relative kinetic energy of particle k with the com-
pound system i and j.

B. Adiabatic hyperspherical approximation

Suppose that the interaction between the particles is
via some kind of two-body potential. Then, in terms of
Jacobi coordinates, the nonrelativistic, time-independent
Schrodinger equation for the system considered with the
motion of center of mass separated out is given by

V, — V2 + V(r;, r; „) V=E%,1 2 1

rj' 2~ re
V ij, k

lJ & lJ~k

we need only three independent sets of Jacobi coordi-
nates. For definiteness we choose them as (r;~, r,.j I, ),
where (ij,k) form an even permutation of (1,2,3). From
Fig. 1, it is obvious that the alternative sets are connected
by the so-called kinematic rotation'

where E is the energy of the three-body cluster in the
center-of-mass coordinate system.

For each set of Jacobi coordinates (r, , r; I, ), we intro-
duce a new set of hyperspherical coordinates R, a, , ri,
and r, k, where R and a; are defined in terms of r,J and

ri kas 'l3

Qml; I &

= —cosy(+m; r, ) —siny(. Q","I," I )

/m&; rl,; siny(Qm;~r J )
——cosy(Q—m;, I, r J. I, ),

with

(9) mij
tana;j =

re, kmij k

~ 2 2 2R J ij + iJ, k iJ,

1/2
rij

(19)

(20)

m, -

tany =
ij™iJ

(10)
Here the constant m with the dimension of mass is intro-
duced so that R has the dimension of distance. Evident-
ly, MR should not depend on the permutation of the
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subscripts i, j, and k, since the transformations given by
Eqs. (8)—(13) are orthogonal. This allows us to switch to
any set of Jacobi coordinates freely.

Generally speaking, the choice of m is arbitrary. But
from Eq. (19) we can see that in order that the hyper-
spherical radius R has some more intuitive geometrical
and physical meaning, it is useful to choose m equal to
the mass of the particle. Only this kind of choice makes
R measured in the same scale as that in which we mea-
sure r; and r; k. We will come back to this point later.

The kinematic rotation of Eqs. (8)—(10) can now be ex-
pressed in the new coordinates as

sinak; rk; ———cosy s1na;jr;j —s1ny cosa;jr;j k,
cos ki rki j slny s1 ij rij cosy cosaij rij, k

(21)

(22)

and the other one, of Eqs. (11)—(13), can be written down
in the same way. Obviously, we have

ak;(a;, =0)=r (23)

Now, in hyperspherical coordinates, Eq. (18) becomes

1 d 5 d A + V(R, Q) 0 =E%,
2m dR2 R dR R2

(24)

and I;& and I;J k are conventional angular tnomentum
operators related to r; and r;j k, respectively.

By the adiabatic hyperspherical approximation, we
keep only the diagonal-coupling term and write

1I1= QF„(R)C1„(R,Q)=F„(R)4„(R,Q—) . (26)

where the generalized angular momentum operator A is
given by

d2 le le k+4 cot(2a;J ) + 2 + 2d aij sin a; cos a;

(25)

divided into two parts. The first one is solving the angu-
lar equation to obtain the channel potential; the second
one is solving the one-dimensional radial equation to find
the bound states. Once the channel potential U„(R) is
determined, the original many-body problem reduces to a
one-body problem, namely, finding the bound states of a
particle confined in the "potential" given by U„(R)
+ W„„(R). But as we shall see in the following, the price
we pay is that the channel potential is generally compli-
cated and its analytical expression is diScult to obtain, so
that additional approximations must be introduced. In
Sec. III, we will use the Ritz variational principle to ob-
tain the approximate ground channel potential U„(R}
and the diagonal-coupling term W„„(R).

The introduction of hyperspherical coordinates enables
one to separate out the radial correlation represented by
a; from the Schrodinger equation. Similarly, the use of
the Euler angles and r; r;. k to specify the directions of
r; and r; k makes it possible to single out the angular
correlation represented by r r; k. This technique has
been proved to be suitable especially to the S wave for
which the Schrodinger equation does not depend on the
Euler angles. In the calculation carried out in this paper,
Euler angles and r;J r;~ k (instead of r;J and r;J k ) are used.
The detailed discussion of the Euler angles can be found
in Ref. 14. Here, we only give the transformation Jacobi-
an and the volume element in terms of the Euler angles,

sine sin28, 2J=— (31)
sin81 sin82

dr1jdr~ k
——sine1zd81z[(sin8)dOd@d+] . (32)

III. CHANNEL POTENTIAL UR(R)
AND THE DIAGONAL-COUPLING TERM W„„(R)

A. Analytical expressions

In this paper we use the trial function given in Ref. 7,
namely,

Then Eq. (24) is parametrically separated into the radial
equation

+U„(R)+W„„(R) F„(R)
1 d 5

2m dR3 R dR

with

4„(R,Q)=N g fJ,
E7J

sinht (m. /2 —a; )
f, =P, (r, }"""

J 'J 'J sina . .cosa
&J &J

(33)

(34)

and the angular one

U(R)4„(R,Q)= U„(R)C1„(R,Q),
with

=EF„(R} (27)

(28)

and

IV„„(R)= 4„, 4&„+2 4„, 4„(29)d2 d d

where the sum goes over the three possible combinations
12,31, and 23 to make 4„(R,Q) symmetric, N is the nor-
malization constant, and t is the variational parameter.
I'; satisfies the two-body Schrodinger equation with zero
energy and zero angular momentum,

1

J J('v }=0 . (35)
2m

The normalization constant is

AU(R)= + V(R, Q) .
2mR 2 (30)

& '=3&f12 I f12 &+6(f12 I f13 ~

(4„IU(R}
I 4„)=3N(@„IU(R}

I f,3),
(36)

(37}

We have seen that our problem has been approximated and
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I

mR sina)2

+(4„~ (V»+V»)~f»)+(C&„~sin»»V» ~f„)+ (+„2 1

2mR

P ',
z sinht (m /2 —a &2)

cosa]2
(38)

In order to facilitate the calculation, some discussion
of the properties of the potential V(R, Q) is desirable.
Firstly, as pointed out before, we have assumed two-body
interaction between the particles, which means that gen-
erally we can write V(R, Q) as

upon the details of the potential; rather, it depends only
upon c; .

Based on the discussion above, Eq. (35) can be solved
exactly outside the range of the potential; we get

V(R, Q) = V(2+ V(3+ V23

with

(39) P,J.
——1—

lJ

(41)

V;, = V,, (r,") . (40)

As for the two-body potential V; (r; ), we require that it
is a short-range potential with a normal range b (note, the
terminology "normal range" is used here in order to dis-
tinguish b from the effective range ro).

Except for the above restrictions, the potential is arbi-
trary. Equations (36), (37), and (38) apply quite generally;
however, U&(R) depends upon the detailed shape of the
two-body potential V;.. We are interested in the situation
where c; grab. In this case we can neglect terms of order
blc;I compared with unity. The U„(R}does not depend

G" =c'Ic —c I =co .IJ J (42}

Now, with the help of Euler angles, the normalization
constant and the potential matrix element can be calcu-
lated straightforwardly. We obtain

N =Ao+A&R +A2R (43)

with

where c; is the scattering length for the system of the
particles i and j. But since identical particles are being
considered here, we still have

3 . 4~ . 2m t . ~t
A 0 ———( sinn. t n t ) + sin—h —2 sinh

2r 3t 3 3
(44)

6 coshnt
1

48 1
3

. hat. h2m. r v 3 h~t, —1 3t sinh —t sinh + cosh1+4r' 3co 1+4t'
27rt—cosh

3
(45)

3 sinn. t
4c,' r (1+t')

6
&3c'

4

&3 . h2mt . hat t 2m . her
m. . 2nt

sinh —sinh sinh +—sin h
2t 3 3 2(1+r2) 3 3 3 3

„2~r 2~+ 2
—cosh — cosh

2(1+r') (46)

and

2 + z
sinh t cosh

4+ t 3N . mt mt

2mR' mR' 2
8 . hot &3R

v'3 6 2co

3N+ 1 —coshmt-
2mRco

n.R R(1+2t ) Kt 2&t+ 2
sinh~t+4 cosh —cosh

4co 4c,r (1+r'}
T

R .
h

2n.t . ntR(1+2t )
. n 2nt 2n mt+ sinh —sinh + 2

—cosh — cosh

T

Rt m. 2mt 2m . mt+ —sinh + sinh
3c (01 +t'}

(47)
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In Eqs. (43)—(47), terms proportional to b7}/R, where g
is of the order unity, have been neglected. This is con-
sistent with our conditions that b &&R and 6 &~cp.

B. Asymptotic behavior

Cp

9m
2 2Scp

Ai ——— (54)

(55)

(a) When the scattering length co goes to infinity, we

get, from Eqs. (43)—(47),

Hence, with cp finite, when R goes to infinity, we have

C( C2
Uq(R) =

3 +
R R

(56)

3 . 4~ . 2~t
N =—(sinn. t mt—)+ sinh —2 sinh

2t 3t 3 3

(48)

with

40cp
C) ——

3m 77

~U~@) + N . „nr
P 2 R2 C2 ——

Co 8 32&3
m 3m. 9n.

14 &0.

8 . mtX t cosh — —sinh
2 3 6

in agreement with Ref. 7. In that case,
(49)

7rt
t cosh ——'sinh =0

2 ' 6
(50}

=Ap+A&R +A2R (51)

3 p 4&3 1 3 1+
m R' mco R

277T

16mc p
(52)

with

7K
Ap ——

2
(53)

determines the value of t which gives the relative
minimum of the potential curve. Although Eq. (50)
possesses an infinite number of complex roots, it has only
one real root t= 1.006. Hence the relative potential curve
is given by Eq. (2}. Notice that in this case, the hyper-
radial potential exhibits an effective term 1/R even at
large distance R, which certainly supports an infinite
number of bound states of the system.

(b) When co is finite, from the expression of the trial
function, we expect that the results in (a) can be repro-
duced as R goes to zero. It is not diScult to see that this
is just the case. In fact, as R ~0, Eqs. (43)—(47) reduce
to Eqs. (48) and (49).

(c) When co is finite and R is large, we expect that

4„=const .

which is proportional to the lowest-order hyperspherical
harmonic and hence is the exact solution to the angular
equation. We recover this function by letting t =i.

In Eqs. (43)—(47), letting t =i and, at the same time,
changing the signs of N and the potential, we get

In this case, we do not have the inverse-square-
potential term 1/R . Of course, this is consistent with
Efimov's result, since if we still had the 1/R potential
term, the infinite number of bound states would also ap-
pear, which, in turn, is not what we expected for the case
of finite scattering length.

Note that when co&0, the 1/R term is repulsive, in
contradiction to what one obtains if we used 4„=const
everywhere. This just illustrates the inadequacies of the
zero-energy solution of Eq. (35) for P, (r,, ) when"co&0.
Recall that when cp&0, there is a low-energy two-
particle bound state with

The effective-range expression, Eq. (41),just represents an
expansion of the exponential in which the first two terms
are kept. A more appropriate trial function would be the
exponential. We do not consider this more elaborate trial
function here since it only affects the region R »c;.
which is unimportant for binding.

C. Numerical analysis

According to the Ritz variational principle, we vary
the parameter t to get a relative minimum of the potential
curve. The potential curve thus obtained gives an upper
bound to the real one. Since R and c; appear in the trial
function as a combination of R/c, &, we discuss in detail
only the potential curve for cp =30 here. As for the po-
tential curve with other positive scattering lengths, we
give only the final results. Their detailed qualitative re-
sults can be obtained from those of cp ——30 by just chang-
ing the scale of hyper-radius R. The potential curves
with negative scattering lengths have characteristics simi-
lar to those of the potential curves with positive scatter-
ing lengths.

Numerical results show that as R goes to 0, t;„,which
gives a minimum upper bound of the potential curve,
goes to 1.006. This is what we expected, since as far as
the asymptotic behavior of the potential curve is con-
cerned, R ~Q is equivalent to letting cp~ ~.

But, on the other hand, as R goes to infinity, t;„~0.
This is not what we want, since for t=0, the trial func-
tion (34) reduced to
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n/2 a-;
cosa;.

which is not a good representation of the wave function
at large R. In fact, since we let t vary as a real number in
the computation, t;„=i cannot be obtained by this pro-
cess. We found that if R is large enough, the potential
curve with t =i indeed goes below the potential curve
with t equal to t;„. Since the derivative of the potential
need not be continuous (in fact, as a mathematical model,
even the potential itself is allowed to be discontinuous at
a finite number of points), the fact just mentioned sug-
gests that when R &R„we take U„(t =t;„)and when
R &R„we choose U„(t =i), where R, is the largest
hyper-radius at which the two potential curves cross.
Moreover, for positive scattering length, in order to keep
self-consistency as discussed in Sec. III B, it is better to
set U„=O for R such that U„(R) calculated with Eq. (56)
becomes positive. We should point out again here that
this mandatory condition for positive scattering length
affects only the long-range part of the potential curve and
hence does not affect the analysis of the bound states in
the energy region considered in this paper.

Figure 2 shows three potential curves with different
scattering lengths. The values of the scattering lengths
given there are chosen arbitrarily. We have also comput-
ed the potential curve for co ———1000, and the result ap-
pearing on Fig. 2 coincides with the potential curve with
co=500 (see also Table I). It is not surprising that, ex-
cept for the potential curve with co ——30, the other three
curves almost coincide, since for large scattering length,
the second term in Eq. (41) can be neglected and the
effective potential does not depend strongly on cp ~ Also,
Table I compares these potential curves with Eq. (2), the
potential curve with infinite scattering length. The gen-
eral results are exactly the same as analyzed in Sec. III B.
Notice particularly the approximate coincidence of the
potential curve with co = —1000 with Eq. (2) for R small-
er than 50. Also notice particularly the deviation of the
potential curve with co ——30 from Eq. (2) for R larger
than 5.

-0.005—

—-0.010—

-0.015—

-0.020—

Cp= 30

Cp= 500

Cp= -100

J

0 20 40 60 100
R(a.u.)

FIG. 2. Comparison of the potential curves with different
scattering lengths, where Ry is the Rydberg unit.

80

W (57)

Now, if we write

4„=N4„
and take directly the second derivative of 4„with respect
to R, using once again the normalization property of 4„,
we get

2d, 4 dN, 2dN
4 (5&)

where N is given in Eq. (43).
For large R where t does not depend on R, we simply

D. Diagonal-coupling term W»

Since the channel function 4„(R,Q) is normalized, it is
easy to show that the matrix element of the first deriva-
tive with respect to R between 4„(R,Q) vanishes. Hence
from Eq. (29) the diagonal-coupling term is simply given
by

TABLE I. Comparison of the potential curves with finite scattering length with Eq. (2).

30
UR(R )
—100 Eq. (2)

0.25
0.50
1.00
2.00
5.00

10.00
20.00
30.00
40.00
50.00

100.00

—40.19077
—10.07048
—2.252 07
—0.638 06
—0.10495
—0.027 51
—0.007 57
—0.003 45
—0.001 35
—0.00000
—0.00000

—40.105 55
—10.027 75
—2.507 62
—0.627 24
—0.10052
—0.025 20
—0.006 33
—0.002 83
—0.001 60
—0.001 03
—0.00026

—40.072 97
—10.01146
—2.499 48
—0.623 18
—0.098 91
—0.02440
—0.005 94
—0.002 57
—0.001 41
—0.000 88
—0.000 20

—40.097 40
—10.023 67
—2.505 58
—0.626 22
—0.100 11
—0.02499
—0.006 23
—0.002 76
—0.001 55
—0.000 99
—0.00024

—40.100 12
—10.025 03
—2.506 26
—0.626 56
—0.10025
—0.025 06
—0.006 27
—0.002 78
—0.001 57
—0.001 00
—0.000 25
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(
(A, +23,R)'

4 (W, +a,R+W,R'}2

A(

Ao+ A )R + A2R
(59)

It is important to notice that, similar to the channel po-
tential curve, the 1/R term in Eq. (59) vanishes when R
goes to infinity. Also, for infinite scattering length, the
diagonal-coupling term become zero. On the other hand,
the numerical result for 8'„„shows that when R is small,
the diagonal-coupling term is much less than U„(R).
However, as R becomes large, W„„has the magnitude of
nearly one tenth of U„(R), so that generally it cannot be
neglected for loosely bound states.

Y'= — K(R)+ Y .
K'(R )

2K R
(66)

After R „ is determined, we start with the boundary
values of Yand Y' at R„, integrate Eq. (61) inward, and
then we compute the ratio

the loosely bound states we are dealing with, the potential
curve at large R has a significant effect on the radial wave
function F„(R). Once the condition (65) is satisfied, the
relative error of using Eq. (63) as the approximate wave
function for R & R „should not be greater than

2
K'(R )

K (R)

The first derivative of Y with respect to R when
R & R „is approximately given by

IV. POSSIBLE LOOSELY BOUND STATES
OF THE SYSTEM

~ (@)
Y'(R )

Y(R)
(67)

F„(R)=R —s/2 Y(R),

and then Eq. (27}becomes

(60)

Having obtained the potential curve and the diagonal-
coupling term, the radial equation (27), which is simply
an effective one-dimensional Schrodinger equation, can
now be solved directly. To see this, let

at Ro ——2, 4, and 6, respectively. The results are given in
Figs. 3—5.

In order to obtain the energy of the possible loosely
bound states, we need to know the logarithmic derivative
on the boundary R =Ro of a solution to the fully many-
particle Schrodinger equation which satisfies appropriate

1 d 4

2m dR2 Rs + U„+W„„Y=EY, (61)
(0)

where —", /R behaves just as the angular barrier. Hence
the effective potential is given by

V,s(R) =
q + U„+ W„q .1 4

2m R2 (62)

From the expression of U„(R) and W„„(R), we can see
that 2m V,s(R) does not depend on m. m enters Eq. (61)
only in combination with the bound-state energy E.
Hence, in the numerical solution to Eq. (61), the choice of
m affects only the units of E. In the following, we still
simply set m=1.

The approximate wave function at large R can be ob-
tained by the WKB method. Namely,

-5 I

5 Xb)

Y = exp —J K(R )dR
1

R

where

(63)

0

K(R)=2mV, &(R)—2mE . (64)

K'(R) »
I
K'(R)

I
(65)

which is the condition for the WKB method to be applic-
able. Hence R„should be large enough so that

I
E

I» V,s(R} or the efFective potential varies with R very
smoothly. Another reason to choose R „ large is that for

The wave function given by Eq. (63}describes approxi-
mately the radial behavior of the system for R &R„,
where R is chosen so that for R ~ R „,we have

-5
0-6 0-4

-E(Ry)
10 10

FIG. 3. Logarithmic derivation B(E) on the boundary
Ro ——2, 4, and 6 for co ——30, where Ry is the Rydberg unit.
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boundary conditions at R=O. We call this logarithmic
derivative B;„(E). A solution satisfying boundary condi-
tions everywhere only occurs for specific eigenenergies
determined by the eigenvalue equation

B;„(E)=B(E) . (68)

We are not trying to find the exact solution for small R in
this paper. However, although we do not know the exact
potential curve in the region R smaller than R, we can
expect that the interaction in this region is generally
much stronger than that in the outside region. Namely,
the effective potential energy will be much larger than the
loosely bound state energy. Therefore the wave function
in the inside region, and hence B,„(E),should not depend
strongly on the energy. Since B;„(E) is only a slowly
varying function of E, we might, as an approximation,
consider B;„(E)as being independent of E. Therefore
B;„(E) will appear on Figs. 3—5 only as a horizontal
straight line. The crossing points of the curves of B;„(E)
and B(E) will determine the number and binding ener-
gies of the possible bound states for the system. From
this argument, we conclude that in the energy region con-
sidered here, Figs. 3 —5 [except Figs. 3(c) and 5(c)] show
that the system has one or two bound states [probably
three as in Fig. 4(a)].

From the figures, we also notice that, for a given finite
scattering length, the number of bound states decreases
with the increase of Rp ~ For Rp ——6, if the magnitude of
the scattering length is not large enough, the bound states
might disappear. This is not difficult to understand.
Since the channel potential U„(R) is independent of Ro,
increasing Rp means taking away the more attractive
part of the potential from the system. Recalling that the
choice of Rp affects the accuracy of the results and de-

pends on the range b of the two-body potential, it seems
that for a given finite scattering length, the shorter the
range of the potential, probably the more bound states
will exist in the system.

Some comparisons of our results with Efimov's are
given in Table II. From Fig. 4(a), we can also roughly es-
timate the magnitude of the spacing between two bound
states,

EN -250 .
EN+1

This is comparable with Efimov's result for infinite
scattering length,

E
-500 .

N+1

(a)
I I' I a)

I
I

'
I

{b) Rp=4

5 {b)

g0
CQ

O
CQ

(c)
0

{c)

O
CQ

10' 10'10 10
-E(Ry)

FIG. 4. Logarithmic derivative B(E) on the boundary
Ro ——2, 4, and 6 for co ——500, where Ry is the Rydberg unit.

10' 10 10
-E(R )

10O

FIG. 5. Logarithmic derivative B(E) on the boundary
Ro =2, 4, and 6 for co ———100, where Ry is the Rydberg unit.



38 LOOSELY BOUND STATES OF THREE PARTICLES 1201

TABLE II. Number of loosely bound states.

Cp

Number of bound states
predicted by present work

Rp ——2 Rp ——4 Rp ——6

Number of bond states'
predicted by Efimov [Eq. (1)]

Rp ——2 Rp ——4 Rp ——6

30
500

—100
—1000

1or2
201 3
1or2
1or2

1 or 2
1 or 2
Oor1
1 or 2

Oor 1

1or2
Oor1
1or2

0.86
1.75
1.25
1.98

0.64
1.54
1.02
1.76

0.51
1.41
0.89
1.63

fp is roughly chosen as Rp.

V. DISCUSSION

In this paper, using the adiabatic hyperspherical ap-
proach, we have shown quantitatively the prediction by
Efimov given in Eq. (1). Although the result is still ap-
proximate in the sense that we neglect higher-order terms
in b/R for the whole calculation, it nevertheless suggests
a technique for solving exactly the ground channel eigen-
value problem of a three-body system. This, once again,
demonstrates the adiabatic hyperspherical method as a
comprehensive framework for quantitative treatment of
three-body states.

Certainly the detection of the bound states predicted in
this paper requires experimental techniques with ex-
tremely high resolution. However, the remarkable point
here is that it reveals some new characteristic changes
from a two-body problem to a many-body system. This is
embodied in the two conclusions we obtained in this pa-
per. Firstly, two-body potentials which cannot support
two-body bound states may bind three bodies together
loosely; secondly, potentials which can bind two-body
systems may not support any three-body bound states.

As we mentioned above, the determination of the num-
ber and binding energies of the bound states requires the
calculation of B;„(E}.In fact, there are several ways to
do this. The standard one, of course, is to solve directly

the Schrodinger equation of the system for the wave func-
tion Y;„(R)at R & Ro and then B;„(E}is given by

Y„(R)
Y;„(R)

(69)
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This procedure usually requires the explicit knowledge of
the two-body potential and leads us to deal directly with
the complicated short-range interactions between the
particles. Sometimes even the traditional analytical R-
matrix theory cannot give a good representation of F;„
because of the slow convergence of the expansion. Here
we point out that variational calculation of the R matrix
has been proposed by Fano and Lee in 1973.' Using this
method, we can determine B;„(E)by the variational prin-
ciple.
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