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Dileptonic-helium ground-state energy

P. du T. van der Merwe
Atomic Energy Corporation, P 0 .Bo.x 582, Pretoria 0001, Republic ofSouth Africa

(Received 9 December 1987)

The large-dimensional approach to atomic physics is extended to accommodate mass-polarization
and recoil contributions. This approach, which does not rely on partitioning of the potential into
subterms, but instead treats the Hamiltonian for large dimension exactly and incorporates correc-
tions order by order in the dimension, is of interest for exotic atoms and molecules. Application of
the results to the helium atom and the dimuonic-helium ground-state energy is considered.

I. INTRODUCTION

Recent developments' based on the large-dimen-
sional approach suggest that light atomic systems may
possess novel collective features contained within elec-
tronic levels. lt has furthermore been found that this
view provides a natural habitat for structural aspects'
and electronic correlations which generate vibrations
and rotations and provide a new perspective of dynamic
molecular modes complementary to the group-theoreti-
cal and hyperspherical sup ermultiplet classification
schemes.

The purpose of this investigation is to bring recoil and
inertial effects into the realm of the large-dimensional ap-
proach. The general foundation has already been estab-
lished in a previous work in which the three-particle
Schrodinger equation for general masses was formulated
in terms of appropriate collective Jacobi coordinates in
an inflated number of spatial dimensions N. A summary
of these aspects is given in Sec. II. The role of inertial
effects is delineated in Secs. III and IV and is illustrated
by considering the ground-state energies of two physical
systems of interest. These effects should be of particular
relevance for the vibrational modes promoted by the rela-
tive collective motion of the constituents with respect to
their common center of momentum. The large-
dirnensional approach has been shown to provide a
powerful nonperturbative approach where the leading ap-
proximation addresses structural aspects, while higher
approximations describe fluctuations relative to the in-

tegrable "semiclassical" situation. Section III treats the
vibrational eigenrnodes in detail. Although recoil effects
provide only small contributions to the helium atomic
ground-state energy as discussed in Sec. IV, they are nev-

ertheless of potential importance in high-precision calcu-
lations with a view to, for example, chemical-reaction
theory. More substantial effects are encountered in the
new dimuonic helium atom, also treated in Sec. IV, where
inertial effects come into their own. In view of the cir-
cumstance that the large-dimensional approach does not
rely on the usual ad hoc partitioning of the potential into
parts, but instead treats the full Hamiltonian for large N
exactly and then incorporates corrections order by order
in 1/N, it is of particular interest for dimuonic atoms and
muonic molecules where standard adiabatic perturbation

II. DIMENSIONAL INFLATION

In order to establish the notation, we review as intro-
duction to this section the general framework for the
three-particle Schrodinger equation for general masses in
N spatial dimensions given in a previous work. The
essence of the large-dimensional method entails a change
of variables to collective coordinates represented by re-
scaled Jacobi variables in the potential model under dis-
cussion.

Consider the motion of three particles in an N-
dimensional space with respect to their center of mass. It
is expedient to introduce collective coordinates in terms
of which the kinetic part of the Hamiltonian is diagonal,
given by the Jacobi coordinates denoted by X and Y,

MR=m3R3+m, R, +m2R2,

X=a(R, —R,),
Y=b (R3 —Z),

where the (1,2)-particle c.m. vector reads

Z=(m, R, +m2R2)(rn, +m2)

(2.1)

(2.2)

(2.3)

(2.4)

and the symbol a denotes a normalization factor of the
relative displacement vectors of particles (1,2), while b is
a normalization factor of the vector from the c.rn. of the
pair (1,2) to the third particle given by

2 —1 2 —12
a P12 = = 8{1+2),3 . (2.5)

Let p, 2 denote the reduced mass of particles 1 and 2,
while the reduced mass of the pair (1,2) relative to 3 is
given by

]ll( ]+2) 3™3 ( m ] +m z )M
—1 (2.6)

and furthermore, denote the reduced mass of the three-
particle system by

m =(m]m2+m2m3+m3m])M (2.7)

schemes along the lines of Born-Oppenheimer adiabatic
separation of leptonic and nuclear motions become some-
what tenuous, particularly in view of their artifactual
symmetry-breaking aspects.
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where

M =m&+m2+m3 ~ (2.8)

Nx'= g X,', y'= g Y,", (2.9)

The wave function of an S state is a function of the ro-
tationally invariant quantities, i.e., the lengths of the
Jacobi vectors and the angle between these vectors,
defined as follows:

cosy =X.Y . (2.10)

Expressed in terms of these collective variables the kinet-
ic energy assumes the form

Ts
V

B (N —1) B B (N —1) B 1 1 B B
, +

B
+,+ +,+, , +(N —2)coty

m Bx x Bx By x y By
(2.11)

The Hamiltonian may be cast into a Hermitian form by the transformation

f(x,y, y ) =J4(x,y, y ),
where

(x )
—(1 2/)( )v—1)(sin )

—( )2/)( )—v 2)

denotes the square root of the Jacobian of the transformation, so that

(2.12)

(2.13)

B B 1 1 B 1 1 1
Ts + + + +ax' ay x y By' 4 x' y

(N —2)(N —4) —1
sin y

(2.14)

Furthermore, the rescaled Jacobi vectors P and Q are defined by

x =rip, y =gg . (2.15)

The scaling factor q is arbitrary apart from the requirement that it behaves as N2 for large N. Equation (2.14) suggests
that it be chosen as

ri= (N —2)(N —4),
a choice which facilitates the treatment of hi hger-1/ Nterms. The equation of motion is given by

(2.16)

fi B B 1 1gE4=gH4=-
mri BP' Bg' P' g'+ + + B 1 (N —2)(N —4)+

By2 4 4sin2y
4+ V(G, P, Q, y)4, (2.17)

where the rescaled potential reads

V(G, p, g, y)=gV(x, y, y)=G)p, +G2P2+G3P3

(2.18)

In order to facilitate implementation of the large-N
technique it is appropriate to express the equation of
motion for Coulomb interactions (a = —1) in the form

2 2

1 23 9
o a

2m, PQ cosy g2
o.ab

+
b

2 2=q pi,

The rescaled coupling constants are defined by
6;=g +'g;, while the rescaled interparticle separations
P;, in turn, are given by

gE4=- +
m v/ BP3 BQ2

1 1 @+V,C,p2 g2 By2

where the effective potential reads

(2.22)

m 2P 2mzpg cosy g2
r2 =r3i =Sf + 2p2

o a o.ab b2

(2.19) V, =gg, p, )+b,
P2 Q2

and

1 1

sin y
(2.23)

2
2 2 2P 2 2r3 ——rj2 —I g P

a

(2.20)

(2.21)

where o. =m, +m2. For convenience, the center of the
coordinates may be chosen to coincide with the c.m.
(R=0).

f2
4m

(2.24)

The advantage of the effective potential is that contribu-
tions due to quantum fluctuations, mass polarization, and
recoil are incorporated directly into the effective poten-
tial, while the remaining part of the kinetic term is
quenched in the large-dimensional limit. Corrections to
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this exactly solvable semiclassical limit, in general, are
accommodated in the form of corrections of order 1/2)
relative to the coherent limit discussed in detail in Sec.
III.

III. GROUND-STATE ENERGY
AND VIBRATIONAL EIGENMODES

1
V =—

1 2

1
V =—

2 2

1
V =—

3 2

8 V,

dP

8 V,

QQ2

8 V,

aPaQ .
(3.9)

E(3) =—V(P, Q, y )
1 (3.1)

4 fg2(1+c} [1+/(1—c}]
R (1—c) (1+2()

(3.2)

According to Eq. (2.22), the three-particle ground-state
energy to leading order in 2) is given by the minimum of
the effective potential

and

O'V,
V

1 8 V,

2 @ay
8 V,

2 aQay .
(3.10)

where the subscript m designates evaluation at its
minimum and f =m, =m2 denotes the mass of the lep-
tons, whereas g=f /m3, where m3 denotes the mass of
the third particle of charge Ze, i.e., g = —Ze . Further-
more, c =cos8,2 is a measure of the correlation angle [see
Eqs. (3.5) and (3.6)], which in the ground state is deter-
mined by the formula

riE, P„=[—aT(h)p V, (h)]((}„, (3.11)

where T(h) and V, (h ) denote the harmonic contributions
for the kinetic and effective potential of Eq. (2.17) and

The eigenvalue problem for the vibrational modes is
defined by

X(1+2$)[2(1—c)]' =8c —4$(1 —c) (3.3) (3.12)

2 2 2
P' Q'

Pi =P2=Po= +
4a b

(3.4)

with X=g3/g = —1/Z. For leptons of equal mass and if
Z &2, ' the geometrical arrangement of the three parti-
cles is that of an isosceles triangle (cosy=0), where the
Jacobi coordinates are related to the relative coordinates
by

Vpy ——Vgy ——0, (3.13)

the modes may be separated by the Ansatze p„=ps/„
and

E =E+E (3.14)

In view of the circumstance that the asymmetrical and
symmetrical vibrations are uncoupled,

and

P =2a Po(1 —c), (3.5)
where the vibrational energy E~ corresponding to the
asymmetric stretching mode is determined by

Q =—,'b Po(l+c),
A A

where c =cos8&z ——P
& P2 at the stationary point and Po in

the ground state is determined by
with

—«o, +(r y-r' (3.15)

R (1+2$)
Po ——— g&0.

4fg(1+c)
(3.7)

For sufficiently large N the system would be frozen in this
geometrical configuration. The next-to-leading term in
Eq. (2.22) in ri describes harmonic vibrations about the
minimum of the effective potential. Denoting the vibra-
tional energy by E„we expand the potential about the
minimum as follows:

and

Io—— 1 1

P2 Q2
(2~$}[1+g(1 —c)]
Po(1 —c )(1+2()

a' a'
'q sos= —a,+, 4s

(3.16}

V, (P, Q, y)= V,(P,Q, y )+p V]+q V2+2pqv3

+(r r)'V),—+2p(y r— +(p'Vi+q'V2+2pq V3)OS (3.17)

+2q (r r}vg, —

where p =P P, q =Q —Q, wh—ile

(3.8) The treatment of the symmetrical vibrations is facilitated
by performing an orthogonal transformation to normal
coordinates
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cosp —sinp

slnp cosp p 2
(3.18)

Rz g'(2+4)' Rz
16Po(1—c) (1+2/)

(3.28)

such that Es =E1+E2 where the eigenmodes are deter-
mined by

with

R i =So+St(+S~( +S3( +S4 (3.29}

6fPEP;= —e +p A, ; P, , i =12 (3 19) where

~here

2V3
tan(2p) =

1 2

and X, and A.~ denote the eigenvalues of the symmetrical
part of the harmonic potential,

SD ——9—36c +94c —84c +33c

S&
——2(1 —c) (27—145c + 141c —39c3),

Sz ——(1—c) (277 —928c +922c —312e +9c4),

S3 ——4(l —c) (83—84c+9c ),
and

(3.30)

(3.31)

(3.32)

(3.33)

A,; = —,'(V(+ Vq)k —,'[( V, —Vq) +4V3]'

The total vibrational energy is summarized by

~1/2
E„= [ A&(2n&+1)+A&(2nz+1)

(3.20}

+(1 Vor)r'~ (2nr+1)], (3.21)

where n„n2, and n~ denote the vibrational quantum
numbers.

We now attend to the task of finding the required force
constants. Equations (2.23) and (3.9), subject to the con-
straints (3.3)—(3.7), lead to the following results valid in
the ground state:

S4 ——4(1—c) (5 —3c) (3.34)

It is of importance to observe that all of the above
quantities, Eqs. (3.25)—(3.34), associated with the eigen-
values of the symmetric stretching mode and bending
motion, are positive definite (since g and c are negative).
This is a result of the physical circumstance that energy
is expended in exciting the symmetrical vibrations. Con-
sequently, these oscillations cannot induce instabilities
into the system.

The asymmetric stretching mode decouples from the
symmetric modes previously treated. Its harmonic
coefficient is determined from the expression

g(2+/)
8Po(1 —c) (1+2$)

)&[5+e —c +3c —6((1—c) ],

16g~f3(2+))EQ (1+c)r,v
R (1+2() (1—c)

(3.22)
whe e

E =1+((1—c)

(3.35)

(3.36)

Vz
——— (2+g )( 5 —3c),

8PO

V2 9g'(0+2)'
(1 2)

64(1+2$)Po

(3.23) and

(3.37)Q =1—2(+2(3+4()c —3(1+2()c
(3.24)

The auxiliary quantities required to find the eigenvalues

may be cast into the form

—g (2+))
4Po (1—c) (1+2$)

~1+~2=

The conditions under which this mode may induce in-
stabilities and trigger symmetry breakdown are analyzed
in a separate paper. ' Suffice it to remark that for Z &2
these issues do not play a role in the rest of the paper.

X[Q+((1—e) (7—3c)

+2( (1—c) (5—3c)],

where

0=5—6c +Sc

Furthermore, defining

R =(V, —Vz)~+4Vz3,

it follows that

(3.25)

(3.26}

(3.27)

IV. DILEPTONIC-HELIUM
GROUND-STATE ENERGY

The total ground-state energy, which is the sum of Eq.
(3.1) and the zero-point vibrational energy, is given by

EG ——E(3) +E, +E~+Er . (4. 1)

By virtue of the results derived in Sec. III, the three-body
ground-state energy may be expressed in the following
form:
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EG —E(3) 1— 4
' 1/2 &/2

' 1/2

[(S+R,)'"+(S—R, )'"]
2(K)' t) &2(2K)

(4.2)

where

S =Q+g(7 —3c)(1—c) +2( (5 —3c)(1—c) (4.3)

EG=E(3) 1+—(4—p)+01 1

N N
(4.4)

where
1/2

P= — [(S+R,}'"+(S—R, }'"]+ (4.5)

The last result provides an expression for the ground-
state energy which incorporates recoil and mass-
polarization contributions. In view of the harmonic ex-
pansion invoked in Sec. III, the result is valid to order
1/N in the large-N expansion. Before displaying the re-
sult in the appropriate form, stock has to be taken of cer-
tain features pertaining to the analytic properties of the
energy as a function of N. Analogous with the analytic
behavior of the integrable hydrogen case where the
ground-state energy displays a second-order pole in
N —1, it has been conjectured that N —1 may be an ap-
propriate expansion parameter" in the helium problem.
On physical grounds it has been shown' that the correct
ionization threshold behavior is obtained by factorizing
the three-particle energies in a multiplicative form, the
first factor [see also Eq. (4.3) below] of which displays the
two-particle substructure and the desired dipole structure
appropriate for widely separated electrons, while the
second factor rejects the dynamic polarizability and
screening aspects. The notion of factorization formed a
key idea in identifying the asymptotic nature' of the
large-N expansion in the three-body system, which would
otherwise be masked by the presence of convergent hy-
drogenic subterms in the expansion. Dimensional inter-
polation' has furthermore shown that, aside from the
hydrogenic factor, treating the remainder terms as an ex-
pansion in 1/N and truncating the asymptotic series op-
timally at the term of order 1/Njust before the semicon-
vergent aspect becomes operative in the asymptotic ex-
pansion, affords an accuracy better than 1% (for N =3
and nuclear charge of two units}. This procedure, which
facilitates comparison of the general results with the no-
recoil situation, is adopted in the sequel. '

Implementing the foregoing procedure, it follows that
the ground-state energy may be expressed in the follow-
ing form:

and

( 3 )
fZ e 2

fi'(1+ 2g)'

'2

(1—c)
[1+/(1—c)] .

(4.6)

The application of the results to the dileptonic-helium
systems, i.e., the helium atom and the helium dimuonic
atom (indicated by He-p}tt) is now considered. The re-
sults of the calculation for the helium atomic ground-
state energy, Eq. (4.4), correlation angle, Eq. (3.3), and
harmonic coefficients, Eqs. (3.22) —(3.37), are listed in
Table I. Two cases are distinguished for comparison:
The results listed under (b) where recoil and mass-
polarization contributions have been neglected, and the
general results which appear under the heading (a). Be-
cause recoil contributions are rather small in normal
atoms, these effects are investigated in Table II for the
dim uonic helium atom where recoil and mass-
polarization contributions become significant. The data
employed in the calculations are R„=13.605804 eV,
g(e) =m, /m& ——1.370933 7)& 10, and g(}tt)=m„/
.„,=2.834 652 y10-'.
Although the primary objective of this work centered

around the question of the generalization of the large-
dimensional approach to include inertial effects, it is
perhaps appropriate at this point to address the question
of the promise of the method itself and its accuracy. The
first issue has already been discussed at some length in
the literature, ' ' ' where it has been shown that the
approach is particularly suited in physical problems not
amenable to perturbation theory. Furthermore, dimen-
sional inflation provides a new perspective also in nonin-
tegrable three-particle problems, ' where it provides a
rigorous interpretation of, among other things, highly
correlated motions which are not indicated by the Hamil-
tonian itself. That the method is also promising for
achieving high accuracy in calculating binding energies
in atomic physics derived from the investigation of Good-
son and Herschbach, where the large-dimensional ap-
proach was used as a starting point for a recursive
method in conjunction with a Pade summation to achieve
an accuracy of ten significant figures for the helium
ground-state energy (neglecting recoil and mass-
polarization contributions, though). The accuracy which
could eventually be achieved along these lines is more

TABLE I. Helium atom ground-state energy (in eV), Eq. (4.4), labeled (a), while results neglecting
recoil and mass-polarization efFects (/=0} appear under ih}. The correlation angle is determined from
Eq. (3.3) and the harmonic coefficients from Eqs. (3.22) —(3.37).

(a)

(b)

C =COSol2

—0.092 322

—0.092 381

EG (eV)

—79.777 117

—79.778 64

(S+R )l/2

3.038 399

3.038 036

(S —R, )'"
1.401 288

1.401 517

0.648 163

0.648 161

3.786 978

3.787 399



1192 P. du T. van der MERWE 38

TABLE II. Helium dimuonic atom (He-is@) ground-state energy (in eV), Eq. (4.4), labeled (a), while

results neglecting recoil and mass-polarization effects (/=0) appear under (b). The correlation angle is

determined from Eq. (3.3) and the harmonic coefficients from Eqs. (3.22) —(3.37).

(a)
(b)

c =cos0, 2

—0.080 539
—0.092 381

—16420. 19
—16495.67

(S +R )1/2

3.115312
3.038 036

(S R )I/z

1.350 993
1.401 517

g I /2
r

0.649 032
0.648 161

3.703 612
3.787 399

difficult to anticipate as the large-N approach is a relative
new entry compared to time-honored methods such as
the variational approach. The physical insight provided
by the large-S approach may also assist in tailoring varia-
tional wave functions where an optimal choice of basis
functions (to describe correlations and desirable analytic
structure) is essential for rapidly converging variational
energies. ' Apart from such possible spin-offs of the I /N
expansion, the fact that it yields rigorous solutions in the
large-dimensional limit while incorporating further
corrections nonperturbatively (avoiding the partitioning
of the potential into subterins) without special assump-
tions about the structure of the wave function as well as
the nonperturbative treatment of recoil and mass-
polarization effects, makes the method attractive for also
treating excited states. The global picture the method
has provided of electronic excitations, as well as collec-
tive features exhibited by three-particle systems, ' further-
more illustrate the potential of the approach for uncover-

ing novel physical behavior.
Since the dimuonic-helium atom appears not to have

been detected experimentally or discussed theoretically
previously, it is of interest in conclusion to take note of
the recent observation of related muonic-helium systems,
namely He-ice, He-ice (Ref. 16) and the negative muonic
ion (p+e e ). ' It is of importance to point out that
the symmetry properties of the muonic systems just men-
tioned are on general grounds quite distinct from those of
the dimuonic-helium atom which possesses isosceles sym-
metry. ' It may, furthermore, be inferred from the
ground-state features treated in this paper that collective
features discussed in connection with the helium atomic
spectrum are expected to be enhanced by mass-
polarization effects in exotic atoms. Of particular interest
would be the affiliated dimuon excitations which
represent novel doubly excited states' where identical lep-
tons exhibit concerted motions. We hope to return to
these aspects in subsequent work.
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