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In the semiclassical approximation, the quantum-mechanical scalar product between two quan-
tum states is governed by (1) the areas of overlap in phase space of these states and (2) interference
between the probability amplitudes contributed by these areas. We compare and contrast this prin-

ciple with Wigner's concept of pseudoprobabilities in phase space and illustrate the essential points
of both treatments by the oscillations in the photon distribution of a highly squeezed state.

I. INTRODUCTION AND OVERVIEW

The double-slit experiment' summarizes most clearly
the central lesson of quantum mechanics: Probabilities at
the microscopic level are governed by interfering proba-
bility amplitudes rather than by additive probabilities.
In the semiclassical limit (Bohr's correspondence princi-
ple ) these interfering probability amplitudes are interfer-
ing areas in phase space. We ask here how this very
concept of interference in phase spaces compares and con-
trasts to Wigner's celebrated approach of performing
quantum-mechanical calculations in phase space using
distribution functions.

The area-of-overlap plus interference concept
identifies two (or more) well-defined zones of crossover in

phase space as contributors of probability amplitude, and
further identifies an entire domain in phase space as the
determiner of the phase difference between these ampli-
tudes. In contrast, the Wigner approach ' deals with the
probabilities themselves, and these probabilities —some
positive, some negative ("pseudoprobabilities")—
contribute to every domain in phase space. We shall see
how these apparently totally different algorithms for cal-
culating transition probability give insight into each oth-
er.

For this purpose we have chosen the example of the
photon distribution 8' of a highly squeezed state of the
electromagnetic field. In such a nonclassical state the
uncertainty in one of the two dynamically conjugate field
variables x and p is less than the corresponding one in a
coherent state. ' As a consequence of interference in
phase space, the photon-count probability 8' of such a
state exhibits —for an appropriate choice of
parameters —the oscillations" depicted in Fig. 1.

These two concepts do not exhaust the possibilities to
interpret the oscillations in W as a consequence of in-
terference in phase space. A different approach' uses a

phase-integral representation of a number state in terms
of coherent states. In this theory the interference appears
to originate from the fact that the phase-space integral
runs over an oscillatory amplitude function closely relat-
ed to the Q function, a phase-space distribution function
different from Wigner's.

The article is organized as follows. In Sec. II we obtain
the oscillations in the photon distribution W of a highly
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FIG. 1. Probability 8' of finding m photons in a highly
squeezed state, Eq. (2.1), is an oscillatory function for quantum
numbers m appropriately larger than the displacement a .
(Squeezing parameter @=0.1 and a =49. Curves, it should be
recognized, are not really continuous curves, because m is never
other than an integer. )
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squeezed state from a semiclassical analysis of the
quantum-mechanical scalar product. The amplitude A
and the phase P of these oscillations are related in Sec.
III to the area of overlap A in phase space between the
mth number state and the squeezed state and to the area
caught between the center lines of the two states, respec-
tively. In Sec. IV we evaluate 8' within the formalism
of the Wigner function. We show that the outermost and
highest-amplitude wave crest of the Wigner function'
P' ', of the mth number state cuts out of the Gaussian ci-
gar of the squeezed state an area equal to that of the
area-of-overlap algorithm. The inner wave crests and
troughs of P' ' have lower amplitude. The troughs
create "ditches" in phase space —the origin of the oscil-
latory behavior of 8' . Section V provides a summary

and conclusion. In order to focus on the central points
we have banished all lengthy calculations to appendixes.

II. OSCILLATIONS IN THE PHOTON-COUNT
PROBABILITY W OF A HIGHLY SQUEEZED STATE

VIA THE QUANTUM-MECHANICAL SCALAR PRODUCT

The most striking feature of a highly squeezed state-
the oscillatory" photon distribution W shown in Fig.
1—will serve in the following sections an an example in
the comparison between the concept of interference in
phase space and the corresponding Wig ner-function
treatment. We therefore present in this section a simple
semiclassical derivation of this rapid variation of 8' .

According to the standard rules of quantum mechan-
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FIG. 2. Oscillations in photon distribution of a highly squeezed state as a consequence of interference in phase space. For excita-
tions m appropriately larger than tt the bands of inner radius r""'=(2m)'~ and outer radius r"""=[2(m+ I)]'~ shown in the inset
and representing the mth number state intersect the elliptical contour line of a highly squeezed state in two symmetrically located
diamond-shaped zones of weighted area A =A . The field oscillator traverses the band in the clockwise direction, as indicated in
the inset. Therefore in one zone the oscillator is moving to the "right;" in the other, to the "left." The total probability amplitude
QW is thus the sum of contributions QA exp(+i/ ) from the shaded areas. The phase P„is fixed by the dotted area caught be-
tween the center lines of the two states. As a result of this interference in phase space the photon distribution W is oscillatory for m
values appropriately larger than a .
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g~(x)=(2/ne)' exp[ —(1/e)(x —v'2a) ], (2.1)

with squeeze parameter e (where 0 & e « 1) and shift pa-
rameter a, is given by

ics' the probability W of finding m photons in a highly
squeezed state'

1„.2-

2
W~ =wm

where

w =(2/me)' f dx u (x)e

Here

(2.2a)

(2.2b)

~—1/4(2mnt)) —I/2~ (x)e —x /2 (2.3)

denotes the wave function of the mth number state. '

With the help of Eq. (A3) of Appendix A, Eq. (2.2b)
reads

~(w)
m=58

z/!r~p/~/gag ~'v ~

(e/4)k d "u (x)
u =(2ne)'" g

p ~ dx x =&ra
(2.4)

For 1x
1

appropriately smaller than g
—= [2(m+ —,')]'/z

we approximate u =u (x) of Eq. (2.3) by the familiar
Wentzel-Kramers-Brillouin (WKB) wave functions

u (x}=(2A)'/ [p (x)] '/ cos[S (x)—m. /4],
where

p (x)=[2(m+ —,')—xz]'/z

and

(2.5)

(2.6)
(w) &(wj

=58" sq

a ~

S (x)=I dx'p (x') . (2.7)
X

When we differentiate u we neglect the slow variation of
[p (x)] '/ compared to cos(S n/4} an—d f.ind

d "u (x)
=—( —1) [p (x)] "u (x) .

W =—4A coszp

where

(2.8a)

and

E

4m

' 1/2
e

—pm+1/2 —a )

(~ + I a2)1/2
2

(2.8b)

m=S (x =v'2a) ——= dxp (x)——.m m 4 +— m 4
(2.8c)

As a consequence of the previously mentioned validity
condition for the WKB wave function, Eq. (2.5), Eq. (2.8)
describes the photon statistics of W only in the limit of
quantum numbers m appropriately larger than a &&1,
that is, in the oscillatory region —the center of interest of
this paper. For a detailed discussion of the behavior of
W in other regimes of m we refer to Ref. 11.

We substitute this result back into Eq. (2.4) and perform
the summation, which together with Eqs. (2.2a), (2.5),
(2.6}and (2.7) yields

FIG. 3. In the framework of the Wigner function formalism
the probability W 58 of finding m=58 photons in a highly
squeezed state [Gaussian cigar of (a)] is obtained by integrating
the product P' '58P,'q' of the corresponding Wigner functions
(c) over phase space. In complete correspondence to the
m =58th Bohr-Sommerfeld band of Fig. 2 the outermost wave
front of the oscillator Wigner function P'"'58, (b), cuts out of
the Gaussian cigar two symmetrically located peaks similar to
the two diamond-shaped zones of Fig. 2. Moreover, the area
W ", underneath each of these peaks is equal to the area
A =A of one of the weighted diamonds. The next inner
wave front of P' '» exhibits negative values and creates a
"ditch" in phase space and in the product P' ' 58P,'„'.The fol-
lowing wave front with positive values gives rise to the
"tongue, " of (c). The weighted area of the "ditch" and the
"tongue, " W "'", is given by Eq. (4.6'), W '"" -=2A cos(2$ ),
which results in the photon count probability W
=2Wd" + Wd"'" —=2A +2A cos(2$ ). For I =58 we
find roughly as many positively as negatively weighted areas and
thus W 58-=0, in agreement with Fig. 1 {here we have chosen
a =49 and @=0.1).
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III. OSCILLATIONS IN W AS A RESULT
OF INTERFERENCE IN PHASE SPACE

In this section we show that Eq. (2.8) allows a simple
geometrical interpretation in phase space and, in particu-
lar, that the oscillations in $V are a consequence of in-
terference in phase space. In the semiclassical limit the
mth number state, described by the WKB wave function
u of Eq. (2.5), can be represented in phase space as a cir-
cular Bohr-Sommerfeld band' of area 2n (in units fi)
with inner radius r'"'=(2m )' and outer radiusr"""=[2(m +1)]',as shown in the inset of Fig. 2. The
Bohr-Sommerfeld trajectory, Eq. (2.6)

is (aside from the constant phase shift n/. 4) given by half
the area caught between the center lines [Eq. (3.1) and
x =~2a] of the two states, as indicated in Fig. 2.

IV. OSCILLATIONS IN W AS A RESULT
OF NEGATIVE WIGNER PSEUDOPROBABILITIES

We now compare and contrast the concept of interfer-
ence in phase space to the corresponding Wigner-
function treatment. In this formalism the probability
W of Eq. (2.2) is given' by

m+ —,
' =(1/2)p +(1/2)x (3.1)

W =2mf . dx f dp P' '(x,p)P', q'(x, p), (4.1)

runs in the middle of the band.
For excitations m appropriately larger than a each

band intersects the elliptical contour line of the Gaussian
cigar

where P&' denotes the Wigner function of the squeezed
state [Eq. (3.2)] and P' ' is the Wigner function of the
harmonic oscillator ' in its mth state of excitation,

~(w) i i —1 —(2/e)(x —+2a) —(p/2)p(X,P) =ST e (3.2) P' '(x,p)=( —1) m 'exp[ —(x +p }]L [2(x2+p~)] .

representing the Wigner-Cohen function ' of a highly
squeezed state [shown in Fig. 3(a)] in two symmetrically
located diamond-shaped zones. Each zone has the
weighted area

A = ,' f dx—fdpP~()(x, p)=A
mth band

In the last step we have performed the integration shown
in detail in Appendix B. Hence the area A of one of the
diamonds is identical to the amplitude A, Eq. (2.8b), of
the oscillations.

The probability 8' to find m photons in a highly
squeezed state is not, however, the sum 2A of the areas
of the two diamonds. Neither is the intensity on the pho-
tographic plate in the familiar double-split experiment
equal to the sum of intensities that would arrive through
the two slits separately.

Quantum mechanics instructs us to add not probabili-
ties but probability amplitudes. The absolute value of
the probability amplitude corresponding to one diamond
is obviously (A )'/ =(A )'/. The Bohr-Sommerfeld
band is traversed in the clockwise direction as indicated
in Fig. 2. In one diamond the field oscillator is thus mov-

ing to the "right, " whereas in the other it is moving to
the "left,"which yields

W = i+A ™e+QAe (3.4)

(4.2)

Here Lm is the mth Laguerre polynomial. ' ' The prob-
ability 8' is thus given by the overlap in phase space
[Fig. 3(c)] between the distributions P' ', Eq. (3.2),
shown in Fig. 3(a) and P' ', Eq. (4.2), shown in Fig. 3(b)
in the neighborhood of the Gaussian cigar of the
squeezed state. In order to make contact with and stress
the relation to the area-of-overlap approach we again per-
form the phase-space integration of Eq. (4.1} in the semi-
classical limit, that is, for large displacements a p)1.
Moreover, we consider strong squeezing, that is,
0 g e (g 1. We treat the general case in Appendix C.

The exponential falloff of the Gaussian cigar of the
squeezed state confines the phase-space integration to an
ellipse of height (2/e)'/ and width (e/2)'/~ centered on
the positive x axis at x =v 2a, as shown in Fig. 3(c). The
Wigner function P' ', Eq. (4.2}, consists'3 2' of spherical
waves emerging from the origin of phase space with the
outermost feature always being a crest ' ' located in the
neighborhood of the Bohr-Sommerfeld trajectory, Eq.
(3.1), as shown in Fig. 3(b). This outermost wave crest
cuts out of the cigar Pz' two symmetrically located
peaks, whereas the inner wave troughs and crests create
the "ditches" and "tongues" in phase space, shown in
Fig. 3(c). We therefore decompose the phase-space in-
tegration, Eq. (4.1},into

a result identical to Eq. (2.8). According to Eq. (2.8c) the
interference-fixing phase

=(1/2) f dx f dp —m. /4 (3.5)
&Za

m m m

("diamonds" plus "ditches" ), where

(4.3)

~diam (2/K) f dx f dp( —1)me —(x +p )L [2(x2+p2)]e —(a/2)p e
—(2/a)(x — 2a)

P (x)

is the weighted value of the diamondlike area underneath one of the symmetrical peaks and

P (x) 2 Q2 2
W"""=(2/n. )f dx f dp( —1) '" +' 'L [2(x'+p')]e —"'" e

m —oo —P (x)

(4.4a)

(4.4b)
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is the weighted value of the area underneath the "ditch" and "tongue. " Here P =(p /2 —x )'/ and p denotes the
largest zero' of the mth Laguerre polynomial.

In the two symmetrically located peaks of Fig. 3(c) the Gaussian cigar acts like a 5 function

e
—(2/e)(x — 2a) (e~/2) 1/2$(x ~2a )

in x space, and thus

W ™=-(2e/n)' . dp( —I) e ' '+I' L {2[( 2a) +p ]je
P (x =~2a)

When we evaluate the slowly varying exponential func-
tion e 'I' /~ at the Bohr-Sommerfeld trajectory
p =2(m+ —,') —2a -=P (x =~2a), we find

gordian (2&/~)1/2e e(m ~1/p

x f dp( —I) e ((~"-)'+~')
P (x =~2a)

XL {2[(~2a)~+p2]j .

The remaining integration has been performed in Appen-
dix D. With the help of Eq. (D3}we arrive at

' 1/2 —e(m+1/2 —a )
2

~diam e
~'m 4~ (m+ —,

' —a }1/p ~m —+m (4.6)

Thus the weighted value of the area underneath one of
the two symmetrically located peaks of Fig. 3(c} is equal
in the appropriate limit to the weighted area A of one
of the diamond-shaped zones of the Bohr-Sommerfeld
area-of-overlap formalism. This equivalence is analogous
to the corresponding equivalence ' of the photon-count
probability of a coherent state. ' There the contribution
from the outermost crest of the Wigner function is
equivalent ' to the contribution from the mth Bohr-
Sommerfeld band. For such a coherent state, moreover,
the inner crests and troughs of P' ' do not contribute
significantly ' to the photon statistics. However, in the
present case of a squeezed state they give rise to the oscil-
latory behavior of 8' . This we shall now demonstrate.
We therefore turn to the calculation of the weighted
value of the area covered by the "tongue" and the
"ditch;" that is, of the Wd"'" of Eq. (4.4b).

We first perform the integration over p and neglect the
slight falloff of the cigar with increasing p along
x =const, that is, we set exp[ —(e/2)p ]—= I,

gfditch «(2/7T)[2(m + (
) 2a2] —1/2

X xcos2S x —m 2

grditch (&/~ )
1/2

(m + ( a2)1/2
2

(e/8)
»=0

2k

2» {cos[2S (x)—n/2]j { ~z

(4.7)

When we neglect the slow variation of p (x) compared
to cos(2S —1r/2), we can evaluate the derivative

2k

2» {cos[2S (x)—m/2]j
dx

=( —4)"[p (x)]2"cos[2S (x)—m/2],

and thus reduce Eq. (4.7) to

prditch ~2m

1/2

(m+ ( a2}1/2
2

[( e)(m + —,
' —a—2)]»

x g cos(2$ }
k=0

X exp[ —(2/e)(x —&2a )z],

where we have evaluated the slowly varying function
[p (x)] ' arising from Eq. (D6) atx =~2a and factored
it out of the integral. With the help of Appendix A, Eq.
(A3), the preceding integral can be expressed as a power
series in e

=2A cos(2(t) ) . (4.6')

W ""=(2/m) f—dx f dp( —I) e '" +I' '
—00 —Pm

XL [2(x +p )]

X &
—(2/e)(x —+2a)

The integration over p can then be performed with the
help of Eq. (D6), that is,

Therefore the oscillatory behavior of 8' is contained in
the "ditches" of the product P' )P~() of Fig. 3(c) caused
by the inner wave troughs of P' ' with their negative
values. This is confirmed by Fjg. 4, where we show this
product for m =60 and 64. Here the inner wave troughs
reach deeper into the cigar, forming ditches with a depth
different from the m =58 case and therefore giving rise to
the oscillations in 8' . We conclude this section by sub-
stituting Eqs. (4.6) and (4.6') back into Eq. (4.3) to find
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W =2A +2A cos(2$ ),
a result identical to Eq. (2.8).

(4.8)

V. SUMMARY AND CONCLUSIONS

y(w) g(w}
m=60" sq 1

1

QI
l(

tp

li

{w) &{w}
m=6I" sq

In summary, we emphasize the similarities and
differences between the concept of interference in phase
space and the Wigner-function formalism when applied
to the example of the photon-count probability 8' of a
highly squeezed state. In complete correspondence to the
rnth Bohr-Sommerfeld band the outermost wave crest of

the Wigner function of the mth number state cuts out of
the long, thin, Gaussian cigar of the squeezed state two
symmetrically located peaks with diamond-shaped con-
tour lines and weighted area W " Eq. (4.6), equal to the
corresponding area A, Eq. (3.3), of the area-of-overlap
algorithm. The rapid variation in W appears as a
consequence of interference between the two peaks, Eq.
(3.4). In the framework of the Wigner function, however,
these beats arise from areas in phase space in which the
Wigner function of the mth number state attains negative
values, that is, from the inner wave troughs. Moreover,
in the area-of-overlap approach the interference-fixing
phase P is governed by the area caught between the
center lines of the mth Bohr-Sommerfeld band and the
squeezed state cigar and thus by an area in phase space
outside of the cigar. This is in contrast to the Wigner
equivalent where the total expression 2A cos(2$~) is
determined, Eq. (4.6'), by the "ditches" and "tongues"
created by the inner wave troughs and crests within the
cigar. The main difference between the two concepts,
however, stands out most clearly in a direct comparison
between Eqs. (3.4) and (4.8): The area-of-overlap plus in-
terference concept identifies two (or more) well-defined
zones of crossover in phase space as contributors of prob-
ability amplitude. In contrast, the Wigner approach
deals with probabilities themselves —some positive and
some negative ("pseudoprobabilities") —to account for
interference phenomena.

In conclusion, we note that standard quantum mechan-
ics provides the probability to find m photons in a
squeezed state in the shape of Eq. (2.2),

=w' = f" dx f" dXQ„(x)1(i„(X)u(x)u (X) .

(5.1)

FIG. 4. When the field oscillator is in its m =60th state of
excitation, the wave fronts have progressed further outwards
compared to the m =58th state. Again the outermost band cuts
out two symmetrically located peaks, each of weighted area
A =A . However, the following wave front with positive
value now reaches deeper into the Gaussian cigar thus amplify-
ing the "tongue'* and reducing the depth of the "ditch, " as
shown in (a). Consequently, integration over phase space yields
an unusually large value for W 60, in agreement with Fig. 1.
This inner wave front has marched even further outwards for
the m =64th state as to cut the Gaussian cigar twice. Only a
small "tongue" survives from the next wave front with positive
values. Therefore integration over phase space results in an al-
most vanishing probability W 64 as shown in Fig. 1. This
clearly demonstrates that the oscillations in the photon distribu-
tion of a highly squeezed state result from the inner negative-
valued wave fronts of the Wigner function for the oscillator.
(Here, as in the other figures, we have chosen a =49 and
@=0.1.)

Yet hardly from this formula by mere unmotivated calcu-
lation would the discovery have been made that the pho-
ton distribution of a highly squeezed state undergoes os-
cillations. That insight came out of the semiclassical
analysis" of Sec. III, not out of Eq. (5.1). Moreover, the
semiclassical analysis provides a quick and simple way to
get results that are approximate but often quite good ap-
proximations. Therefore the motive is strong to provide
a link between Eq. (5.1)—expressed here as a double
integral —and the semiclassical analysis. That link we
now have in the results of this paper. The reasoning
leads from the integrals, Eq. (5.1), in x and X space to a
Fourier transform in x,p space —the Wigner function.
This correspondence is here and now spelled out with the
area of overlap in phase space.
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APPENDIX A: EXPRESSION FOR INTEGRAL
EQ. (2.2b) IN TERMS OF A POWER SERIES

In this appendix we express the integral

f dX f (X }e
—()/A. )(x —V 2a) (Al)

to yield

(g/4)k d2kf

k =o k! dx x =&ra
(A3)

for functions f which allow the Taylor expansion

f(x)= g, (x —&2a)k
k=0 x —v 2a

(A2)

in a power series of A, . When we substitute Eq. (A2} into
Eq. (Al),

APPENDIX B: AREA OF OVERLAP BETWEEN
GAUSSIAN CIGAR AND MTH
BOHR-SOMMERFELD BAND

In this appendix we calculate the area of overlap

2A = fdx fdpP' '(x,p)
mth band

(Bl)
ao

1 dk
k

k=0 k( dx x =&ra

dX (X /2a )ke —(1/k)(" —+2a)

between the mth band defined by the edges r'"'=(2m)'
and r"""=[2(m+1)]' and the long, thin Gaussian ci-
gar

p(w)(X ) (1/~)e (2/e—)(x V2a—) (e/2—)px,p (B2)
we can perform the resulting integrations with the help
of

y e
—& /ky 2k+1 0

and

f dy e
—y /k@2k ~1/2gk+)/22 —2k(2k)1/k(

representing a highly squeezed state (0&F.«1). When
we substitute Eq. (B2) into Eq. (Bl) and note that for
0(e((1

(2/~~)1/2e —(2/e)(x —+2a) 5(X —&2a ),
we can perform the integration with respect to x and ar-
rive at

[2( 1)—2a2 ~1/2

2A =2(e/2m)' f,„,dp exp( —ep /2)
( 2m —2a2 )1/2

=—2(e/2m)'/ [[2(m+1)—2a ]'/ —[2m —2a ]'/ Iexp[ —(e/2)((1/2)[[2(m +1)—2a ]'/ +(2m —2a )'/
I ) ] .

(B3)

Here we have confined the integration to one of the two
symmetrically located diamond-shaped zones of Fig. 2.
Moreover, in the last step we have approximated the in-
tegral by its width times the value of the integrand at the
center of the interval.

With the help of

I

gW =fdm4A cos2$

=2fdmw
(X) e

—6m'

dm'(e/m)' =1 (m'=m+ —,
' —a ) .

(m')'/

(m+1 —a }' —(m —a )'

(m+1 —a ) —(m —a )

(m+1 —a }' +(m —a )'

APPENDIX C: PHOTON DISTRIBUTION
OF SQUEEZED STATES VIA WIGNER FUNCTION

In this appendix we perform the phase-space integra-
tion

W =2m f dx f dp P(")(x,p)P(~'(x, p) (Cl)

2(m + i a2)1/2
2

Eq. (B3) reduces to

to obtain the photon distribution of a squeezed state lo-
cated at the positive x axis at xo=&2a and represented
by its Wigner function

E'

m= 4

—pm+ —' —a')
2

(m+ —' —a )'
2

m

P~'(x,p)=n. 'exp[ —s(x V2a}2 p2/s] .— —(C2)

When we substitute the Wigner function of a harmonic
oscillator in its mth state, '

We get an approximate but simple check of the reason-
ableness of this result by testing whether the probabilities
W of Eq. (2.8a) add to unity,

P' '(x,p)=( —1} m. 'exp( x p)L [2(x +p—}]—,
together with Eq. (C2) into Eq. (Cl), we find after minor
algebra
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W =(2/m)( —1) exp — a dx dp exp — (s+1) x-oo oo s&Za
s + 1 —oo —oo ( + 1)l/2

'2

Xexp — p L [2(x +p )]
s+1

$
(C3)

The relation
m

Lm[2(x +p }]=(—1) 2 g H2(m k)(2' x)H2k(2' p)

allows us to decouple the x and p integration in Eq. (C3},which then reads

—1 —(2M —1) 2$2 $11/2 m
Oo

Wm =n 2 exp — a
1 g kl( k)l

dKexp — K—
k=0

X e-&'H2k

'2

2$

s+1

H2(m k)

' 1/2

2

s+1

1/2

(C4)

Here we have introduced the new integration variables

K=(s+1)' x and g—:[(s+1)/s]' p .

The remaining two integrals can be found in Ref. 22 as

ye —( —)H

~1/2( 1 g2)k/2H
( 1 g2}l/2

APPENDIX D: INTEGRATION OF WIGNER
FUNCTION OVER A PATH IN PHASE SPACE

Any Wigner function P'! &) of a state
~ P) described by

a wave function g=P(x} has the remarkable propertyd
to yield the probability distribution

~
g(x}~, when in-

tegrated over the dynamically conjugate variable p, that
1s,

(Dl)

and

ye —&H y ~1/2 ' 2
1

k(2k)!
—oo

2

In this appendix we analyze the results of an integration
over only part of p. Moreover, we focus on the Wigner
function P' ' of (4.2) for the harmonic oscillator in the
mth state and calculate the diamond" integral

They simplify Eq. (C4} to

2~s s —1

s+1 s+1

(kl} (m —k)! (s —1)

2$
Xexp — as+1

Idiam(x) f dp( 1)me (z +p lL [2(x2+p2)]
P~(x)

(D2a)

and the "ditch" integral

Prat (x) 2 2Iditch(x) f dp( 1)me —(x +P )L [2(x2+p2)]
~m (x)

(D2b)

for
~
x

~
& +2(m + —,

'
) in the large m limit.

We start with I " . When we introduce the new vari-
able p

—=2(x +p ), Eq. (D2a) reduces to
With the help of

[ I 1 H (+} [H (2—l/2

Id" (x)=—f dp4 c
2—X

2

p/2—
l/2e p L (p),

2&s s —1

s+1 s+1 (2 m!)

(s —1)'

2
2$

exp as+1

we finally obtain the well-known result "" where p denotes the largest zero of the mth Laguerre
polynomial. ' We evaluate the slowly varying square
root (p/2 —x )'/ at the turning point' p, =—4(m + —,') of
exp( p/2)L (p), factor —it out of the integral, and arrive
at

Id'a (x)=— f dp( —1} e P L (p) .
4p (x)
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Here we have used Eq. (2.6).
The remaining integral has been calculated in Ref. 21

in the limit m ~00 and yields

f dp( —1) e t' L (p)= 2—,
~m

(1/m) f dp( —1) e '" +y 'L [2(x +p )]

1 1
~ 1+cos 2S (x)——

17 p (x) 2
(D4)

and thus

1 1

2 pm x
(D3)

When we decompose the preceding integral and use the
definitions, Eq. (D2), we find

f dp( —1) e '" +~ 'L~[2(x +p )]

=2I " (x)+I ""(x) . (D5)

We now turn to Ia"", Eq. (D2b), and make use of Eq.
(D 1),

With the help of Eq. (D3) we thus conclude from Eqs.
(D4) and (D5)

pP(N)~ppe(z+P)
Iditch(x )

cos 2S (x)——

p (x)
(D6)

XL [2(x +p )]=u2 (x) .

For
~

x
~

&+2(m + —,') the wave function u of the rnth

eigenstate, Eq. (2.3), can be approximated by the WKB
wave function, Eq. (2.5), and thus

The inner wave troughs and crests of P' ' are therefore
related to the oscillatory part of the wave function,
cos(S —m/4), whereas the outermost crest can be asso-
ciated with the classical probability '

P(classical) const /p (x )
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