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Dynamical-group approach to the Hulthen potential
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High-accuracy approximations of the bound-state energies of the Hulthen potential are obtained

by means of algebraic perturbation calculations which are based upon the dynamical-group struc-
ture SO(2, 1).

I. INTRODUCTION II. ALGEBRAIC FORMULATION

The Hulthen potential' has been used in a number of
areas in physics, ranging from nuclear physics ' to atom-
ic physics. In atomic units the potential is given by

The noncompact SO(2, 1) Lie algebra is realized in
terms of the radial vector r and the momentum p as fol-
lows:

V (r) = —ZAe '/(1 —e ~"), K, = ,'(rp r), K2 —rp———i, —K3 ,'(rp ——+—r), (2.1)

where A, is the screening parameter and Z can be regard-
ed as the charge of the nucleus. Its main advantage is
that it yields closed analytic solutions for the s waves.
Amongst the various methods which have been proposed
in order to evaluate bound-state energies of the Hulthen
potential (1.1) for I&0 (Ref. 6), the Fade approximation
methods yield fairly accurate results.

In the present paper we shall study the nonzero angu-
lar momentum states in the context of algebraic perturba-
tion theory. Therefore we present an approach which is
based on the Lie algebra of the group SO(2, 1), which is
well known to be the dynamical group for a number of
spherically symmetric potentials. Also for s waves the
Hulthen potential has been treated already from the
SO(2, 1) algebraic point of view. Recently, a nonpertur-
bative scaling variational method based on SO(2, 1) has
been formulated by Gerry et al. ' and applied to a class
of screened Coulomb potentials. " As it is the case in
their work, we shall also introduce a so-called tilting
transformation that relates between physical states and
the group states which constitute a basis of the relevant
unitary irreducible representations of SO(2, 1). It will be
demonstrated that all the matrix elements of the energy
functional can be expressed in closed form. Then the en-
ergy matrix, in which the unknown bound-state energies
occur on diagonal as well as on off-diagonal positions, is
numerically diagonalized by means of a Gauss-Seidel
iteration scheme. ' The tilting parameter is thereby ad-
justed in order to accelerate the convergence of the per-
turbation expansions. This same technique has been ap-
plied previously to the Schrodinger equation for the
exponential-cosine screened Coulomb potential. ' In the
present case of the Hulthen potential we again obtain
very accurate results, and this in spite of the appearance
of a transcendental function in the denominator of the
potential. At the end of the paper our results are listed
for certain typical values of the screening parameter A, .

where n =n, +/+1, n„ the radial quantum number and I
being the orbital angular momentum.

The Schrodinger equation with the Hulthen potential
(1.1) can be rewritten on multiplication with
r [1—exp( —A,r)] as

Q(E)
i

t/i) =0,
(2.3)

[—,'(1 —e "")rp AZe "r—,E(1—e ")r)
~

t—/j) =0 .

On account of the realization (2.1) the energy functional
Q(E) can be written as

Q(E) = —,
' [1—e ' ' ](K +K, )

+(E AZ)e ' ' (K—, K, ) —E(K3 —Ki)—
(2.4)

Next, we carry out a tilting transformation so that the
Schrodinger equation (2.3) becomes

where p = —i V. Introducing the ladder operators
K+ ——K, +iK2, we shall utilize the Hermitian SO(2, 1) rep-
resentation in which the compact generator K3 is diago-
nal. Denoting by i

Imn ) the orthonormal basis states of
the representation space, the irreducible representation is
completely determined by

K3 i
Imn ) = n

i
lmn ),

K+ i
Imn ) =&(/+1+n)(kn —I)

i
Imn+1),

L
~

Imn ) =(K3 —Kf —K2)
i

Imn ) =I(/+1)
~

lmn )

(nE[1,2, 3, . . . j, /EI0, 1, . . . , n —1),
m e {—I, —/+1, . . . , /I ),

(2.2)
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where

and

Q(E, 8)=e 'Q(E)e

(2.5)

(2.6)

(2.7)

Q(E, 8)= —~E K3+ +~E K)
l

2N 2'
l ct)A( K3 K

1
)

+ co(E —AZ) e ' ' K3
2N

cg)(—E —AZ) e ' ' K), (2.9)
l —cgA.(K3 —K

1
)

2'
Through the use of the Baker-Hausdorff-Campbell for-
mula

wherein

CO=e
—8 (2.10)

e '(K3+K&)e '=e+ (K3+K&)

it is easily verified that

(2.&)

A method to obtain in closed form the matrix elements of
the exponential operator on the right-hand side of (2.9) in
the SO(2, 1) group state basis, has been established by
Bargmann. ' The application of this method yields

a)A.(K3 —K1), , —a)A.(K3 —K
1

)(n'I /e
' ' /nl'P=(, n! /e ' ' /n'I&

1 f'(n' l )P—n '+ I + 1)
I (n' n+—1) 1 (n —I)I (n +I +1)

' 1/2

1+ COA.

I—n —n n' —n

co A,

)&zF, I+1 n, —n I; 1—+—n' n;—(n'&n), (2.11)

(2.12)

=—,'&(n —I)(n +1+1)5„„+& (n'& n) .

(2.13)

whereas from (2.2) we immediately obtain that

(n'I )K3 [
nl &=n5„

( n'I
f K,

f
nI & = ( n!

[ K,
J

n 'I
&

Q(E, 8) are linear with respect to E. Hence, we write

(n'I
~

Q(E, 8)
~

nl &=a„.„+Eh„„. (3.3)

Since the operator Q(E, 8) leaves the! value unchanged,
its nth eigenstate

~
Pnl & associated with a particular I

value, can be expanded in terms of the SO(2, 1) group
states as follows:

Notice that we have dropped everywhere the irrelevant
quantum label rn. The function 2F&(a, b;c;z) represents
a hypergeometric series which in (2.11) always reduces to
a polynomial. Finally, the matrix elements of the energy
functional Q(E, 8) can be calculated on account of the
completeness relation for the SO(2, 1) group states.

The substitution of (3.3) into (2.5) yields

( ap +bJr En i )ci
I

J'! & =0
i =1+1j =1+1

(3.4)

(3.5)

III. PERTURBATION EXPANSION

(nl
~

Q(E, 8)
~

n! & =0 (3.1)

with respect to E. However, the solution being 0 depen-
dent, it has been shown by Feranchuk and Komarov'
that the choice

A first approximation to the bound-state energies can
be obtained by considering only the diagonal terms of the
energy matrix Q(E, 8), hence by solving

E
~i ni

X,b„;c;
(3.6)

whereas forj &n we solve it with respect to the unknown

Cj,

and, since the group states belong to a basis, all the
coefficients accompanying basis states should vanish. For
j=n we solve the secular equation (3.5) with respect to
E ls

=0 (3.2) c.= — ' '
(j &n) . (3.7)

~i j (i~j) ji i +~i j(i~j )bji iEnl

ajj+ bjj En

yields attractive results for the approximations of zeroth
order.

Here we want to correct the lowest-order estimates by
treating the nondiagonal elements as perturbation terms.
Let us therefore notice that all the matrix elements of

Equations (3.6) and (3.7) have the appropriate form in or-
der to establish an iteration algorithm for the calculation
of E„l. Denoting the pth order approximations of E„l
and of the coefficients c., respectively, by E„'f' and cJI~',

the following Gauss-Seidel iteration scheme is proposed:
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TABLE I. Energy eigenvalues E„I in atomic units as a function of the screening parameter A, for 1$-3d states and for Z =1. In
square brackets are shown the m value and the number of iterations. In parentheses are given for an $ state the exact energy value

and for a p or d state the Pade approximation result taken from Ref. 7.

0.025

0.050

0.100

0.150

0.200

0.300

1$

—0.487 577 7
[1.0, 15]

( —0.487 578 1)
—0.475 312 1

[1.0,35]
(—0.475 312 5)
—0.451 249 0

[1.0,40]
(—0.451 2500)
—0.427 8107

[1.0,40]
(—0.427 812 5)
—0.404 993 5

[1.005,40]
(—0.405 0000)
—0.361 231 7

[1.01,30]
(—0.361 2500)

2$

—0.112811 5

[2.0, 15]
( —0.112812 5)
—0.101 248 5

[2.0,25]
(—0.101 250 0)
—0.079 996 9

[2.0,25]
( —0.080000 0)
—0.061 245 3
[2.005,25]

( —0.061 250 0)
—0.045 001 4
[2.005, 25]

( —0.045 000 0)
—0.020001 4

[2.01,25]
( —0.020 000 0)

2p

—0.112760 4
[1.48, 15]

—0.101042 5

[1.485, 15]
(—0.101044 3)
—0.079 1794

[1.49, 15]
(—0.079 179)
—0.059 441 5

[1.51, 15]

—0.041 886 0
[1.52, 15]

( —0.041 886)
—0.0137900

[1.53,25]

3$

—0.043 758 9
[3.0, 15]

( —0.043 758 7)
—0.033 368 7

[3.0,25]
( —0.033 368 1)
—0.016 807 0
[3.015,25]

( —0.016 805 6)
—0.005 879 7
[3.015,25]

(—0.005 868 0)
—0.000 560 7

[3.02, 25]
(—0.000 555 6)

3p

—0.043 707 1

[2.95,30]
( —0.043 707)
—0.033 165 0
[2.95,30]

( —0.033 165)
—0.016053 7

[3.0, 15]
( —0.016054)
—0.004 466 4
[3.025, 15]

( —0.004 466)

3d

—0.043 603 0
[2.5, 15]

(—0.043 603)
—0.032 753 2

[2.5, 15]
( —0.032 753)
—0.014484 2

[2.5, 15]
( —0.014484)
—0.001 396 5

[3.0, 15]
(—0.001 391)

(P) y & c(P)+ y b (P)E(~ —1)+ y & c(P —1)+ y b c(P —1)E(~—1)

l, J l,J l, J l,J
l (J l (J l)J l )J

c„'P'=1 (p & 1),

(a "+b E„'I'I ") ("j&n, p &1), (3.8)

whereby the initial c values are given by

Io)c,' =fi,„. (3.9)

IV. NUMERICAL RESULTS AND DISCUSSION

For each value of the free tilting parameter 8 for which
the scheme (3.8) and (3.9) is convergent the property
lim „E„'f'=E„i is satisfied. Nevertheless, the rate of
convergence is expected to be 6I dependent. This fact is
confirmed by the numerical calculations which are dis-
cussed in the next section.

The iterative scheme expounded in the previous section
has been used to calculate the bound-state energy values
for certain typical values of the screening parameter k.
Although the scheme (3.8)—(3.9), when it is convergent,
theoretically produces the correct eigenvalue E„I in the
limit p~ 00, we have to introduce in practice one more

TABLE II. Energy eigenvalue E„I in atomic units as a function of the screening parameter I, for
states with n =4. The results shown in square brackets and in parentheses have the same meaning as in
Table I.

0.025

0.050

0.075

0.100

4$

—0.020 001 7
[4.0,25]

(—0.020 000 0)
—0.011253 3

[4.01,25]
( —0.011 250 0)
—0.005 007 5

[4.015,25]
( —0.005 000 0)
—0.001 253 2

[4.02, 25]
( —0.001 250 0)

4p

—0.019949 0
[4.0,20]

( —0.019949)
0.011058 3

[4.0,25]
( —0.011058)
—0.004 622 4

[4.1,25]
(-0.004622)

—0.019 846 2
[4.0, 15]

( —0.019 846)
—0.010667 4

[4.0, 15]
(—0.010667)
—0.003 834 6

[4.1,25]
( —0.003 834)

—0.019691 1

[4.0, 15]
(—0.019691)
—0.010061 9

[4.0, 15]
(—0.010062)
—0.002 556 3

[4.0, 15]
(—0.002 556)
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constraint. Indeed, due to the exponential occurring in
the potential, the off-diagonal energy matrix coefficients
a," and b, do not vanish in general, although, far away
from the diagonal, they become neglectable. Hence, for
calculational purposes, since it is impossible to evaluate
to all orders p an infinity of c' ' coefficients, we have built
in a cutoff on the energy matrix such that it reduces to a
band matrix. On the other hand, it has been verified that
the rate of convergence of the iteration procedure strong-
ly depends upon the tilting angle 0 and, hence, upon the
chosen value of the parameter ~. This fact necessitates
the derivation for each particular case of an optimum
value of that parameter. It turns out that the optimum
depends not only upon the value of the screening parame-
ter but also upon the state under consideration.

In Tables I and II the results which have been obtained
by the present technique are listed and compared either
with exact values or with the results obtained by a Pade
approximation method. Indeed, for the s states the
bound state energies for Z = 1 are known to be given by
the simple formula

(4.1)E„o——— (2 —An )
Sn

Also, all the calculations have been carried out by re-
stricting the energy matrix (3.3) to a nineteen-band ma-
trix, which means that these coefficients a,- and b,- for
which

i j—i
i
)9 have been set equal to zero. In the

tables we also show the number of iterations required and
the optimal co value. It should be remarked that for s
states this optimal value is close to the theoretical value
which one obtains in the case of a pure Coulomb poten-
tial from the ansatz (3.2). Also, we have noticed that the
convergence rate is more co sensitive in the case of s states
than it is for higher l values. Hence, we could expect that
the accuracy of our approximations is much higher for
the latter states, a fact which seems to be confirmed since
the Fade approximation results are almost everywhere
exactly reproduced. In view of the low calculational
efforts required, the present technique therefore turns out
to be very useful for obtaining high accuracy approxima-
tions of the bound-state energies of the Hulthen potential
for 1&0.

'Also at National Fund for Scientific Research (NFWO), Belgi-
um.

L. Hulthen, Ark, Mat. Astron. Fys. 28A, 5 (1942).
2L. Hulthen and M. Sugawara, in Encyclopedia of Physics, edit-

ed by S. Flugge (Springer, Berlin, 1957), Vol. 39.
O. P. Bahethi and M. G. Fuda, J. Math. Phys. 12, 2076 (1971);

C. S. Lam and Y. P. Varshni, Phys. Rev. A 4, 1874 (1971);H.
van Haeringen, ibid. 18, 56 (1978); B. Durand and L. Durand,
Phys. Rev. D 23, 1092 (1981); R. Dutt and P. Varshni, J.
Math. Phys. 24, 2770 (1983); R. L. Hall, Phys. Rev. A 32, 14
(1985).

4J. Gruninger, J. Chem. Phys. 55, 3561 (1971);K. Szalcwicz and
H. J. Mokhorst, ibid. 75, 5785 (1981);G. Malli, Chem. Phys.
Lett. 26, 578 (1981);U. Myhrman, J. Phys. A 16, 263 (1983).

S. Flugge, Practical Quantum Mechanics (Springer, Berlin,
1974).

R. Dutt and U. Mukherji, Phys. Lett. 90A, 395 (1982); S. H.
Patil, J. Phys. A 17, 575 (1984); V. S. Popov and V. M. Wein-

berg, Phys. Lett. 107A, 371 (1985); B. Roy and R. Roy-

choudhury, J. Phys. A 20, 3051 (1987).
7C. S. Lai and W. C. Lin, Phys. Lett. 78A, 355 (1980).
B. G. Wybourne, Classical Groups For Physicists (Wiley, New

York, 1974).
B. I. Dunlap and L. Armstrong, Phys. Rev. A 6, 1370 (1972);J.

M. Cai, P. Y. Cai, and A. Inomata, ibid. 34, 4621 (1986).
' C. C. Gerry and A. Inomata, Phys. Rev. D 23, 503 (1981).
"C.C. Gerry and J. Laub, Phys. Rev. A 30, 1229 (1984).

F. M. Fernandez, A. M. Meson, and E. A. Castro, J. Phys. A
18, 1389 (1985); V. Fack, H. De Meyer, and G. Vanden

Berghe, J. Math. Phys. 27, 1340 (1986).
H. De Meyer, V. Fack, and G. Vanden Berghe, J. Phys. A 18,
L849 (1985); V. Fack, H. De Meyer, and G. Vanden Berghe,
ibid. 19, L709 (1986).

' M. Bednar, Ann. Phys. (N.Y.) 75, 305 (1973).
'5V. Bargmann, Ann. Phys. 48, 568 (1947).
' I. D. Feranchuk and L. I. Komarov, Phys. Lett. 88A, 211

(1982).


