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Covariant phase-space representation for harmonic oscillators
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It is shown that, in the phase-space representation of quantum mechanics, the uncertainty rela-

tion can be stated in terms of the integral invariant of Poincare. The uncertainty relation for
spreading free wave packets is discussed as an illustrative example. This phase-space approach can
be extended to the relativistic regime. It is shown that Lorentz boosts are area-preserving canonical
transformations in the phase space of the light-cone variables. The harmonic osci11ator is discussed

in detail as an illustrative example for the covariant realization of the uncertainty principle.

I. INTRODUCTION

The phase-space representation of quantum mechan-
ics' is of current interest. We have shown in our previous
paper that the light-cone coordinate system is the natu-
ral language for the Lorentz-covariant phase-space repre-
sentation of quantum mechanics. The localized light
wave was discussed as an illustrative example. However,
the light wave depends on only one of the two light-cone
variables.

The purpose of this paper is to discuss a physical exam-
ple depending on both of the light-cone variables. The
covariant harmonic oscillator will serve this purpose.
The harmonic oscillator occupies a very prominent place
in the physics of phase space. Unless we know how to
deal with the covariance of the harmonic oscillator, we
are not likely to understand the covariance of phase
space.

In the phase-space representation, the uncertainty rela-
tion is stated in terms of the integral invariant of Poin-
care, which is called the "error box" in the current
literature. The area of the error box cannot be smaller
than Planck's constant. In order to illustrate the advan-
tage of using the phase-space representation, we start
with the problem of wave-packet spreads. In the
Schrodinger picture, the uncertainty product increases as
time progresses or regresses. On the other hand, the
volume of the error box remains constant for the spread-
ing wave packet, even though its shape is deformed.
This means that the wave-packet spread is a canonical
transformation in phase space.

The phase-space representation of nonrelativistic quan-
tum mechanics has a built-in symmetry which is
mathematically equivalent to that of the (2+ 1 )-
dimensional Lorentz group. Since the position and
momentum variables are c numbers in the phase-space
representation, it is possible to formulate canonical trans-
formations in a manner identical to the case in classical
mechanics. Indeed, the group of linear canonical trans-

formations is Sp(2) which is isomorphic to the (2+ 1)-
dimensional Lorentz group. '

In this paper, we shall show that Lorentz boosts are
canonical transformations in the phase space consisting
of the light-cone variables. Thus, from the mathematical
point of view, the Lorentz covariance does not add new
complications in phase space. However, from the physi-
cal point of view, we are dealing with a realization of the
uncertainty principle which is diff'erent from that in the
Schrodinger picture of quantum mechanics. The phase-
space representation enables us to state the uncertainty
relation in a Lorentz-covariant manner.

In Sec. II, we study the phase-space representation for
wave-packet spreads and compare it with the case of har-
monic oscillators. It is pointed out that the uncertainty
relation can be stated in terms of the area of the error box
in phase space. The area of the error box remains un-

changed as time progresses or regresses. It is shown that
the error boxes for the spreading wave packet and the
harmonic oscillator coincide with each other in the
large-time and weak-spring-constant limits, respectively.
In Sec. III, the wave-packet spread is formulated in terms
of homogeneous linear canonical transformations in
phase space.

Sections IV and V consist mostly of reviews which are
needed for the covariant formulation given in Sec. VI.
Section IV deals with the phase-space representation for
nonrelativistic harmonic oscillators. Section V is based
on the covariant harmonic-oscillator formalism which
constitutes a representation of the Poincare group, and
which electively describes the basic phenomena of rela-
tivistic hadrons in the quark model.

In Sec. VI, we combine Secs. IV and V to formulate the
covariant phase-space representation of harmonic oscilla-
tors. The conclusion of the present paper is that the con-
cept of the covariant error box in phase space gives the
physical basis for the phenomenology based on the
mathematics of the covariant harmonic-oscillator forrnal-
ism.
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II. WAVE-PACKET SPREADS

Let us start with a one-dimensional harmonic oscillator
in its ground state. The uncertainty product remains in-
variant when the spring constant is gradually reduced.
On the other hand, when the oscillator force is suddenly
removed, the uncertainty product becomes dependent on
time. Although these two different cases are two different
manifestations of one physical principle, the wave-packet
spread has been one of the agonizing features of the
present form of nonrelativistic quantum mechanics.

In the phase-space representation of quantum mechan-
ics, the uncertainty relation can be stated in a time-
independent manner for both the harmonic oscillator and
the spreading wave packet. If P(x, t) is the physical solu-
tion of the Schrodinger equation, the phase-space distri-
bution function is defined as'

P(x,p, t)= —fQ'(x +y, t)P(x —y, t)e~'~~dx, (2. l)

p(x, t)=
i l((x, t)

i
=fP(x,p, t)dp,

o(p, t)=
i! P(p, t)

i

'= fP(x,p, t)dx,
(2.2)

where P(p) is the momentum wave function.
The time-dependent Schrodinger equation leads to the

differential equation'

which we shall hereafter call the PSD function. This is a
function of t, x, and p, which are c numbers. This func-
tion is real but is not necessarily positive everywhere in
the phase space of x and p. We can, however, recover the
positive distribution functions in the position and
momentum coordinates

8 8 8P(x,p—, t) = — P (x,p, t)+ g 1

Br m Bx „0 2
I

2ll
1

(2n + 1)!

2n +1
8

Bx
V(x)

' 2n+1

P(x,p, t), (2.3)

where m is the mass of the particle, and V(x) is the po-
tential. In the case of the harmonic oscillator with
V(x) =Kx /2, the above differential equation becomes

P(x,p, t—)=— P(x,p, t)+Kx P(x,p, t) .
m Bx p

(2.4)

If the particle is free, this differential equation becomes

P(x,p, t) = —— P(x,p, t) .
Bt m Bx

(2.5)

The solution of the above differential equation is

P(x,p, t)=P(x ptlm, —p, O) . (2.6)

The time evolution of this solution is illustrated in Fig. 1.
Indeed, the error box undergoes a shear. The volume of
the error box is invariant under time evolution. This is a
more precise statement of the uncertainty relation than is
given in the Schrodinger picture.

If we start with a free-particle wave packet with a
Gaussian momentum wave function

1/4

P(x,p, r)= —expI —[(x prim) —Ib+bp ] I . (2.9)

This distribution is concentrated within the region where
the exponent is less than 1 in magnitude. This region is
described by the tilted ellipse described in Fig. 2. This is
the error box for the spreading wave packet.

Since x and p are c numbers in the phase-space repre-
sentation, the PSD function P(x,p, t) can be canonically
transformed in phase space, as is done in classical
mechanics. The concept of the error box is already in the
Poisson-bracket formalism of classical mechanics. Its
volume is invariant under canonical transformations.
This is called the integral invariant of Poincare. Howev-
er, classical mechanics does not give the lower limit on
the size of the error box.

Let us go back to the wave-packet spread. How is the
spreading Gaussian wave packet different from the
ground-state harmonic oscillator whose mass and spring
constant become adiabatically weak? This is a situation

p

bg(k)= e
—bk /2 (2.7)

at t =0, the time-dependent Schrodinger wave function
becomes

1/2
1

b +it/m
e

—x /2( b +i t /m ) (2.8)

If we construct the PSD function for the above wave
function, its form is

FIG. 1. Shear in phase space. Every point in phase space
moves horizontally in the x direction with velocity proportional
to p. This is an area-preserving transformation.
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III. WAVE-PACKET SPREADS IN TERMS
OF CANONICAL TRANSFORMATIONS

In order to study canonical transformation properties
of the shear described in Fig. 1, let us write the solution
of Eq. (2.5}given in Eq. (2.6}as

x' 1 t/m x

p 0 1
(3.1)

p

On the other hand, the group of homogeneous linear
canonical transforinations is Sp(2),3 6 which is locally iso-
morphic to the (2 + 1)-dimensional Lorentz group.
Indeed, the group of homogeneous linear canonical trans-
formations consists of rotations around the origin gen-
erated by

very familiar to us, and is described in Fig. 2, in which
the x axis expands and the p axis contracts. This defor-
mation is also an area-preserving canonical transforma-
tion, and is commonly called "squeeze" in the literature.

The spread of the Gaussian wave packet is also illus-
trated in Fig. 2. This is consistent with the shear effect
given in Fig. 1. It is possible to take the "projection" of
this elliptic distribution to the x and p spaces using the
formulas for p(x) and o(p) given in Eq. (2.2). These
probability densities lead to the uncertainty product in
the Schrodinger picture, which expands as time
progresses or regresses.

The error box for the spreading wave packet in the
infinite-time limit coincides with the error box in the lim-
it of zero spring constant. In the phase-space representa-
tion, the magnitude of uncertainty is the same for both
cases. In the Schrodinger representation, one is finite
while the other is infinite.

i/2
0

0 0 i/2
i—/2 ' 2 i/2 0 (3.3)

respectively. These generators satisfy the commutation
relations

with

1 t/m
0 1

Then, where does the matrix N stand among the genera-
tors of canonical transformations given in Eqs. (3.2} and
(3.3)?

In order to answer this question, let us construct first
the squeeze operator

S(7))=e
exp(ri/2)

0 exp( —i)/2) (3.6)

This operator expands the x axis while contracting p.
This is of course a canonical transformation. Thus the
following operators also generate homogeneous linear
canonical transformations:

8', =8, =S(g)B,S(—ri}, Bz(ri}=e "S(ri)BzS(—ri),

[8„82]= iL,—[B„L]= i8—2, [B~,L]=iB, . (3.4)

This set of commutation relations is identical to the Lie
algebra for the (2+ I)-dimensional Lorentz group. On
the other hand, the shear transformation of Eq. (2.9) is
generated by the matrix

0 i
N = 0 0 (3.5}

0 —i/2
i/2 0 (3.2) (3.7)

and squeezes along the x axis and along the x =p line
generated by

li P

Shear

X

Squeeze

FIG. 2. Ground-state harmonic oscillator and the spread of
the Gaussian wave packet in phase space. In terms of the in-

tegral invariant of Poincare, the uncertainty relation can be
stated in the same manner for both cases. Their projections to
the x and p axes are di8'erent. In the oscillator case, the p distri-
bution contracts while the x distribution expands. On the other
hand, in the case of spreading wave packets, the p distribution
does not change. This is why the uncertainty product for
spreading wave packets increases as time progresses or
regresses.

L'( i)=re "S(ri}LS(—ri} . (3.8)

1

2
0 (3.10)

The mathematics of this process is called the contraction
of O(3) and O(2, 1) to E(2). ' The physical content of
this process is that a unified description can be given for
the O(3)-like, E(2)-like, and O(2, 1)-like internal space-

In the limit of large g, the above operators become B&,

N, and N, respectively. These operators do not form a
closed Lie algebra of any group, but give a partial view of
a more complete group-theoretical picture that both the
Lorentz-boosted O(3) and O(2, 1}become a group locally
isomorphic to the two-dimensional Euclidean group in
the large-g limit. '

In the present case, the O(3)-like group is generated by
L, L„and L2, where

0 0
L) ——

0 ] L2 —— (3.9)
2 2

The O(2, 1)-like group is generated by L, , 82, and 83,
where

0
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time symmetries of massive, massless, and imaginary-

mass particles, respectively, as Einstein's F. = (m

+p )' unifies the energy-momentum relation for all rel-

ativistic particles. This point has been discussed in the
literature, ' '" and is illustrated in the first and second
rows of Fig. 3.

IV. HARMONIC OSCILLATORS

H= ,'(P—+x). (4.1)

The normalized solutions of the Schrodinger equation are

g„(x)= [ I/(&m2"n! )]'~ H„(x)exp( —x /2), (4.2)

where H„(x) is the Hermite polynomial of nth order.
These wave functions are in the energy eigenstates. It is
possible to evaluate the quantum PSD function

The Hamiltonian for the one-dimensional nonrelativis-
tic harmonic oscillator with unit frequency can be written
as

p„(x,p) = —f p„"(x +y)g„(x y)e —'p~dy .

The result of the calculation is'

(4.3)

P„(x,p) = [exp( —r )] g ( —1)"2" "r '" "'/l [(n —k)!]~k!j,
7T k=0

(4.4)

where r =(x +p ).
The above form is defined in the two-dimensional

phase space spanned by x and p axes. Since it depends on
x and p only through the variable r, the function is invari-
ant under rotations around the origin. We can thus write
P„(x,p} as

1 d d
( )

2p dp dp
+ —,'p P„(r)=(2n +1)P„(r),

I

can be interpreted in terms of another equation. The
PSD function given in Eq. (3.5) indeed satisfies the
differential equation'

P„(x,p)=P„(r) . (4.5) (4.6)

As is expected, this function is positive in some regions
and is negative in other regions in phase space. It van-
ishes on the circles on which the polynomial contained in
P„(r) of Eq. (4.5) is zero.

In order to study this more systematically for the har-
monic oscillator, let us see whether P„(x,p) of Eq. (3.5)

where p=&2r. This is the radial part of the rotation-
invariant Schrodinger equation for the harmonic oscilla-
tor in two-dimensional space spanned by the variables
&2x and &2p. If we use Rk(p) for the normalized radial
equation for the kth excited state with the eigenvalue
( k + 1) with the orthogonality relation

Energy

Momentum

Spin, Gauge

Helicity

Massive

Slow

2
P

Pm

sp

betwee~

E=gm'+p'

Little Groups

Massless
Fast

E=p

Gauge Trans,

f pR„(p)R (p)dp=5„

then the PSD function is

P„(r)=( I/&4m. )R2„(p) .

Therefore P„satisfies the orthogonality relation

fP'(x, p)P„(x,p)dx dp =2m fP„(r)P (r)r dr

(4 7)

(4.8)

(4.9)

Quarks

Par tons
Quark Model

Covariant

Phase Space
Pa r ton Model

For the ground state, the PSD function is

Po(x,p)= —exp[ —(x +p )] . (4.10}

FIG. 3. Slow and fast particles. Einstein's E =(I' +m
unifies the energy-momentum relations for massive (nonrela-
tivistic) particles and for massless particles. The second row in-
dicates that the little group of the Poincare group unifies the
internal space-time symmetries of massive and massless parti-
cles, as is discussed in Ref. 11. The third row states that the co-
variant phase-space representation forms the physical basis for
the covariant harmonic-oscillator formalism which has been
shown to give a unified picture of quark model and the parton
picture at the phenomenological level. This point is discussed
in Sec. VI of the present paper.

Ifn =1,

P, (x,p) = —(x'+p' ——,
' )exp[ —(x'+p')] . (4.11)

We can then use the Schmidt orthogonalization pro-
cedure to construct the PSD function for higher values of
n.

In this paper, we are interested in homogeneous linear
canonical transformations in phase space consisting of ro-
tations and squeezes along a given direction. The above
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l

2 "a —pa

a a l a"=2 "a 'a, "=2 "a,"a. (4.12)

which satisfy the commutation relations for the genera-
tors of the (2+ 1}-dimensional Lorentz group given in
Eq. (3.4). While this group is one of the fundamental
symmetry groups in the physics of phase space, we shall
see in Sec. VI that the Lorentz boost is a squeeze in the
phase space of the light-cone coordinate position and
momentum variables.

PSD functions are rotationally invariant. The squeeze
along the x direction means that the coordinate variable
x is multiplied by a real positive number b, while the p
variable is divided by b T. he integral measure (dx dp)
remains invariant during this process.

In this case, the group of homogeneous linear canoni-
cal transformations is generated by

V. COVARIANT HARMONIC OSCILLATORS

The covariant harmonic oscillator has a long history.
It was Dirac who suggested in 1945 the use of harmonic
oscillators to construct representations of the Lorentz
group. ' Yukawa in 1953 studied the possibility of using
the oscillator for studying relativistic composite parti-
cles. ' However, its physical relevance was not revealed
until the successful calculation of the proton form factor
by Fujimura, Kobayashi, and Namiki in 1970.' In the
1971 paper of Feynman, Kislinger, and Ravndal, the au-
thors point out the need for relativistic bound-state mod-
els, such as the harmonic oscillator model, in order to
supplement the traditional Feynman-diagram approach
which is not always effective in dealing with covariant
bound-state problems. '

The covariant oscillator formalism has been extensive-
ly discussed in the literature. It serves as one of the
physical representations of the Poincare group. At the
same time, the formalism allows us to explain the pecu-
liarities of Feynman's parton picture in terms of the
bound-state quark model. '

Let us start with the differential equation of Feynman
et al. ' for a hadron of two quarks bound together by a
harmonic-oscillator potential of unit strength

'2
a+

ax~ axt

't 2

+( —,', )(x&—xg') +m 0 .qr(x„xb ) =0, (5.1)

X =(x, +xb)/2, x =(x, —xb)/2&2 . (5.2)

The four-vector X specifies where the hadron is located in
space-time, while the variable x measures the space-time
separation between the quarks. In terms of these vari-
ables, Eq. (5.1) can be written as

8 1 8
aX 2 ax

—m0+ — —x qr(X, x}=0. (5.3}

This equation is separable in the X and x variables. Thus

p(X,x)=f (X)g(x), (5.4)

and f (X) and f(x) satisfy the following differential equa-
tions, respectively:

a'
ax

—mo —(A, +1) f (X)=0,
P

1 8 —x +(k+1) g(x)=0.
2

(5.5)

(5.6)

where x, and xb are space-time coordinates for the first
and second quarks, respectively. This partial differential
equation has many different solutions depending on the
choice of variables and boundary conditions.

In order to simplify the above differential equation, let
us introduce new coordinate variables'

Equation (5.5) is a Klein-Gordon equation, and its solu-
tion takes the form

f (X)=exp(+iP&X"),

with

P'= P„—P~=M—'= m,'+(A+1), .

(5.7)

P =p +pb 0 = 2(p pb) (5.8)

where P is the hadronic four-momentum conjugate to X.
The internal momentum-energy separation q is conjugate
to x provided that there exist wave functions which can
be Fourier transformed. If the momentum-energy wave
functions can be obtained from the Fourier transforma-
tion of the space-time wave function, the differential
equation in the q space is the same as the harmonic oscil-

where M and P are the mass and four-momentum of the
hadron, respectively. The eigenvalue A, is determined
from the solution of Eq. (5.6). We are using the same no-
tation for the operator and the eigenvalue for the hadron-
ic four-momentum. This should not cause any confusion
since we are dealing only with free hadronic states with a
definite four-momentum.

As for the four-momenta of the quarks p, and pb, we
can combine them into the total four-momentum and
momentum-energy separation between the quarks'
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I Ix=x, y=y,
z'=(z Pt) /—(1—P')'",
t'=(t —Pz)/(1 —P')'" .

(5.9)

The diff'erential equation of Eq. (5.6) is separable also in
these variables:

lator equation for the x space given in Eq. (5.6).
Since the three-dimensional harmonic oscillator is

quite familiar to us, we are naturally led to consider the
separation of the space and time variables in Eq. (5.6).
However, the (x t) system is not the only coordinate sys-
tern in which the differential equation is separable. If the
hadron moves along the z direction with velocity parame-
ter P, the hadronic rest frame is important. In this frame,
the coordinate variables are

(6.1)

temporary center of mass of the particles, or that it de-
pends on the two positions at the time when their relativ-
istic distance is zero —when one is on the light cone of
the other. 20

In this paper, we take the light-cone approach. While
it is not possible to solve all the problems at this time, we
can discuss the uncertainty principle applicable to the
space-time separation between the quarks in a harmonic
system, using the light-cone variables. The eovariant
harmonic oscillator discussed in Sec. V serves as a
theoretical tool for this purpose. The harmonic-oscillator
wave function consists of a Gaussian factor and Hermite
polynomials. Since the Gaussian factor determines the
localization property of the wave function, let us study
first the ground-state wave function, whose form is

1/2

$0(z, t)= — exp[ (z +t—)l2] .

(5.10)

The solution of this equation consists of a product of
four one-dimensional oscillator wave functions. The x'
and y' components are not affected by the boost along the
z direction. Thus we can drop them from our considera-
tion. As for the t' component, the excitation contributes
a negative number to A, . However, this excitation can be
suppressed on the grounds that the time and energy vari-
ables are c numbers. Indeed, the time-energy uncertainty
relation is a c-number relation. ' This suppression of
timelike excitations can be achieved by the subsidiary
condition

u =(t+z)/&2, v =(t —z)/~2 .

Their Fourier conjugate variables are'

(6.2)

q„=(q, —qp)/&2 q„=(q +qo)/v 2 . (6.3)

The major advantage of using these variables is that the
Lorentz boost of Eq. (5.9) takes a very simple form

We have dropped the x and y variables which are not
affected by the Lorentz boost along the z direction.

This wave function can be written in the light-cone
coordinate system. ' If the hadron moves along the z
direction, the light-cone variables are defined to be

a
Bx~

Qp(x)=0 . (5.11)
' 1/2 1/2

Then the wave function takes the form

g&(z, t)= [1/(n2"n!)]' H„(z')exp[ ——,'(z' +t' )] .

(5.12)

1+P
qu=

1 p

1/2 ' 1/2
1 —P

q„, q„'= q„.
(6.4)

This normalizable wave function describes the internal
space-time structure of the hadron moving along the z
direction. IfP =0, then the wave function becomes

gou(z, t)=[1/(m2"n!)]'~ H„(z)exp[ ——,'(z +t )] .

(5.13)
Thus

Under this transformation, the products uq„and uq„
remain invariant.

In terms of the light-cone variables, the wave function
of Eq. (6.1) can be written as

$0(z, t ) = fo( u, v )

Qtt(z, t) =go(z', t') . (5.14) exp[ —(u +v )/2] . (6.5)

VI. COVARIANT PHASE-SPACE
REPRESENTATION FOR HARMONIC OSCILLATORS

One of the most outstanding problems in modern phys-
ics is how to formulate covariantly interactions between
two elementary particles. For instance, we still do not
know exactly what force is responsible for keeping the
quarks inside a hadron. It may be possible to make the
interaction invariant by postulating that it depends on
the distance in the coordinate system at rest with the

1/2
1

exp
2

' —~u'+ '+~ v'
I+@ 1 P—

(6.6)

If the system is boosted, the wave function becomes
1/2

g&(z, t)= — exp[ —(u' +v' )/2]



38 COVARIANT PHASE-SPACE REPRESENTATION FOR. . . 1165

This wave function undergoes a Lorentz deformation as p
increases. ' The momentum-energy wave function is hatt(q. q. }=—

' 1/2
1

exp
2

1+P z
qM

q)gq„, q„)= f Ptt(x, t)e * ' dzdt . (6.7)
1—

+ q„+ (6.8)

The evaluation of this integral leads to
For the ground state, the PSD function can now be

defined as

Pp(u, q»v, q, }= — [gp(u+x, v+y)]'g&(u —x, v —y)exp[2i(q x+q y)]dx dy .
J

(6.9}

1 —P, 1+P, 1

1+P" +1-P'"

After the evaluation of this integral, the PSD function becomes
~ r r

P&(u, q„;v, q„)= — exp 1+p„2 1 —p, ~

1-P 1+P " (6.10)

The above PSD function is defined in two independent
phase spaces consisting of (u, q„) and (v, q„), respectively.
When the hadron is at rest with p=O, the above PSD
function is localized in the regions

(u +q„)&1, (v +q„)&1 . (6.11)

l
Pp(u, v)

l

=fPtt(u, v;q„,q„)dq„dq, ,

leap'(q q. }l'=fPp(u v'q q. )du "v. (6.12)

These localization regions are described in Fig. 4. When
the hadron moves, these regions undergo elliptic defor-
mations.

This PSD function reproduces the distributions

l Pp(u, v)
l

and
l pp(q„, q„) l

after the appropriate in-

tegrals:
1

2

n/2
n n H„(u')H (v') .

m=0
(6.13)

Thus the explicit form of the physical wave function be-
comes

As for the excited states, there are no timelike oscilla-
tions in the hadronic rest frame, and the oscillations in
the transverse direction are not affected. Therefore, the
only factor we have to consider is the Hermite polynomi-
al H„(z') to be multiplied to the ground-state wave func-
tion. The nth excited-state wave function is given in Eq.
(5.13). In terms of the u' and v' variables, H„(z'} can be
written as

H„(z') =H„((u'+ v')/&2)

' n/2

g"(u, v) = 1 1

2 ~n!

' 1/2
n H„(u')H (v') exp[ —(u' +v' )] .

m=0
(6.14)

This means that we need off-diagonal PSD functions for the one-dimensional harmonic oscillator, such as

P„(x,p)= —f f„'(x+y)g (x y)e '~~d—y, (6.15)

( —I )"[&2(x+ip)]" "[v'2(x ip)]-
k!(n —k )!(m —k)!

(6.16)

to evaluate the PSD function for covariant harmonic oscillator. It is possible to evaluate this integral using the generat-
ing function of Hermite polynomials. The result is

(n!m!)'"P„(x,p) = exp[ —(x +p )],

where s is n or m, whichever is smaller. We can then go
back to Eqs. (6.9) and (6.14) to complete the evaluation of
the PSD function. The localization and deformation
properties of the PSD function for excited states are
essentially the same as those of the ground-state oscilla-
tor.

I.et us go back to the localization problem. Unlike the
case of light waves, we have to deal with two phase
spaces. If the hadron is at rest with p=O, the localization
region can be specified by a circle in both the phase
spaces of (u, q„}and of (v, q„}. If the hadron moves, the u

and q„distributions expand, while those of U and q„be-
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P =0.8

& qu

„qv

according to Eqs. (6.2)—(6.4). The simultaneous expan-
sions of z and q, are observed universally in high-energy
laboratories. This is called Feynman's parton picture,
and the calculation based on the ground-state oscillator
gives a good agreement with the observed proton struc-
ture function. Indeed, the parton phenomenon is a
manifestation of the Lorentz covariance of the uncertain-
ty relation which can best be stated in terms of the
phase-space representation.

V VII. CONCLUDING REMARKS

FIG. 4. Lorentz deformations in the light-cone phase space
consisting of two pairs of conjugate variables. The major
(minor) axis in the uv coordinate system is conjugate to the
minor (major) axis in the q„q„coordinate system. The Lorentz
boost is an area-preserving canonical transformation in both
phase spaces. For the case of localized light waves, which was

discussed in Ref. 2, there is only one phase space. The covari-
ant phase space given in Ref. 2 is the lower half of this 6gure
consisting of v and q„.

come contracted.
These deformations are canonical transformations, and

are illustrated in Fig. 4. If the hadron's speed becomes
close to the speed of light with P~ 1,

As we pointed out in Ref. 2, the phase-space represen-
tation of quantum mechanics serves useful purposes in
many branches of modern physics. In this paper, we em-
phasized the fact that it can give a more precise interpre-
tation of the uncertainty principle, as is manifested in the
case of wave-packet spread. The phase-space representa-
tion allows us to formulate the uncertainty relation in a
covariant manner. For this purpose, we have discussed
in this paper the covariant phase-space representation for
harmonic oscillators.

The major advantage of using the covariant oscillator
formalism is that there is an experimental observation of
the effect of covariance, as is explained in Sec. VI.
Indeed, the covariant phase space is the physical basis for
the covariant harmonic oscillator. This is illustrated in
the third rom of Fig. 3.
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