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A time-dependent density-functional formalism is developed for many-electron systems subjected
to external electric and magnetic fields with arbitrary time dependence. The single-particle current
density is shown to determine uniquely the time-dependent scalar and vector potentials characteriz-

ing the system, and hence also the many-particle wave function. A Levy-type universal functional is

defined, and practical schemes for the calculation of electron density and the current density

through hydrodynamical as well as a set of single-particle Kohn-Sham-like equations are proposed.
The gauge invariance of the present self-consistent formalism is also proved.

I. INTRODUCTION

Density-functional theory' (DFT) for stationary prop-
erties of many-electron systems is well established as a
conceptually simple and practically useful tool in various
branches of physics and chemistry. ' This theory was
formally born with the pioneering work of Hohenberg
and Kohn, ' which proves that the external potential u(r }
characterizing a many-electron system is a unique func-
tional (apart from an arbitrary additive constant) of its
single-particle density p(r). The proof, which was origi-
nally given for a nondegenerate ground state, ' has subse-
quently been extended to include the degenerate case,
some excited states, small time-dependent (TD) perturba-
tions, and systems characterized by oscillating TD po-
tentials. An extension to the case of the arbitrary TD
situation has been provided only recently by Runge and
Gross (RG},9 who proved that the mapping between the
TD density p(r, t ) and the TD potential u(r, t) is unique.
The scope of this work has been further broadened
through the construction' of a Levy-type functional" for
the TD case and also extensions to TD ensembles' as
well as multicomponent systems. ' The elegant proof of
RG (Ref. 9) has, however, faced criticisms' ' and has,
therefore, been reexamined by Dhara and Ghosh, ' who
replied to the criticisms raised by Xu and Rajagopal' but
simultaneously pointed out the limitations of the RG
work —thus presenting a more transparent view of the
actual status of time-dependent density-functional theory
(TDDFT). They have also demonstrated' an explicit
construction of u(r, t) from either p(r, t) or the current
density j(r, t) through the equations of quantum hydro-
dynamics' for a single-particle system. This unique
density-to-potential mapping is possible for both bound
and scattering states of the unperturbed stationary sys-
tem '

The TDDFT available ' ' ' so far has, however,
been restricted to scalar potentials alone and thus ex-
cludes situations involving vector potentials, e.g. , when a

TD magnetic field is applied. Thus it does not cover a
very important class of TD problems, viz. , the interaction
of electromagnetic radiation with matter. The objective
of the present work is to develop a TDDFT for systems
characterized by the scalar as well as vector potentials
with arbitrary time dependence.

In what follows, we first establish in Sec. II a
Hohenberg-Kohn-like theorem demonstrating the
uniqueness of the density-to-potential mapping. Besides
showing the stationary property of the action-integral-
like energy density functionals, a Levy-type construction
is also proposed for the same. The hydrodynamic equa-
tions describing the time evolution of the density and the
current density are discussed. A practical scheme analo-
gous to the Kohn-Sham procedure is then developed for
the direct calculation of the charge density and the
current density. Finally, we offer a few concluding re-
marks in Sec. III.

II. FORMALISM

The system that we consider consists of N electrons
moving under the inAuence of their mutual Coulombic
interaction along with the single-particle external poten-
tial due to the nuclei u(r}, an additional TD scalar
potential P(r, t), and the TD vector potential A(r, t).
The corresponding many-electron wave function
g(ri, r2, . . . , r~, t) satisfies the TD Schrodinger equation

and the Hamiltonian H is given by

+=(1/2m ) g [p(rk )+(e/c) A(rk, t)] + y'
k

—e g p(r„, r )+ U, (2)
k

where V(=e g„u(r„)) and U(=—g„„(e'/~ r„r,
~

))—
denote the one-electron and two-electron potential opera-
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tors, respectively. Here, we consider the charge of the
electron to be —e and its mass to be m. The expression
for H can be rewritten as

8= —(A' l2m ) X V k i (e R /m c ) g Ak ' V k
k k

+(e /2mc ) g Ak+ V —e g jtjk+ U,
k k

P(r, t ) P—'(r, t )&C(t) and A(r, t ) —A'(r, t )~0. Since
the potentials can be expanded into Taylor series around
t =to, there must exist at least one time derivative of the
potentials which diff'er by more than a constant (con-
sidered as zero for convenience). Let the minimal non-
negative integer which must exist be k for the scalar po-
tential and I for the vector potential, i.e.,

by using the Coulomb gauge V A=O and the notations
(t)» =p(r—k, t ) and Ak —=A(rk, t ). For simplicity, here, the
spin-dependent terms have been omitted; an extension to
spin-density-functional theory is, however, straightfor-
ward.

The single-particle density p(r, t) and the current den-
sity j (r, t ) are obtained from the relations

~0, n=k
(a"/at")[y(r, r ) —y'(r, ~)] ~,

and

(6a)

(6b)

S(r &)=&Pl&"
I 0& (4a)

(4b)

where the density and the current-density operators p
and j are, respectively, given by

and

P= +5(r —r„)
k

(Sa)

j=(»2m) X [pk5(r rk)+5(r rk)pk]
k

(ik/2—m ) g [Vk5(r rk)+5(—r —rk )Vk]

+(e/mc) g Ak5(r —rk),
k

(5b)

where pk is the canonical momentum operator. The for-
mal theory that now follows aims at describing the sys-
tem with these density quantities as basic variables.

A. Existence and uniqueness of the density functionals

The following two theorems prove the uniqueness of
the density-to-potential mapping and the stationarity
properties of density functionals.

Theorem 1. In a many-electron system characterized
by any single-particle time-dependent scalar potential
jtj(r, t ) and vector potential A(r, t ) which can be expand-
ed into Taylor series with respect to the time coordinate
around t =to, the current density j(r, t) of the system
determines both the potentials uniquely.

Proof Let jtj(r, t) an. d P'(r, t) be two scalar potentials
differing by more than a merely TD function and A(r, t )

and A'(r, t) be two different vector potentials, i.e.,
I

Here, without any loss of generality we consider only the
states evolving from a fixed initial state and therefore at
the initial time t =to, the wave functions as well as the
densities corresponding to the two sets of potentials
I()j), A) and I()j)', A') are assumed to be identical, i.e.,
p(to)=g'(&o)=g; p(&jj)=p'(to); j(to)=j'(to); and the
potentials themselves are also identical, viz. ,
jtj(ro)=p'(tjj); A(tj))= A'(to).

We now proceed to prove that if either (6a) or (6b) is
satisfied, the current densities j(r, t) and j (r, t), which
were identical at t =to, would differ infinitesimally later
than to, by showing that there exists some minimal in-
teger k' such that

(d" IBt" )[j(r,t) j'(r, t)] ~,—, &0 .

Using the equation of motion for an arbitrary TD opera-
tor Q(t),

iR(d/dr)(g(r)
~

Q(r)
~

P(r)&

=(q(t)
~

jl(jBjI&&')0(t)+[&(&),+(t)]
~

q(t) &, (8)

one obtains the equation for the time evolution of the
current density, viz. ,

iA'(Blat )j (r, t )

=(q(r)
~

j~(a/ar)~(r)+[~(r), 8(t)] q(t) & .

Unlike the case with zero magnetic field, the current-
density operator of Eq. (Sb) explicitly depends on time
and also on the vector potential A(r, t) which is a
characteristic of the system. Thus one has

(a/at)j(t)=(e/mc) g [(a/at) Ak]5(r —rk), (10)
k

and it is easy to show that

t(((()l()t)[j(r, t I —j'(r, t ) j (, , =(e /me)(t(t (O'X ()(r—r„)—( A„—A'„)
k

=i(et'/mc)p(r, to)(Blat)[ A(r, t) —A'(r, t)] (,

where use has been made of the initial conditions at t =to. In general, an expression for the higher-order derivatives
can be obtained by applying the equation of motion (8), say, n times. Thus, after some straightforward algebra, one has
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the result

(iA'Blat)"[j(r, t) j—'(r, t)] ~, , =(elmc)p(r, to)(ifiBIBt)"[ A(r, t) —A'(r, t)] ~,

+i%(elm)p(r, to)VI(ifiBIBt)" '[P(r, t) P—'(r, t)] ~, , j, (12)

where all the lower derivatives [0 to (n —1) for ( A —A') and 0 to (n —2) for (P —P')] of the differences of the potential
terms have been assumed to vanish.

Now, there would arise three distinct possibilities depending on the values of k and 1 in Eqs. (6a) and (6b).
Case I i&. k+ 1. Consider, in this case, Eq. (12) for n =k+1 when clearly only the last term contributes, leading to

(iiitBIBt)"+'[j(r, t) j'(—r, t)] ~, , =i%(elm)p(r, to)V [(iABIBt)"[p(r,t) p'(r—, t)] ~, , j+0 . (13)

The two current densities j(r, t ) and j (r, t ) will therefore diff'er infinitesimally later than to Fu.rther, on using the con-
tinuity equation

(Bp/Bt)+V j(r, t)=0
and Eq. (13), one has the result

(iABIBt)" + [p(r, t) p'(r, t }]~—, , = i'(—elm)V [p(r, to)VI(iABIBt)"[P(r, t) P'(r,—t)] ~, , j]&0 .

(14)

(15)

The right-hand side (rhs} of Eq. (15) can easily be shown to be nonzero following Runge and Gross, provided p(r, to)
vanishes rapidly at the boundary. ' Therefore the two densities p(r, t ) and p'(r, t ) will not be identical. (Analogous con-
clusions follow for a case where the vector potentials A and A' are not difFerent, or the system is subjected to an elec-
tric field alone. )

Case II. / &k+1. Consider again Eq. (12) for n =1 to obtain

(ifiBIBt)'[j(x,t) j'(r, t)—] ~, , =(elmc)p(r, t )(iYiBIBt)'[ A(r, t)—A'(r, t)] ~, , &0 . (16)

Clearly, then j(r, t } and j (r, t } will differ infinitesimally later than to. However, in this case, we are not able to prove
that the corresponding densities p(r, t ) and p (r, t ) will also differ. (The same conclusions are valid when the scalar po-
tentials P and P' are identical, or the time dependence arises from the vector potential alone. )

Case III. 1=k+1. Considering Eq. (12) with n =I =k+1, one obtains

(iRBIBt )"+'[j(r, t ) j'(r, t )] ~—, , =(e /me)p(r, to)(iABIBt )"+'[ A(r, t ) —A'(r, t )] ~,

+i%(elm)p(r, to)V t(ifiBIBt)"[P(r,t) P'(r, t—)] ~, (17)

Here, each of the two terms on the rhs is nonzero due to Eq. (6). Let us, however, assume that their sum vanishes and
the rhs of Eq. (17) is zero, i.e.,

(8/Bt )"+ '[ A(r, t ) —A'(r, t ) ] ~, , +c V t (BIBt)"[P(r,t ) —P'(r, t ) ] ~, , j =0,

the divergence of which leads to

(19)

(i RBIBt )"+ '[j (r, t ) —j'(r, t ) ] ~,

i (eAim —)p(r, to)(i ABIBt )"[E(r,t ) —E'(r, t ) ]~,

E(r, t ) = VP(r, t ) —(1/c)(BIB—t) A(r, t ) (20)

and therefore Eq. (17) can also be rewritten as

on using the Coulomb gauge (V A=O). For a given
boundary condition on the potential, as has been argued
elsewhere, ' Eq. (19) has only the trivial solution X=O
thus contradicting Eq. (6a). Therefore the rhs of Eq. (17)
cannot be zero and one is led to the conclusion that j(r, t )

and j '(r, t ) will again be different.
The rhs of Eq. (17}is essentially the kth time derivative

of the difference of electric fields E(r, t) and E'(r, t),
where

(21)

The kth derivative of the two electric fields E and E' are
different in the case where (6a) and (6b} are satisfied for
I =0+1.

From the foregoing discussions of the three possible
cases, it is now clear that two different sets of potentials
(p, A) and (p', A') cannot lead to identical j(r, t). Con-
sidering now the special cases of Eq. (12) for A= A' with
n =k+1 and for P=P' with n =I respectively,
one also concludes that if either P(r, t)&P'(r, t) or
A(r, t )& A'(r, t }, the corresponding current densities
must be different, i.e., j(r, t )&j'(r, t ). (Note that if p and
P' diff'er merely by a TD function, the corresponding



1152 SWAPAN K. GHOSH AND ASISH K. DHARA 38

wave functions will differ only by a TD phase factor and
hence the corresponding densities or current densities
would be identical. ) Identical densities and identical
current densities would also result if P(r, t), P'(r, t) and
A(r, t), A'(r, t) are related by a gauge transformation
[see Eqs. (Bl) in Appendix B]. Fixing the gauge, as has
been done here, however, precludes this possibility.
Therefore a given current density j(r, t) can result only
from a unique scalar and vector potentials P(r, t) and
A(r, t ), respectively, satisfying the prescribed gauge.
(Throughout this paper, the Coulomb gauge is implied
and the consideration of gauge transformation will be dis-
cussed in Appendix B.) Thus j(r, t) fixes the potentials
and hence the Hamiltonian [the number of electrons N is
determined by the integral of the density, i.e.,
N= fdrp(r, to)] Th.us all the properties of the system

are unique functionals of the current density. The fact
that j(r, t) determines the density uniquely is evident
from the continuity equation (14) itself which can be
directly employed to obtain p(r, t ) for a given j(r, t) since
p(r, tj]) is known. The functionals involving the wave
function f can therefore be treated as functionals of the
current density j(r, t) or more conveniently ofboth j(r, t)
and p(r, t), but it is not yet known whether they can be
determined uniquely from p(r, t ) alone.

In general, the wave function is complex and two real
quantities, viz. , the configuration-space probability densi-

ty P(r, , r2, . . . , rjv, t) and the configuration-space current
density J(r], r2, . . . , rjv, t), are needed for a complete
specification of the system. Nevertheless, any one of
them is sufficient, as can be demonstrated following the
argument of Dhara and Ghosh, ' to determine the other,
since the continuity equation is to be obeyed along with
suitable boundary conditions on P and J. The same con-
clusion about the uniqueness of the mapping
p(r, t)~j(r, t) in reduced space and hence
p(r, t)~j(r, t)~v(r, t) remains valid as long as the exter-

nal potential v(r, t) is a scalar potential. The present
work, however, shows that the presence of the vector po-
tential alters the scene, and only the mapping
j(r, t)~I/(r, t), A(r, t)I and j(r, t)~p(r, t) is unique.
Although it has not been proved conclusively that
p(r, t)~j(r, t) is not unique, perhaps the vector quantity
j(r, t) is necessary to characterize the vector potential
A(r, t ) and the latter cannot be fixed by a scalar quantity
p(r, t) alone. In any case it is convenient to express the
expectation values as functionals of both p(r, t) and
j(r, t ).

Theorem 2. For the system considered here, the quan-
tity

Q= fdt( ) t(A(()/—()t)+T+U+p —e +de ())
k

is a functional of the density p(r, t ) and the current densi-
ty j (r, t ), where

T=(1l2m ) g [p(rk)+(elc) A(rj„t)]
k

is the kinetic energy operator. For given v(r), P(r, t ), and
A(r, t ) the stationary condition

5Q~,
~
[p(r, t),j(r, t)]=0

is obeyed at the correct solution point. Here [ v I stands
for the set of potentials

I v(r), ()j)(r, t ), A(r, t) I

and when used as a subscript, it indicates that the poten-
tials are held constant.

Proof. Since v(r), P(r, t ), A(r, t ), and

g(r„rz, . . . , r jv, t ) are already proved to be functionals of
p(r, t ) and j (r, t ), clearly Q is a functional of them. After
separating out the explicit potential-dependent terms, one
can write

Q[pj]=F[pj ]+fdt fdrIp(r, t)[v(r) ep]+(e—lc) A j +(el2c) A jz]

=F[pj ]+fdt fdrIp(r, t)[v(r) —e(l)]+(elc) A j(r, t) —(e l2mc ) A2p(r, t))j, (22)

where j and jz are the paramagnetic and the diamagnetic contributions to the current density j (r, t ) given by

3=3 +3g

j = —((t(/2m )(tj X [Ve(i(r —re ) + ()(r —re )V„] dt),
k

jr=(e/mc)(tj X Ae()(r —re) dt) =(e/mc)A(rt)p(r, t), ,
k

(23a)

(23b)

(23c)

and F[p,j ] is the universal functional

F[p,j ]= f dt ( p[p, j ] ~
To+ U —i fi( t3lt3t )

~ p[p,j ]),
(24)

with To as the kinetic energy operator
—(jri l2m) gk Vk. This functional F is defined for v-

representable densities. The true density is of course U-

Q[f0]=Q[po jo]=Q [ ) [po Jo] (25)

where the second equality is valid if the set of potentials

representable and Kohn' has shown that the densities in
the neighborhood also are v-representable. Therefore the
functional is well defined for densities differing from the
true one only by a small amount. If (po, jo) are the true
densities and $0 the corresponding wave function, then
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0(.} [po+5po j[]+5jo)—Q(. } [p[] jo)

=Q [.)
[eo+5i(('0) —Q (.) [col . (26)

The rhs is, however, zero (considering up to first order)
due to the stationarity condition; therefore, the left-hand
side (lhs) is also zero leading to the stationarity condition
for the density functional Q(„},viz. ,

[v j corresponds to [p[],jo], i.e., it yields [po, j[]] through
the solution of the Schrodinger equation. Considering
the densities Ip[]+5p[],j[]+5j[]j in the neighborhood for
which the wave function is I $0+5/[] j, one can write

straint. This relates P(„}[p,j] with the functional deriva-
tive of F[p,j ].

Theorem 4. For any arbitrary (v-representable) current
density j(r, t ) and the corresponding electron density
p(r, t) [i.e., solution of the continuity equation], a Levy-
type universal functional for time-dependent systems can
be constructed as follows.

(i) Define

Q[p(r, t), j(r, t)]=fdt&g;
~
Tv+U —i'(B/Bt)

~ g;),
(30)

5Q(„}[P,j]=0 at P=po j=jo (27) where g; corresponds to the stationary point of the
functional

which can be exploited for the calculation of densities.

(8/Bt )j(r, t ) = P(„}[p(r, t ),j(r, t )], (28)

where the vector P(, )
is a functional of p(r, t) and j(r, t)

for specified [ v j.
Proof. The continuity equation is well known and the

Euler equation of motion follows from Eq. (9), since 1(t is
considered as a functional of p and j. One can simplify
the expression further and write

p(„}[p(r,t), j(r, t)]= (i/fi)(f(t)
~ [j[],8[]] ~

it](t))

—(plm )[Vv+eE(r, t)]
—(e/mc)(j XB) (29)

where E and 8 are the electric and magnetic fields given
by Eq. (20) and V&( A, respectively. The operators j[]
and BQ are obtained from Eqs. (5b) and (3), respectively,
after dropping the terms involving (I) and A. The same
equation (28) is also obtainable from the variational con-
dition (27) subject to the continuity equation as a con-

I

B. Practical schemes for the calculation
of densities and the density functionals

Theorem 3. The exact p(r, t) and j(r, t) are obtainable
from the two hydrodynamical equations, viz. , the con-
tinuity equation (14)

(dp/dt )+V j (r, t ) =0

and the Euler-type equation

t ) To+ U —i

with respect to all g s that yield the particular density p
and the current density j.

(ii) The stationary solution of the functional

Qi„i[tt,j]=Q[tt, j]y Jdt Jdrp(rt)[v(r) —e,P]

+(e/c) f dt fdr A j
(e l2rn—c )f dt fdr A p(r, t ), (31)

with respect to the variations of p and j subject to the
continuity equation as a constraint would yield the
correct density and current density of a many-electron
system for given v(r), tt](r, t), and A(r, t).

Proof. Let C and D be the sets of ¹epresentable
current density and charge density, respectively. For
each trial density pED and current density j&C, one
can construct the set 8'~& containing all antisymmetric
N-particle wave functions Ig &j that yield the given

p(r, t) and j(r, t) (see Appendix A). The definition of
Q[p, j] provides a prescription for selecting a particular
member f'

&
from the set. For v-representable densities,

the stationary property of the functional Q[p, j] of Eq.
(30) follows from the Dirac-Frenkel TD variational prin-
ciple. This also implies that F[p,j ) of Eq. (24) is identical
to Q[p, j]of Eq. (30).

For a given p and j, the quantity Q(„}[p, j] of Eq. (31)
which can be rewritten as

Qi, i
=idt t(t'; Tc+U —(i)(i)/()t) —e +Pe —((et)/mc)Z At (te+(e /2mc )Z A„(t';)

k k k

(32)

is clearly stationary with respect to variation in P &
since

Q[p, j] is so. Thus, when I p, j j is again varied, the final
stationary point corresponds to the stationary solution
with respect to all g .'s for every [p, jj. This would cor-
respond to the same solution as would have been ob-
tained by direct Dirac-Frenkel variation with respect to
the wave function g, or the variation principle of Eq.
(27).

Theorem 5. The exact single-particle density p(r, t)
and the current density j (r, t ) of a many-electron system
subjected to a particular p( r, t ) and A( r, t } can be ob-

I

tained from

and

p(r, t}=+4k(r, t)gk(r, t}
k

+(e/mc)p(r, t }A,]](r,t ),

j(r, t)= (i'/2m ) g—[gk(r, t) Vit/k(r, t)
k

(33)

(34)
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where the [g„j's are the solutions of the single-particle
TD Schrodinger-like equations

I ( 1/2m )[ i—iri V+ ( e Ic ) A,&) +v,&( r, t ) j pk (r, t )

(30) with U =0]. This variation can be achieved by con-
sidering a single determinantal wave function and hence
the stationary point of the functional

o p(r, t},j(r, t)
=i fi(Bgk (r, t )/Bt ) . (35)

Here, the effective scalar and vector potentials v,tt(r, t)
and A,e(r, t) whose expressions will be derived below
consist, respectively, of the external potentials
v(r) —eP(r, t ) and A(r, t ) supplemented by internal con-
tributions arising from the density and the current-
density distributions.

Proof. Define a functional Qo[p, j] for a fictitious sys-
tem of N noninteracting particles having the (v-
representable) current density j(r, t } and the correspond-
ing electron density p(r, t) [i.e., the solution of the con-
tinuity equation], which are identical to those of the actu-
al system of interest (where interaction is present}, i.e.,

Q,'[p(r, t), j(r, t)]=fdt(g~; [ T, i@Old—t)
) g~„),

(36)

where P'
i corresponds to the stationary point [see Eq.

I

= g Jdt(gl,
~

(—R'/2m )V' —t'&(8/8t)
~ haik ) (37)

with respect to the normalized single-particle orbitals

[g„j subject to the constraints that the gk's yield the
given density p(r, t) and the current density j(r, t ) ac-
cording to Eqs. (33) and

j (r, t ) =(1/2m ) g I fk(r, t )peak(r, t )
k

+ [peak (r, t ) ]'1i I, (r, t )j, (38)

respectively, such that the continuity equation (14) is
satisfied. Here, p refers to the canonical momentum
operator.

This constrained variation is equivalent to the Euler-
Lagrange equation

5 Qo[p, j]—1 dt Jdra(r, t) (8/r}t) g fk(r, t)fk(r, t)+V (1/2m) g Igk(r, t)peak(r, t)+[pgk(r, t)]'fk(r, t) j
k k

t r rt 1 2m krt p krt+ p krt ' krt —jrt =0, (39)

where a(r, t) and P(r, t ) are the Lagrange multipliers associated with the constraints of the continuity equation and the
current density, respectively. Equation (39) leads to the set of single-particle equations,

[ (R /2—m )V ih(BI—Bt)]pl (r, t)+[(a/at)a(r, t)]lii —(1/2m )[p(r, t ) Va(r, t )] pp—„(r,t }

—(1/2m)p ([P(r, t) Va(r, t))g—k(r, t)j =0 . (40)

Here, a(r, t) and p(r, t) are to be chosen so that the resultant orbitals If„(r,t) j yield the desired p(r, t) and j(r, t) satis-
fying the continuity equation. Premultiplying Eq. (40) by gk, followed by summation over k and subtraction of the
complex conjugate, one obtains

(Bp/Bt) =(iR/2m)V g (pkVgk —pk Vfk)+(i /R)(1 /2m)(p Va) g [f—kPPk (P6) —6]
k k

+(i/h')(1/2m) g (Pkp [(P—Va)fk] 4k Ip'[(0—Va—)teak] j
k

=V [(i'/2m ) g (gk Vgk fk Vfk)]+(1/—m )V [(P—Va)p(r, t }], (41)

where the second equality has been obtained by considering p to be the sum of —i fiV and a real vector function. Equa-
tion (41) is the continuity equation and hence the quantity P—Va must represent an effective vector potential, i.e.,

(e/c) A,e(r, t ) = [P(r, t ) —Va(r, t )—],
so that the canonical momentum operator is given by

p = i AV + ( e lc ) A—,e(r, t ),
and the current density defined in Eq. (38) is given by Eq. (34).

Using Eq. (42), Eq. (40) simplifies to

[ (R /2m )V —if&(Blat)]gk(r, t)+[(Blat)a—(r, t)]gk+(e/2mc) A,s(r, t).peak(r, t)

(42a)

(42b)

+(e/2mc)p. [ A,gr, t)gk(r, t)]=0, (43a)
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which can be rewritten as

I(1/2m)[ —iAV+(elc) A,fr) gk(r, r)+[(Blat)a(r, r)]gk(r, t)+(e /2mc ) A,s(r, t)]fk(r, r)=ifi[BQ&(r, r)IBt] .

(43b)

Now, using Eqs. (37), (38), (40), and (42a), the functional Qo[p, j]can be expressed as

Qo[p, j]=—f dt fdr[(BIBt)a(r, t)]p(r, t) (—e/c) f dt jdr A,gr, r) j(r, r),
and therefore the functional Q~ „)[p, j]of Eq. (31) can be rewritten as

Q~, ) [p, j]=—fdt fdr p(r, t)[(BIBt) a(r, t)] (e/—c)f dt fdr A, (sr, t) j(r, t)+ U;„,[p, j]
+E„,[pj ]+f dt fdr p(r, t)[u(r) —ep]+(elc) f dt f dr A j(r, t) (e /—2mc )f dt fdr A p(r, t),

(44)

(45)

where the direct-interaction energy U;„,[p, j] and the
exchange-correlation energy E„,[p,j] together account
for the difFerence between Q[p, j] and Qo[p, j].

The stationary solution 5Q~„~ [p, j]=0 (see Theorem 2)
for variations in p and j, respectively, lead to the equa-
tions

(e/c) A,s(r, t) (e/—c) A(r, t) —(5U,„,[p, j]/5j )

(5E„,[p,—j ]/5j ) =0 (46a)

and

—(Blat )a(r, t )+(5U,„,[p,j ]I5p)+(5E„,[p,j ]I5p)

+[u(r) —eP(r, t)] (e /2m—c )A =0. (46b)

The variations of a and A,s in Eq. (45) do not contribute
to Eqs. (46), as can be shown by using Eq. (43) and the
stationarity of

t'ai,

) at the end points with respect to
time. Substituting the values of (8/Bt)a(r, t) from Eq.
(46b) into Eq. (43b), one obtains Eq. (35) where the
effective vector potential A,f(r, t ) and the eff'ective scalar
potential u,s(r, t ) are given by

A,s(r, t)= A(r, t)+(cle)(5U,„,/5j )+(cle)(5E„,/5j )

(47)

and

, (urs, t)=u(r) —eP(r, t)+(5U;„,/5p)

+(5E„,/5p)+(e /2mc )(A,s —A ),
respectively. The classical Coulomb energy U&,„~ corre-
sponding to the term U;„, is given by

Uc,„~[p]=—,'e f fdrdr'p(r, t)p(r', t)/~ r —r' ~, (49)

and therefore the corresponding potential is

5U;„,/5p=5UC, „,/5p=e f dr'p(r', r)/
~

r —r'
~

The analogous contribution in the vector potential, i.e.,
the term (5U;„,/5j ) is usually ignored. However, if one
considers the current-current interaction, the resultant
potential is given by (see, e.g. , Refs. 19—21)

5U;„, /5j = fdr'j(r', t)I
~

r r' ~— (51)

Equation (35) is to be solved for p(r, t) and j(r, t) self-
consistently with the help of Eqs. (47}—(51), (33), and (34).
The picture that emerges is that of a system of nonin-
teracting particles moving in the effective scalar and vec-
tor potentials u, s(r, t) and A,s(r, t), respectively. The
calculated densities are, however, identical to those of the
actual system of interest. For zero vector potential, the
self-consistent equations become identical to the conven-
tional time-dependent Kohn-Sham equations ' for scalar
potential alone.

Theorems 3—5 thus provide practical schemes for the
calculation of the charge and current densities. While
the hydrodynamical equations (14) and (28) can be solved
for the two densities directly, for actual calculation, an
explicit form of the first term on the rhs of Eq. (29) in
terms of p(r, t ) and j (r, t ) is to be developed. The
Thomas-Fermi method and its variants would provide
guidelines in this direction. The prescription of Theorem
4 uses wave functions constructed from densities as the
intermediate quantities, and as a result can yield the wave
function also at the solution point.

The scheme of density calculation within the orbital
description through the solution of single-particle equa-
tions (35) with the effective potentials defined by Eqs.
(47)—(51) and the densities calculated using Eqs. (33) and
(34} is a generalization of the conventional Kohn-Sham
procedure to include TD systems involving magnetic
fields. Although in deriving these equations, Coulomb
gauge has been implied, fixing a gauge does not alter the
physical situation, and all physical properties should
remain unaltered under gauge transformation. The
present formulation does satisfy the important property
of gauge invariance which we prove in Appendix B.

III. CONCLUDING REMARKS

The two main objectives of this paper have been to es-
tablish a Hohenberg-Kohn-like theorem demonstrating
the uniqueness of the density-to-potential mapping for
many-electron systems characterized by scalar as well as
vector potentials with arbitrary time dependence, and to
provide thereby a theoretical framework for the direct
calculation of the charge and current densities. The
present generalization would enable one to discuss an im-
portant TD phenomenon, viz. , the interaction of radia-
tion with matter using a density-based approach. This
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broadens the scope of DFT and is thus significant in the
context of recent attempts to explore the possibility of an
alternative quantum mechanics in terms of density quan-
tities rather than the wave function.

We have shown that it is the current density which
determines both the scalar and vector potentials and
hence plays the major role in cases involving magnetic
fields. The electron density is also determined by the
current density through the continuity equation and is by
itself sufficient only for problems involving no magnetic
field and several other simple situations (see Theorem 1).
The hydrodynamic equations proposed earlier from
phenomenological considerations for the study of surface
properties and other problems now find a more rigorous
justification in Theorem 3.

Although the hydrodynamical equations can be direct-
ly solved for the densities, the Kohn-Sham-type scheme
provided by Theorem 5 would be more promising. With
proper choice of exchange-correlation energy density
functionals, accurate predictions of p(r, t } and j(r, t) are
possible through this route. The same framework can
also be employed for developing a theory of magnetic
properties of many-electron systems. This would sup-
plement the earlier studies on frequency-dependent elec-
tric polarizabilities of atoms and molecules. A variety
of dynamic phenomena can in fact be explored by using
the time-dependent density-functional theory.
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APPENDIX A: CONSTRUCTION OF WAVE
FUNCTIONS [gp, ] CORRESPONDING TO GIVEN
DENSITY p(r, t ) AND CURRENT DENSITY j(r, t )

For a particular wave function f, the electron density
p(r, t ) as well as the paramagnetic current density j (r, t )

are easily obtained through Eqs. (4a) and (23b), respec-
tively. However, due to the dependence of the diamag-
netic current density jz(r, t ) on the vector potential [see
Eq. (23c)], one requires the knowledge of this additional
potential for obtaining the net current density j (r, t) us-

ing Eq. (23a). In this Appendix, we address the inverse
problem, i.e., the construction of a wave function P that
yields a given ( v-representable) p( r, t ) and j ( r, t ).

Because of v-representability, the chosen p(r, t) and

j (r, t ) have associated with them (see Theorem 1} a
unique vector potential A[j]. In attempting to obtain
the wave functions g;, it is this vector potential A[j]
which is to be employed in the diamagnetic term in
defining j(r, t) through Eq. (23). For v-representable den-
sities, it is obvious that the set 8'p J containing such wave
functions is not empty. It would, however, be of interest
to discuss an explicit construction of such wave functions
from given p and j satisfying the ¹epresentability con-
ditions

p)0,
fdrp(r, t)=N,

fdr j~(r, t )/p(r, t ) =finite .

Such constructions are also of importance in executing a
variational procedure. The simplest case arises when the
wave function is represented by a single determinant con-
structed from a set of orthonormal orbitals ' of equal
electron density. We consider only the one-dimensional
case for simplicity (the extension to three dimensions is
straightforward) and define the quantities

q(x) = f dx'p, (x'),
a

1.e. ,

p, (x) =(dq /dx ),
(Al)

i.e. ,

s(x)= f dx'[j~(x')/p(x')],

j(x)=p(x)(ds/dx )+(e/mc)p(x) A [j],
(A2)

where p, ( =p/N) is the density normalized to unity and
a &x & b. Also, as already stated, A[j] is the vector po-
tential uniquely determined by the current density j(r, t ).
Now the set of orthonormal orbitals

[/zan

can be con-
structed with

gt, (x)=p&~ (x) exp[i 2m [kq (ms/2—+A) (M/N—)q]] .

ji, (x }= —(A/m )p, (x)V [2m [kq —(ms/2+8} —(M/N)q] [

(fi/m —)pi(x)2m. (k M/N )+j&—/N . (A4)

Thus, for the choice gzk =M, these orbitals yield the
correct current density,

j = g j„+(e/mc)pA[j] .
k

(A5)

It can be shown that for an even number of electrons
the minimum kinetic energy corresponds to using half in-
teger or integer values of k, depending on whether N is a
multiple of 4 or not. In such cases, the value of M can be
chosen as zero since the k-dependent terms in the phases
do not contribute to the net current density. For an odd
number of electrons, the value of k for the highest occu-
pied orbital can be assigned to M. The present construc-
tion thus provides a set of orthonormal orbitals (and
hence a corresponding determinantal wave function) for a
given p and j.

(A3}

Here, the orthonormality ( ft, ~ gt, , ) =5t, t, . is maintained
provided k and k' differ by integers, i.e., k =0, +1, k2,
etc. or k =2—,', +—,', etc. An optimum selection for the k
values depending on the number of electrons so as to cor-
respond to a minimum of kinetic energy has been dis-
cussed elsewhere. The integer M which appears in a11

orbitals is, however, to be selected based on the k values
of all the occupied orbitals so that one obtains the correct
current density. The contribution to the paramagnetic
current density from the kth orbital is given by
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APPENDIX B: GAUGE INVARIANCE
OF THE TIME-DEPENDENT KOHN-SHAM-LIKE

SINGLE-PARTICLE EQUATIONS INVOLVING
UECTOR POTENTIALS

(B1a)

(Blb)(1/c)(r}I—Bt )k(r, t ),
where A, (r, t) is an arbitrary function. Our aim, in this
Appendix, is to show that the present formulation is

properly gauge invariant with respect to these gauge
transformations. It is clear that the density p(r, t) and
the current density j (r, t ) which are physical observables
are invariant under these transformations. This result
follows from the transformation of the full Schrodinger
wave function under change in gauge, viz. ,

+P' =f exp—[ ( t'e /f—ic ) g A ( rk, t ) ]
k

and the definitions of p(r, t } and j(r, t) through Eqs. (4)
and (5), respectively. The paramagnetic and the diamag-
netic counterparts of the current density, i.e., j (r, t ) and

jd(r, t) individually, however, are not gauge-invariant
quantities and depend on A(r, t ), viz. ,,

(B2)

The TD Kohn-Sham-like single-particle equations [Eq.
(35)] are used to obtain self-consistent solutions for p(r, t )

and j(r, t) using Eqs. (33) and (34) with the effective sca-
lar and vector potentials v,ff(r, t ) and A, fft, r, t) given, re-

spectively, by Eqs. (48) and (47). Besides having an expli-
cit dependence on the external scalar and vector poten-
tials P(r, t) and A(r, t}, these effective potentials have
contributions from internal potentials arising from the
charge- and current-density distributions as well. The
formalism has been developed using the Coulomb gauge
(V A=O) for simplicity. The quantities of significance
are, however, the applied electric and magnetic fields

E(r, t) and B(r, t) defined through Eq. (20) and (V)( A),
respectively. While the potentials obtained using the
Coulomb gauge correspond to these fields, one can have
other potentials as well for the same fields using the
gauge transformations of the potentials, viz. ,

A~ A'= A+VX(r, t),

j ~j ' —(e/mc )p(r, t )VA(r, t ),
jd jd=jd+(e/mc)p(r, t)V~(r, t) .

(B3)

(B4)

For considering the effect of the gauge transformations
(Bl) on Eq. (35), let us first transform all the single-
particle orbitals [gk ] through a phase factor, i.e.,

Pk ~ Pk 4 e"P[ ('e/~c )~(r t )1 (B5)

Applying this transformation to Eq. (34), it is clear that
the effective vector potential A,~ has to transform as

A,ff~ A', ff
——A,ff+ VA, (r, t ) (B6)

(e /2mc )(A', ff
—A' )=(e /2mc )(A,ff

—A )

+(e /mc )( A, ff
—A) Vl .

(B7)

Now, using the transformation (B2) to g; of Eq. (30),
the functional Q[p, j] is transformed to Q'[p, j], i.e.,

Q~Q'=Q (el—c)f dt f dr VA, [j—(e/mc) Ap]

+(e l2mc ) f dt f dr p VA, VA,

—(elc) f dt f drp(r}A/dt) . , (B8)

Analogously, using Eq. (B5), Qp corresponding to Eq.
(37) leads to

Qp~Qp =Qp —(elc)f dt fdr VA. [j (elm—c) A, ffp]

+(e l2mc ) f dt f dr pVAVA, ,

—(e/c) fdt fdrp(M/at) . , (B9)

Since (Q —Qp) =( U;„,+E„,), one has the result

in order to maintain the gauge invariance of the current
density j(r, t). Equation (B6) also implies that under
gauge transformation, the last term of Eq. (48) transforms
as

(U;„,+E„,)'=(U;„,+E„,) (e Imc )f—dt fdrp(r, t) VA(r, t) ( A, ff
—A) . (B10)

The direct-interaction energy U;„, comprises the classical Coulomb energy Uc,„, of Eq. (49) and a contribution from the
current-current interaction corresponding to Eq. (51). It is therefore a functional of p and j only and hence is gauge in-

variant. Hence Eq. (B10) reduces to

(E„', E„,)= (e Imc——) fdt fdrp(r, t)VX(r, t).( A, ff
—A) . (B1 1)

Therefore one has the relation

(5E„,/5p )J
—(5E„,/5p }J

= —(e Imc )VA(r, t ).( A, ff
—A), (B12)

v ff(r, t )=v(r}—ep'(r, t )+(5U;„,l5p)

+(5E„,/5p)+(e /2mc )(A,ff
—A )

=v,ff(r, t )+(e/c)(M. /dt ), (B13)

where A,ff has been treated as a functional of j(r, t }

alone, since the continuity equation is implied in the
definition of A, ff.

Equations (B7) and (B12) imply that the transformed
effective scalar potential of Eq. (48) becomes

where the second equality is obtained using Eq. (B1).
The transformations of the effective scalar and vector

potentials given by Eqs. (B13) and (B6), respectively, and
the transformation of the single-particle orbitals [ gk }
given by Eq. (B5) [due to the gauge transformations of
Eqs. (Bl)] imply clearly that Eq. (35) is gauge invariant.
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