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The purpose of this work is to provide a quantitative underpinning to the qualitative understand-

ing of the various physical effects which play a role in the spectra of many-electron atoms. Shield-

ing and exchange contributions are studied, as functions of the principal quantum number n, the or-
bital angular momentum I, and the nuclear charge Z, for neutral alkali-metal atoms in the Dirac-
Fock (DF) approximation. Fine-structure effects and valence-state correlation corrections to the
DF approximation are also considered for these atoms. Breit interaction and correlation correc-
tions are discussed for the core states of noble gases. Previous numerical computations of these
various contributions to atomic energy levels by others are extended to provide a larger data set to
serve as a basis for the study of estimates and trends.

I. INTRODUCTION

Our aim in this article is to provide a numerical basis
for a qualitative understanding of the relative magnitudes
of various physical effects which contribute to the
bound-state energies of many-electron atoms. We will be
dealing throughout with the Dirac-Fock (DF) approxi-
mation, and some corrections to it. Studies of electron
shielding in the Hartree approximation are as old as the
approximation itself, and serve as the basis for various
model potentials, ' ' which take that shielding into ac-
count. The relative importance of exchange contribu-
tions in the Hartree-Fock approximation has also been
studied, and the contribution of the Breit interaction has
been computed. Correlation corrections to the (DF) en-
ergies have been recently calculated as well.

Our present purpose is to bring the study of all these
calculations under a single umbrella, and to cast a light
on the relative importance of various contributions as one
proceeds outward from the inner core of the atom to the
valence states, or, alternatively, from linear to circular
orbits for a given principal quantum number. Further,
we propose to examine the dependence of these effects on
the value of nuclear charge.

The system studied is that of the frozen core: Only the
closed shells (or subshells) of core electrons are con-
sidered in the determination of the effective DF potential
and wave functions. Valence-electron DF equations,
when the corresponding eigenvalues are relevant to the
study of various trends, are then solved in the frozen po-
tential of the core electrons. The DF computational pro-
gram is that used in Refs. 4 and 5.

We present our numerical results in both tabular and
graphical form in Sec. II. We want to follow trends
simultaneously in core and valence states as much as pos-
sible. Hence we focus initially on a subset of the neutral
alkali-metal atoms. For these atoms, the frozen core con-

sists of closed shells or subshells of a total of Z —1 elec-
trons. We study the effective shielding as a function of
principal quantum number for circular orbits, proceeding
from the inner core to the valence states. We also study
the dependence of shielding on the nuclear charge Z.
Further, we analyze the relative importance of the Har-
tree and exchange effects, and of fine-structure correc-
tions, as we vary Z, for convenient sets of n and 1. Be-
cause of the limitations set by available calculations, 5 and
of reasonable extensions of them which can be made, our
study of correlation corrections for alkali-metal atoms is
restricted to their valence states. In order to follow these
trends to core states, we consider noble gases (a frozen
core of a total of Z electrons in closed shells or subshells)
of nuclear charges neighboring those of the alkali-metal
atoms considered. Though no direct computations of
these correlation contributions exist, estimates can be
made, based on the availability of related computational
results in the literature. ' As is well known, and is also
confirmed by our study of fine structure, relativistic
effects contribute significantly only in core states. We
therefore study one other such effect, the contribution
due to the Breit interaction, by carrying out the computa-
tions of Ref. 4 for individual noble-gas core levels.

We summarize the trends in the correlation contribu-
tion, for selected valence levels of the alkali metals and
core levels of the neighboring noble gases, as a function
of the principal quantum number (restricting ourselves to
s states). Lastly, we generate estimates for the various
contributions to the energy on general semiquantitative
grounds. Unfortunately, a simple-minded analysis, based
on dimensional and general coupling and symmetry con-
siderations alone, is not adequate for this purpose. This
is due to the fact that overlap effects play a significant
role, even in the estimation of orders of magnitude for the
various contributions.

In Sec. III, we briefly summarize the qualitative
features of our results.
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II. NUMERiCAL AND GRAPHICAL RESULTS
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We emphasize that the total atom energies E ' ' are the
fundamental quantities, and that Eqs. (4) and (5) serve as
definitions of e ' ' and e, ' ', respectively. It is approx-
imate values of these e ' ' which are calculated in the
DF approximation and corrections to it. These apparent
single-electron energies are thus actually differences of
many-electron atom energies. They are also quantities
which have a direct experimental interpretation, ' which
we will now discuss.

Consider valence states for a neutral atom first, i.e.,
E +" '=E ' ' which fixes M to bep

M=Z —1 .

The definition of the corresponding e " ' involves

Eo " '. The latter is the ground state of the singly ion-
ized atom with nuclear charge Z. (The frozen core in the
DF approximation consists of the inner Z —1 electrons,
which, for example, form closed shells or subshells. This

It is useful to provide an anchor to the presentation of
calculational results by discussing the experimental infor-
mation to which they correspond and which they approx-
imate. If one were to deal with the exact many-electron
atomic system, and suppress all but energy labels, one
would describe the state of such an atom in the Dirac
notation by a ket

~

' }). In this ket, (Z) refers to the
nuclear charge —eZ (a label which was suppressed in
Ref. g), M to the lepton charge eM, and o is an energy la-
bel. Note for purposes of orientation that, in the nonrela-
tivistic limit and in the quasiparticle approximation of
the Hartree-Fock theory, M is the number of electrons
shielding the nucleus. (If e-e interactions are neglected,
the label M is unnecessary, since the total energy is not
affected by shielding. ) The letter o labels the total energy
of the atom, E ' ', with o. =0 corresponding to the
ground state. Since this state must be nondegenerate in
the analysis of Ref. 8, the label M in Eo' ' must be a
number corresponding to zero total spin for the M-
electron system. The requirement of closed shells or sub-
shells is a sufBcient, but not necessary, condition for this.
Again using the nonrelativistic Hartree-Fock theory as a
guide, the energy labels cr =a,p correspond to core and
valence states, respectively. If we make no approxima-
tions, i.e., take H to be the exact Hamiltonian of the
atom, we have

H
~

M, (Z}) EM, (Z}
~

M, (Z})
CT o

One can use time translation operators and Eq. (1) to
define ez

' ' and e, ' ' from matrix elements of the lep-
ton Heisenberg field operators,

criterion includes the cases of the alkali atoms. ) Thus
e " ' is the ionization energy of the valence state la-
beled by p.

We turn next to the identification of the electron-hole
states, labeled a, which correspond to the valence-
electron states just discussed. These are the states which
appear in the potential of the DF approximation. Thus
we still consider the alkali-metal atoms and focus first on
the E ' ', the energies of our primary concern. These
energies serve to fix the relevant ground state to be
Eo " '. Since the same ground state plays a role in the
definition of the electron-hole states needed in the DF ap-
proximation [see Eqs. (4) and (5)], these states must have
Z —2 shielding electrons. In other words, they are states
of a doubly ionized atom, with energies E, ' '. If one
uses the quasiparticle description, one can say that these
energies are those of an atom with the outermost-core
electron and an inner-core electron absent. The energy
e, " ' thus represents a satellite, rather than a first-
order, x-ray line. It corresponds to a transition where an
electron of zero kinetic energy, infinitely far from a dou-
bly ionized atom, drops into the hole in the inner shell.
Finally, one has a singly ionized atom in its ground state.

Accurate experimental data exist for valence-state ion-
ization energies, "' and are listed in column 3 of Table I.
This is not the case for the core states E, ' ', and the
corresponding e, " ', the satellite x-ray lines. Only
limited, and somewhat outdated, information' exists for
these, and even their proper identification is often some-
what uncertain.

Our primary focus in the present work is, in any case,
on the study of the general way in which energies depend
on various parameters in the DF approximation, and
corrections to it, and not on a detailed comparison with
experiment. Since, as much as possible, we would like to
study various trends as we pass from core to valence
states, we list the calculated results for various quantities
of interest in columns 4, 5, and 6 of Table I for both these
types of states, even though no direct comparison of the
DF energies of column 3 to experimental values is avail-
able for core states.

In order to obtain an indication of the size of relativis-
tic effects as they are reAected in fine structure, we give
the ratio of fine-structure energy differences, as calculated
in the DF approximation, to the average DF energy for
the states (n, I), in column 5 of Table I. The criterion for
the inclusion of an entry in this column is that the ratio
of DF fine structure to the DF energy exceeds 0.001. For
the four cases [all the lowest lying valence (np) states] for
which comparison is possible between experiment and
DF fine structure, the two agree both in sign and order of
magnitude to a few tenths of a percent. Thus, it is not
unreasonable to use DF results as estimates for these rela-
tivistic effects in core states, where their contribution is
more significant than for valence states.

In column 6 of Table I, we give the relative size of the
exchange X and Hartree, or "tadpole'* T contributions
to the DF energies. The entries in this column arise from
solving the DF problem first, and then using the DF
wave functions which one obtains to calculate the energy
contributions
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Atom State

TABLE I. Alkali-metal atoms —experimental and calculated data (p* =p&&2, p =p3/2 etc).

Calculation
Dirac-Fock

+expt DF
aCDF

DF
—X/T

g&corr

~DF

expt &DF

~DF

"Na
(3s)'

(4s)'

3'Rb

(5s)

55Cs

(6$)'

1s
2$

2p
2p
3$

3p
3p
4s
3d
4p
5s
4d
4f
1s
2$

2p
2p
3$

3p
3p
4s
4
4p
5s
3d
3d
Sp
6s
4d
4f
1s
2$

2p
2p
3$

3p
3p
3d
3d
4s
4
4p
5s

Sp
4d
6s
6p
Sd
4f
1s
2$

2p
2p
3$

—1.738 14
—0.188 90
—0.11162
—0.11155
—0.071 60
—0.055 95
—0.05094
—0.037 59
—0.031 45
—0.031 27

—1.16246
—0.159 55
—0.100 37
—0.100 11
—0.063 72
—0.061 40
—0.061 41
—0.046 89
—0.03445
—0.034 69
—0.031 36

—0.153 51
—0.096 19
—0.095 11
—0.065 32
—0.061 77
—0.045 08
—0.036 37
—0.031 41

—40.826 55
—3.082 40
—1.801 42
—1.79401
—0.182 03
—0.10949
—0.10942
—0.070 16
—0.055 67
—0.050 31
—0.03706
—0.031 32
—0.031 25

—134.39946
—14.823 35
—11.81829
—11.708 80
—1.977 10
—1.17744
—1.16644
—0.147 49
—0.095 71
—0.095 50
—0.061 09
—0.058 07
—0.058 08
—0.045 55
—0.033 44
—0.032 84
—0.031 25

—562.337 29
—77.705 32
—70.220 59
—67.968 32
—12.763 25
—10.022 14
—9.668 74
—4.879 68
—4.81966
—1.767 12
—1.033 77
—0.997 64
—0.13929
—0.090 82
—0.089 99
—0.059 74
—0.058 70
—0.043 60
—0.033 77
—0.031 26

—1330.122 63
—212.564 91
—199.429 42
—186.436 53
—45.969 83

0.004

0.001

0.009

0.009

0.002

0.033

0.036

0.012

0.036

0.009

0.067

0.260
0.158
0.132
0.132
0.007
0.003
0.003
0.004
0.000
0.002
0.003
0.000
0.000

0.211
0.127
0.111
0.111
0.087
0.073
0.073
0.005
0.003
0.003
0.003
0.002
0.002
0.002
0.002
0.002
0.000

0.161
0.092
0.084
0.084
0.069
0.069
0.063
0.053
0.053
0.044
0.038
0.037
0.003
0.001
0.002
0.002
0.002
0.001
0.002
0.000

0.140
0.0&0
0.074
0.073
0.059

0.032
0.016
0.016
0.018
0.004

0.084
0.048
0.048
0.048
0.048
0.047

0.108
0.060
O.OS8

0.080
0.059

—0.031
0.038
0.019
0.019
0.020
0.005
0.012
0.014
0.004

—0.003
0.082
0.049
0.048
0.043
0.057
0.057
0.029
0.030
0.056
0.004

0.102
0.059
O.OS7

0.093
0.052
0.034
0.077
0.005
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TABLE I . ( Con tin ued ) .

Atom State Expt'

expt ~DF

Dirac-Fock
g ~DF

DF

Ca1cu 1at ion

—X/T
g&corr

~DF

expt &DF

DF

3p
3p
3d
3d
4s
4
4p
4d *

4d
5s

5p
6s
6p
6p
5d
7$

4f

—0.143 10
—0.092 17
—0.089 64
—0.076 59
—0.058 65
—0.03 1 57

—40.448 29
—37.894 29
—28.909 49
—27.775 15
—9.5 12 84
—7.446 28
—6.92 1 00
—3.485 62
—3.39690
—1.489 8 1

—0.907 90
—0.840 34
—0.127 37
—0.085 62
—0.083 79
—0.064 53
—0.055 19
—0.03 1 27

0.065

0.040

0.073

0.026

0.077

0.022

0.055

0.054
0.048
0.048
0.045
0.042
0.042
0.034
0.034
0.030
0.026
0.026
0.002
0.001

0.001

0.003
0.001

0.000

0.1 39
0.08 1

0.074
0.168
0.076

0.123
0.076
0.070
0.187
0.063
0.010

'Data for Na and K are taken from Ref. 12; those for Rb and Cs, from Ref. 1 1 .

Z —1
Z —1,(Z)( T) ~ VCoul=&a a cr; a o

a = 1

with

Z —1

EZ —l, (Z)(X) ~ VCoul
CT a cr; era

a = 1

V„j.,:„„:—fd ld2$„( 1 )P„(1 )P (2)P„(2)V (r„),
and

(7)
V '"'(r)2)= 1/r)2 ——1/

~
rl —r2

~

= 1/
~

1 —2 ~, (10)

where the symbols E and p refer to energies and wave
functions in the DF approximation. The ratio X /T, —
given in column 6 of Table I is the number obtained from
the results calculated for Eqs. (7) and (8).

The seventh column in Table I gives the ratio of the
correlation energy, as calculated by the method of Ref. 5,
to the corresponding DF energy. The expressions which
must be evaluated to obtain the correlation contribution
are

corr 2 X X
a, c = 1 p™~ I

Coul Coul Coul(V„. —V„. )V

e ~
ac b = 1 p, q =M + 1

Coul Coul CoulV, qp
( V~~ b

—
V.

qp b~ )

e &b
VP

with corr expt DF
appr (13)

e g=(E + g
—EE —E„) (12)

The E on the right-hand side of Eq. ( 1 2) are the ap-
propriate DF energies. For alkali-metal atoms,
M =Z —1, from Eq. (6). Equation (1 1) is the correlation
energy contribution with nonvanishing nonrelativistic
limit. The pair terms in the correlation energy ' can be
neglected in the present approximation.

Only the numbers listed in column 7 of Table I are
available from the work of Johnson et a l. A good esti-
rnate for the approximate correlation energy contribution
Lak E'

pp
for valence states is given by

as can be seen from a comparison of columns 7 and 8 of
Table I. We wi 11 therefore extend the estimates of corre-
lation energy contributions to those valence states for
which no direct calculations are available, in order to fa-
cilitate our study of trends in the behavior of this quanti-

ty�.

We exclude those values of the estimate as unreliable,
which are so srnal 1 as to be comparable to the differences
between columns 7 and 8 of Table I.

We would also like to tie to experiment our study of
the Breit interaction contributions to energy levels for the
core states. In addition, since no direct calculations of



1130 S. S. LIAW, G. FELDMAN, AND T. FULTON 38

correlation corrections are presently available, ' we
would like to obtain approximations of these corrections
from results in the current literature. In order to accom-
plish these aims, we focus on the core states, with energy
E, " ', and demand that they correspond to first-order
x-ray edges. Thus we fix

M=Z, (14)

and the relevant ground state becomes Eo' '. This set of
conditions describes the noble gases, for example. We
will not be concerned with valence states sharing the
same ground state Eo' '. These would be states of nega-
tive ions, and are not of interest to us here. The largest
relativistic contributions are, in any case, expected to
come from the deep core states, and we do not need addi-
tional estimates of correlation contributions for valence
states.

We list experimental and calculated data for the core
states of the noble gases (with nuclear charge one unit
less than those of the alkali-metal atoms previously con-
sidered) in Table II. Columns 1 —4 of this table corre-
spond to the same column numbers' in Table I. We will
not repeat our consideration of fine-structure effects for
these atoms, since they do not provide new information
of interest. In the fifth column, we list the ratio of Breit

g&Breit [ge( T)+ge(~)]Breit

where
Z

ge( T)Breit ~ ~ VBreit
cr ~ ao", acr

a=1
Z

g&(X)Breit ~ VBreit
cr + ~ aaoa

a=1

and

V '"'(r,2)= —(at a2+a, n, 2a2 ntz)/2r, 2 .

(15)

(16)

(17)

interaction contributions to the DF energies. In the sixth
column of Table II, we give the ratio of the estimated ap-
proximate correlation energy contribution (as far as it is
available from the current literature) to the DF energies.
These approximate correlation energies, for deep-lying
core states only, are given by the relaxation correction to
the frozen orbital energy ' (R, of Ref. 6). This assertion
will be justified in more detail below. We cannot estimate
hc,""for these deep core states in the same way as we did
for the valence states, since relativistic (both Breit and ra-
diative) corrections are expected to contribute
significantly to the experimental energies for these states.

The Breit interaction contributions for the noble gases
are

TABLE II. Noble gases —experimental and calculated data (p =p3/2 d =d5g2).

Atom

"Ne
(2p)

' Ar
(3p)'

3OKr

(4p)'

'4Xe

(5p)'

'Reference 16.

State

1s
2$

2p

1s
2$

2p
3$

3p

1s
2$

2p
3$

3p
3d
4s
4p

1s
2$

2p
3$

3p
3d
4s
4p
4d
5s
5p

Expt'

e cxpt
ET

—31.9822
—1.7816
—0.7925

—117.8521
—11.9828
—9.1326
—1.0748
—0.5793

—526.5659
—70.6102
—61.5643
—10.7367
—7.8807
—3.4485

—1270.3560
—200.4015
—175.7793
—42.1938
—34.4321
—24.7999

~DF

—32.81745
—1.935 84
—0.848 27

—119.126 58
—12.411 58
—9.54706
—1.286 59
—0.587 82

—529.685 23
—72.079 82
—62.879 19
—11.22446
—8.31279
—3.726 79
—1.187 75
—0.514 35

—1277.260 97
—202.465 47
—177.704 52
—43.01054
—35.325 26
—25.537 09
—8.429 94
—5.982 79
—2.633 76
—1.010 14
—0.439 80

Calculation
gBreit

~DF

0.00042
0.00041
0.000 74

0.000 79
0.000 63
0.000 86
0.000 61
0.00097

0.001 63
0.001 28
0.001 66
0.001 36
0.001 85
0.001 94
0.001 35
0.002 14

0.002 48
0.001 89
0.002 36
0.001 80
0.002 26
0.001 92
0.001 95
0.002 54
0.002 61
0.002 12
0.003 19

~~appr

~DF

—0.025
—0.080
—0.066

—0.011
—0.034
—0.043
—0.165
—0.014

—0.006
—0.020
—0.021
—0.043
—0.052
—0.075

—0.005
—0.010
—0.011
—0.019
—0.025
—0.029
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The vector n]z is a unit vector in the direction of r, z.
Only the exchange contributions of the Breit interac-

tion are nonvanishing. This fact is pointed out in Ref. 4,
among other places. Without using the detailed argu-
ments of Ref. 4, one can show it by going to momentum
space. The Breit interaction in momentum space has the
form

N, ff(o)=Z —Z, ff .

These rough approximations lead to

(E ")"'=a /2n [—aZ (n, l)Z
7

(23)

tribute to the sum. Call the number of such electrons
N, ff(cr ). We may expect that

V ""'(k)=a, a2 [5; —(k;k )/k ](1/k ) . (18) +aN, &(n, !)Z,ff(n, !) aZ—,ff(n, !)]

DF+ gBreit+ garret+ gcorr+. . . (19}

where c. " is the DF approximation to the exact many-
electron atomic energy difference e, and the various Ac's
have been defined above.

Our order-of-magnitude estimates are based on assurn-

ing that the DF approximation is roughly equivalent to a
central field approximation, that the field goes approxi-
mately as 1/r, and that the electron in the state o sees an
effective charge Z,ff(cr). The assumption of an efFective
1/r dependence leads to the virial theorem result'

Evaluation of hs ""(T) involves taking expectation
values of (18) and carrying out a spherical average. Ma-
trix elements of a, (or a2 ) will thus separately be pro-

portional to k, . The effect of one of these is sufficient to
make hs '"'(T) vanish. '

In order to determine, without specific calculations,
the relative importance of the various energy contribu-
tions which appear in Tables I and II, we want to make
crude estimates for these contributions, based on general

arguments. The aim of these estimates is to provide a
qualitative understanding of the significant physical and
mathematical elements which enter into the calculation
of these terms, to understand the trends to be expected as
functions of levels and nuclear charges, and thus to serve
as a guide for future calculations. We will test the validi-

ty of these crude estimates by comparing them to the ex-
perimental and calculated results listed in Tables I and II.

We write for a given level

(24)

for (n, !) a core state. The last term in Eq. (24) is absent
in valence states. It will also be dropped for core states,
in the spirit of our approximation. We thus have an esti-
mate for DF energies, for both core and valence states,
using (20) and (23),

(e ")"'= aZ —ff(n, 1)/2n (25)

The value of Z, ff(n, l) is fitted by setting (e„l)"':—e„l,
where the c.„ I are entries in column 4 of Tables I and II.
Z,ff(n, !) is listed in column 3 of Tables III and IV.

We next study the trends in the Z, (ffn, l) we have ob-
tained. In Fig. 1, we provide a semilogarithmic plot of
Z,ff(n, I-,„), l. ,„=n —1, (circular electron orbits) as a
function of n, for the four alkali-metal atoms we have
considered. (The lines connecting the discrete data
points in this and subsequent figures are provided only to
guide the eye. } We stop the analysis when Z, ff reaches, or
goes below, 1.01. We note that this is achieved for a prin-
cipal quantum number which is that of the ground-state
outermost s electron for Na and K, and for 4f electrons,
which thus have principal quantum numbers below that
of the ground state, for Rb and Cs. All these levels have
energies which are higher than that of the ground-state
(ns) valence electron. For Z, ff=-1.01, we can say that the
core completely shields the nucleus.

In Fig. 2, orbital angular momentum dependence of
Z, ff(no, l) is illustrated. The fixed value no is chosen so
that, for each alkali-metal atom, full shielding is achieved

s "=
—,'[e "'+e(T}+s(X}]

where

(20)

s "'=—aZ1'dr —icb (r)
i

To estimate c, "', we take

fdr(1/r)
~ P„,((r) ~

2=aZ, ff(n, l)/n', cr=(n, !) .

(21)

logo@(Zcff}

2.0-

1.6-

Cs +

RbQ
K ~

Na &

To characterize roughly Coulomb energies between
two electrons in Eq. (20), we let r, ~O in the

~
r& —r2

~

term, if r, is the coordinate of a core state. Because of
the orthogonality of the single-particle states, this will
imply that all terms occurring in the sums over a in the
exchange energy, Eq. (8), will vanish, except for the term
for which a =o. (For o a valence state, no such term ex-
ists. ) Further, in the T term, Eq. (7), we will assume, in
analogy with the classical electrostatic result, that only
those core electrons, the "orbits" of which lie "inside"
the electron "orbit" associated with the 0. level, will con-

O.S-

FIG. l. Z,&(n, I,. „),I,. „=n —1, for four alkali-metal atoms.
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TABLE III.
f =f7/2).

Alkali-metal atoms —tests of energy contribution estimates (p =p3/g d d5~2,

Atom

"Na
(3s)'

State
(0)

1s
2$

2p
3$

3p
4s
3d
4p
Ss
4d

9.0
5.0
3.8
1.8
1.4
1.5
1.0
1.3
1.4
1.0
1.0

F„
Eq. (28)

1.923
1.055
1.052

Fcorr
Eq. (31)

1.71
3.84
1.77

3.36
1.88

Fr..s
Eq. (33)

0.8

2.1

(4s) '

1s
2$

2p
3$

3p
4s

4p
5s
3d
Sp
6s
4d
4f

16
11
9.7
6.0
4.6
2.2
1.7
1.7
1.0
1.5
1.6
1.0
1.0

1.580
0.984
0.969
0.884
0.951

0.76
1.28
0.92
2.20
1.35
0.91
1.26

0.7

2.4

37R.b
(5s)'

1s
2$

2p
3$

3p
3d
4s
4p
5s

5p
4d
6s

6p
5d
4f

34
25
23
15
13
9.4
7.5
5.6
2.6
2. 1

1.4
2.0
1.8
1.3
1.0

2.070
0.906
0.850
0.659
0.661
0.684
0.770
0.861

0.52
1.06
1.12
0.80
1.23
0.87

0.7
1.0

0.5

1.6

55CS

(6s) '
1s
2$

2p
3$

3p
3d
4s
4p
4d
5s

5p
6s

6p
5d
7$

52
41
39
30
27
22
17
15
10
8.6
6.5
3.0
2.4
1.8
2.3
1.0

2.381
0.893
0.856
0.678
0.661
0.631
0.585
0.595
0.654
0.718
0.793

0.24
0.46
0.25
0.38

1.2

0.8
0.7

0.6
0.8

0.4

1.2
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Atom

' Ne
(2p)'

State
(o)

1s
2s

2p

Zeff

8.1

3.9
2.6

Fcorr
Eq. (31)

—0.40
—1.80

FBreit

Eq. (35)

1.57
1.67
1.38

TABLE IV. Noble gases —tests of energy contribution esti-

mates (p =p3/2, d =ds/2) ~

(X—/T)"'=1/N, s(o ) (26)

The trends in the X contributions are harder to charac-
terize. Overlap, which is a consequence of detailed evalu-
ation of the integrals in Eq. (8), and not of any general di-
mensional or coupling-constant considerations, plays the
crucial role. We estimate these integrals as indicated in
the discussion below Eq. (22), resulting in

Ar
(3p)"

'"Kr
(4p)

1s
2$

2p
3s

3p

1s

2$

2p
3s

3p
3d
4s

4p

15
10
8.7
4.8
3.2

32
24
22
14
12
8.2
6.2
4.0

—1.52
—0.72
—0.67
—0,45

—0.89
—0.62
—1.07
—0.88
—0.93
—0.91

1.46
1.37
1.15
1.96
1.85

1.32
1.12
0.94
1.21
1.04
1.45
2.06
2.02

for core states, and

(X /—T)"'=0 (27)

F~ = —1/[i(X/T)N, s] . (2&)

for valence states.
To test the validity of these estimates, we compare

them to calculated values of (X/T—), given in column 6
of Table I. We note the sharp drop in the values of

(X/T—), as the valence states are reached, justifying the
estimate of Eq. (27). For core states, we test our estimate
in Eq. (26) by defining the ratio of the estimated and cal-
culated values of —(X/T) to be

'4Xe

(5p)'
1s
2$

2p
3s

3p
3d
4s

4p
4d
5s

5p

50
40
38
28
25
21
16
14
9.2
7. 1

4.7

—0.35
—0.59
—0.77
—0.55
—0.56
—0.87

1.25
1.03
0.87
1.03
0.92
1.28
1.24
1.09
1.62
2.06
2.07

for Z, ir(no, I,„). As expected, the I-dependence of Z, ir,

for fixed no, is much less rapid than its n dependence for
circular orbits. Also, since orbits of lower l sample re-
gions closer to the nucleus than those of higher I (for
fixed no), electron shielding is less effective for the former
than for the latter.

If our rough estimates make sense, we can expect Fz to
be of O(1). We give the values of Fx in column 4 of
Table III. They are not unreasonable.

As expected, the overlap, and hence the magnitude of
X/T, decreases rapidly as one proceeds from inner to
outer shells. We illustrate this effect in Fig. 3, using the
calculated data of Table I directly. Figure 3 is a plot of
—(X/T)(n, l,„) versus n, for our subset of alkali-metal
atoms.

Correlation terms (which fall in the general category of
exchange effects) are even harder to characterize than the
X terms in the DF approximation. Due to their exchange
aspect, correlation terms should depend on overlap in
some way; further, from the point of view of classical
electrostatics, they should be proportional to the enclosed
shielding electron charge for the orbit (n, l); lastly, they
contain energy denominators.

To estimate Ac""", we first eliminate all but the max-
imum overlap terms. That is, we keep only those terms

20-

15-

10-

Cs ~ np 4
RbQ no 4
K ~ np 4
Na& np 3

X
T

0.3-

0.2-

Cs +

Rb Q
K ~

Na &

0.1-

1
0

~ ~s

I

f 1s 2p 3d

FIG. 2. Z, ff(no, I),no fixed, for four alkali-metal atoms.
FIG. 3. Relative magnitude of exchange X and Hartree T

contributions as function of n, I,„ for four alkali-metal atoms.



1134 S. S. LIAM, G. FELDMAN, AND T. FULTON 38

in Eq. (11) in which all the expectation values of V '"' are
of form V „'".' or V„".,' . This means that the dominant
terms in the sums of Eq. (11) are the second for core
states, with only the single term a =o surviving from the
sum over a, and the fourth for valence states, with only
the single term p =o. surviving from the sum over p. The
dominant terms which thus remain are

-0.02-

-0.04-
COIT

-0.06-
corer 2 y ~

VCoul
~

2y p

C,P

for core states, and

corr 2 y ~

VCoul
~

2y q

b, q

(29)

(30)

-0.08-

-0.10-

-0.12-

Xe *
Kr Q
Ar ~
Ne o

0.14-

0.12-

0.10-

Cs +

Rb Q
K ~
Na D

0.08-

0.06-

0.04-

0.02-

I t I

1s 2s 3s 4s 5s 6s 7s

FIG. 4. hc""/c for four alkali-metal atom valence s states.

for valence states, where the conventions of Eq. (12) are
used in the energy denominators.

We observe that Eq. (29) is closely related to the ex-
pression obtained for the rearrangement energy which re-
sults from the solution of DF equations based on varia-
tional principles, involving Lagrange rnultipliers for open
shells. ' In order to make a detailed comparison, it is of
course necessary to treat rearrangement and correlation
in a pat-allel fashion, i.e., in perturbation theory. 7 19 This
argument justifies our use in Table II of values obtained
for rearrangement energies as estimates for correlation
energies for the noble gases. Note further that the contri-
butions of (29) and (30) are positive and negative, respec-
tively (since the energy denominators are negative in both
cases). The ratios of correlation contributions to DF en-
ergies are thus positive for valence and negative for core
states. This is numerically confirmed by the calculational
results listed in columns 7 and 8 of Table I, and column 7
of Table II, respectively.

Next, let us use the calculational results and the esti-
mates for correlation effects in Tables I and II to study
the interplay of exchange and charge enclosure effects,
without any reference to crude approximations. We illus-
trate these trends in Figs. 4 and 5, in which we plot the
relative size of correlation contributions in s states, as a
function of n, for the alkali metals and related noble
gases. (There are points missing in the figure, for values

-0.14 I

1s
I

2s 2p

FIG. 5. hc""'/c, of low-lying states for noble-gas atoms.

of n for which even estimated values are unavailable. )

We note an initial rise in the magnitude of the correlation
with increasing n, I, or j, as more and more charge is en-
closed by an orbit. Eventually, the reduction of overlap
(due to the exchange aspect of the correlation) serves to
control its value, and we see the anticipated drop. Corre-
lation effects also increase in magnitude with Z, as one
would expect.

To obtain an order-of-magnitude estimate of the corre-
lation effects, Eqs. (29) and (30), we keep only those
terms in the sums which do not vanish because of wave-
function orthogonality, when we set either r, or r2 in

~
r, —rz

~

equal to zero (depending on whether r, or r2 is
the argument of the orbital of smaller average radius).
We approximate the energy denominators which appear
by e, alone. The sum over p (or q) can now be carried
out. However, since these valence states are not com-
plete, we put in a factor 0&f &1, of O(1), rather than
unity, to account for this fact. (We have set f= —,

' in

Tables III and IV.) We finally use the estimate (22), to
obtain

( g&corr )est

QZemfa-
2n (o )

CEZctr

2n (0 )

2 N N(o)

' 2N N(o)

~

(core) (31a)

(val) . (31b)

We test the estimate (31), by defining the ratio of (31)
to the As' " in Tables I and II to be F„„.(Notice that
the approximate Ac.""for alkali-metal valence states are
the entries in column 8 of Table I, multiplied by c, and
for noble-gas core states are the entries in column 7 of
Table II, multiplied by c. .) We give the values of F„„„
for valence states in column 5 of Table III, and for core
states in column 4 of Table IV. The estimate, Eq. (31), is
unreliable for the higher-lying core states, since it is over-
ly sensitive to X,z(o. ) for these states (and thus, indirect-
ly, also to the approximation ef =e, ). We therefore do
not give values of F„„,for these states.
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It remains to be determined what the effective screening
of the nucleus should be for the many-electron atoms of
concern in this paper. We note that 1/r probes the vi-

cinity of the nucleus more than 1/r, since it is more
singular at the origin. The relevant charge for this case
should therefore lie between Z and Z,z. We thus take
our estimate for this case to be

(heL.s)'„"I=a [Z,s(n, l)Z] /2n t . (32)

We define the ratio of the estimated to the calculated
values for the FS to be

[(aZ)'/nl]
( geDF ) /sDF

t

(33)

Values of FL.s are given in column 6 of Table III, for all
the data available from Table I. This estimate proves to
be adequate as we11.

In the case of the Breit interaction, the presence of the
Dirac a;, i = 1,2, would again tend to reduce the effect of
shielding. In addition, since only exchange terms con-
tribute, we will still assume that it is essentially one term
which will dominate the sum. We conjecture

(QE ) =a [Z (n [)Z ]/2n
7

and a corresponding testing ratio

(aZ) /nZ, sFBreit ~ +reit ~ Dp
LEE /E,

(34)

(35)

Values for this ratio are listed in column 5 of Table IV.

III. DISCUSSION

The relative magnitudes of the various contributions to
many-electron atom energies can be semiquantitatively
accounted for in a coherent and physically reasonable
way, as can be seen from the details given in Sec. II
above. That section served to confirm the approach tak-

We can provide less detailed justification for our semi-
quantitative estimates of the various relativistic effects we
wish to consider than we did for the cases where nonrela-
tivistic limits existed for the various contributions. Let
us consider fine-structure (FS) effects first. In the
Coulomb-Dirac case, for a nucleus of charge eZ, the FS
arises from a potential

(aZ/m )(cr L/r ) .

en in Ref. 14 to the estimation of these orders of magni-
tude, at least as far as they can be tested in the present
paper. We summarize briefly: Shielding by inner elec-
trons improves as one goes to circular electron orbits of
larger and larger radius, reaching a maximum when all
core electrons shield the nucleus. Again, shielding im-
proves as one goes from orbits of greater penetration into
inner regions of the atom to ones with lesser (i.e., from
l =0 to 1 =1~,„=n&—1, for fixed no). The DF potential
energies are dominated by the nuclear and Hartree (or
tadpole) contributions. Exchange effects decrease with
increasing nuclear charge (for neutral atoms). They de-
crease even more rapidly as one goes from inner- to
outer-shell electrons of the same atom. The correlation
contributions to the energy can be understood in terms of
a combination of overlap effects (as typified by the ex-
change contribution) and classical electrostatic argu-
ments (that the potential of a charged sphere at a given
radius should depend on the charge enclosed within that
radius). The relativistic eff'ects studied, FS and Breit con-
tributions, also have the orders of magnitude that one
would expect. All of these results give one some
confidence that the estimates for the other effects given in
Ref. 14, particularly for the QED effects, are also reason-
able. Indeed, there is some evidence from the litera-
ture ' ' for the qualitative behavior of the Lamb shift be-
ing of order a Z,z relative to the DF energies, ' but in-
formation on the many-electron atoms of interest to us in
this work awaits consideration. There are also QED
corrections to e-e interactions which have recently been
exhibited. ' These remain to be calculated as well. It ap-
pears that the evaluation of the finite contributions due to
these corrections can be carried out, using a generaliza-
tion of the procedure of Erickson and Yennie.
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