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Nonperturbative calculation of partial diff'erential rates for multiphoton
ionization of a hydrogen atom in a strong laser field
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We show how the multiphoton-ionization matrix element for an atom in a laser field at intensi-
ties beyond the regime of perturbation theory can be calculated from the standard Floquet expan-
sion of the electron wave function. We expand the harmonic components in a discrete complex
Sturmian basis set, and we evaluate the resulting (divergent) sum for the matrix element by using

the Pade method. We present results for partial rates and angular distributions for hydrogen.

IF;«)) =e '"""
I y;(z», (2)

where e; is the quasienergy and where I ilr;(z)) is periodic
in z. The form (2) is an exact solution of Eq. (I) when
t & 0, but it does not develop continuously in time from
the initial bound-state wave vector (+;) which represents
the state i of the electrons before the field is turned on;
V(z) is not periodic during the interval that the field is
turned on. The electrons should be described at t & 0 by a
normalizable wave packet whose energy spread is at least
the induced width I; of the initial energy level. The Flo-
quet form (2) amounts to assuming that the active elec-

We describe here a method for calculating the
multiphoton-ionization matrix element, within the Flo-
quet approximation, ' for an atom exposed to an intense
laser field. As a demonstration, we present estimates of
partial rates for multiphoton ionization of hydrogen at in-

tensities beyond the regime of perturbation theory. Total
rates for multiphoton ionization of hydrogen (that is,
widths of the initial energ level) were calculated previ-
ously by Chu and Cooper. To our knowledge the results
reported here are the first converged nonperturbative esti-
mates of partial rates for ionization of hydrogen' within
the Floquet formalism. We note that converged nonper-
turbative estimates of partial rates for multiphoton de-
tachment of the negative hydrogen ion were previously
calculated4 within a one-electron model in which the (ac-
tive) electron moves in a Yukawa potential. However, the
method used in that application is not readily adaptable to
the case of a long-range Coulomb potential.

We treat the radiation field as classical, monochromatic
(frequency ca), and spatially homogeneous over atomic di-
mensions. We ignore the interval during which the field is
turned on, and we suppose that the intensity reaches its
peak value at t =0 and is constant thereafter. For t & 0
the electron wave vector satisfies the Schrodinger equa-
tion:

[t'hd/dt H, —V(z)] I e(t))—=0,
where H, is the atomic Hainiltonian and where V(z), the
interaction of the electrons with the radiation field, is for
t &0 periodic in z=rot with period 2iz. Within the Flo-
quet approximation' the solution to Eq. (I) can be ex-
pressed as

trons have a well-defined total energy s;; therefore, wave-
packet localization (and wave-packet spreading) are
neglected. However, s; has a negative imaginary part,—I;/2, accounting for the decay of the initial state. Con-
sequently, the coordinate space representation of I llr;(z)),
which is just a sum of Gamow-Siegert functions corre-
sponding to the resonance eigenvalues a;, explodes ex-
ponentially at large distances.

We express V(z) as V(z) =V+e "+V—e" and ex-
pand I ilr; (z)) in the harmonic series

I ili;(z)) -g I ilr;„)e (3)

where the harmonic components satisfy the equations

(a;+nhro —H, ) I ilr;„) =V+
I itr; „1)+V-Iitr; „-+1). (4)

We can write s; E;+6; iT;/2, w—here 6; is the shift
from the unperturbed bound-state eigenvalue E;. The ei-
genvalue s; is determined from the condition that the set
of homogeneous linear equations possesses a solution
which (in coordinate space) is regular at the origin and
which at infinity is a superposition of spherical outgoing
(albeit exploding) waves. We note that this boundary
condition can be iinposed in the velocity gauge but not in
the length gauge. ' [In the latter gauge the interaction
V(z) explodes at infinity. ]

We work in the velocity gauge; for z & 0 we have
V(z) —(e/pc)Re(e ' 'Ao p), where e and p are the
electron charge and mass, p is the total canonical linear
momentum of the electrons, and Ao is the (constant) vec-
tor potential amplitude. [We drop the term in IAoI2
from V(z) since this can be absorbed into an irrelevant
phase factor multiplying IF;(t)). Consequently, 6; in-
cludes a downward ponderomotive shift. ] The matrix ele-
ment for N-photon ionization may be written as
MN =Mdiv+ +Miv, with

MN =&@1 I V~ I it i w~ i), (s)

where h kj/2p =E;iv =E;+6;+Nhco and where I @1, ) is
the wave vector, satisfying out-asymptote boundary condi-
tions, for an electron to scatter from the atomic potential
in the absence of radiation and energy with momentum
hkf. Since I itr;„) explodes exponentiall in coordinate
space, the partial matrix elements M$— are divergent.
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However, wave packet spreading is negligible during the
ionization process only if I;« ii kj/2p, and so it is con-
sistent with the Floquet approximation to take the limit
I; 0 in MN —. Note that even in the limit I; 0 the
M(v — are divergent because of phase cancellation in the
integrands arising from virtual photon absorption and
emission. Fortunately, and in accord with physical intui-
tion, the divergences cancel s in the sum M$+ +M(v~ to
yield a finite M(v. To take this limit in practice we cannot
simply put I;=0 in Eq. (4) because s; is an eigenvalue
and consequently a solution does not exist when we put
I; 0, except in the weak-field limit. One way around
this is to introduce an inhomogeneous term into Eq. (4)
which is consistent with neglecting 1;; this has been dis-
cussed elsewhere. 7 An alternative procedure is to solve
the homogeneous Eqs. (4) and analytically continue the
integral defining M(v, this is what we do here, though with
no pretense of mathematical rigor.

To understand better how we analytically continue the
divergent integral defining M(v, consider the simpler in-
tegral

r dr sin(Kr)e'""
2 2 2,
—2ikK (6)e 0 k2 —K

where K is real but k may be complex. If Im(k) & 0 the
integrand explodes exponentially at infinity but the right-
hand side of Eq. (6) is the analytic continuation of the in-
tegral into the lower half complex k plane. [The integral
has poles at k = + K because of the phase cancellation in
the integrand between sin(Kr) and e'k". A similar phase
cancellation occurs in MN~ —~, as noted above. ] We now il-
lustrate how we would analytically continue this integral
were we not able to evaluate it analytically. We begin by
expanding r exp(ikr) in terms of a discrete set of ortho-
normal basis functions. 9 Here we choose the Sturmian
basis functions'0

S„'((r) A„((—ixr ) '+'e'""(F i (I + I n, 2l +2—,
—2ixr),

(7)
where the S„' (r() are orthogonal with respect to the weight
function I/r and A„( is chosen so that

dr S"((r) (I/r) S„'((r)

We have (with A„o 2n ' )

re"- a„
n 1

at the origin and has outgoing wavelike behavior exp(ikr)
at infinity can be expanded in terms of basis functions
S„("(r) provided that the previous inequality holds. If we
substitute the expansion of r exp(ikr) into the integrand of
Eq. (6), and interchange sum and integral, we obtain

f oo OO

r dr sin(Kr) e'"' = g a„(k)b„(K),40 n 1

(loa)

b„(K)- dr sin(Kr)S„"0(r) . (10b)

The coefficients b„(K) are the coefficients of the expansion
of rsin(Kr) in terms of the S„"(r). We know that this
latter expansion does not converge since sin(Kr) is a
standing wave and we cannot have both larg(+ K)—arg(x) l

& z/2. Indeed, we have 2ib„(K) a„(K)—a„(—K), and b„(K) grows exponentially as n increases.
The sum on the right-hand side of (10a) converges only if
a„(k) diminishes more rapidly than b„(K) explodes as n
increases, a condition which is not satisfied for the in-
teresting range of k. However, the analytic continuation
of the sum is provided by the sequence of diagonal Pade
approximates converging (here in a finite number of
steps) towards the right-hand side of Eq. (6).

The integral of Eq. (6) is similar to the integral defining
M(v in that l 4g ) is a sum of standing waves, like sin(Kr),
and the harmonic components l y; (v+ i) are (in the veloci-
ty gauge) sums of outgoing waves like exp(ikr). Each
harmonic component has closed channel parts, arg(k)

(r/2+8 if m & No, and exploding open channel parts,
arg(k) —8 if m ~ No, where 28 tan '(I;/
2 l E; l ) and where %0 is the smallest number of photons
that the atom must absorb to ionize. '2 We solve Eq. (4)
by expressing the harmonic components in terms of basis
functions S„"((r)Y( (x), whose coefficients are determined
from the linear homogeneous equations'2 which result
from projecting Eq. (4), using Eq. (8), onto our basis set.
We must choose x to be in the upper-right quadrant of the
x plane and such that its argument does not differ from ei-
ther (r/2+8 or —8 by more than (r/2; see Fig. 1. We
thereby obtain convergent expansions of the harmonic
components, and we can evaluate the divergent sum repre-
senting M(v by using the Pade method. ' Note that be-
cause of the strong cancellation (of divergences) between
M(v+ and MN, discussed above, the Pade method must
be applied to the sum of MN — and not to these individual
matrix elements.

' n

a„(k)= drS„"0(r)e' '

—k k+&

(9b)

(9c)
k (closed channels)

Provided that Im(x+k) )0 the integrand of Eq. (9b) de-
cays exponentially and the integral for a„(k) can be eval-
uated by numerical quadrature; of course, this is unneces-
sary in the present example, where we have the exact re-
sult. The expansion of rexp(ikr) converges, in the sense
that a„(k) vanishes for n-~, provided that larg(k)—ar~(x) l

& x/2. This result appears to be quite gen-
eral; ' that is, any suitable function which behaves as r'+'

K

k (open channels)

FIG. 1. Complex wave numbers k, K, and x appearing in the
integrand of ionization matrix element.
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The partial differential rate for N-photon ionization to
a group of states with density p'(Erv) in the energ inter-
val (E;iv, E;iv+dE) is I;iv-(2x/A)p'(E;iv)

~ Miv ', pro-
vided that

~ y;(z)) is normalized appropriately. The ques-
tion of normalization has been discussed elsewhere ' and
we will postpone further discussion of this to a later paper.
We note, however, that to the extent that I;«E;iv„ the
partial rates, when integrated over angle, must sum to the
total rate I;. If this sum rule is significantly violated, the
concept of a time-independent transition rate ceases to be
meaningful. Hence the time-independent method used
here is limited to intensities for which the sum rule is
satisfied, i e , I;«. .E;iv,. In the intensity region where a
multiphoton ionization threshold is crossed (E;iv, 0)
time-dependent effects are important. '

In Figs. 2 and 3 we present some results which illustrate

FIG. 2. Angular distributions, normalized to unity at zero an-

gle, for (No+S)-photon ionization by linearly polarized light of
wavelength 265 nm (No 3) and intensity 5x10'3 W/cm . The
solid and dashed curves are the results obtained from the present
calculation and from perturbation theory (Ref. 15), respective-

ly. Upper curves: S 0; lower curves: S 1. The angle of ejec-
tion is measured relative to the polarization axis.
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FIG. 3. E index of nonlinearity vs intensity for (No+S)-
photon absorption by linearly polarized light of wavelength 265
nm (No 3). This index is defined as the derivative, with

respect to the logarithm of the intensity, of the logarithm of the
rate. Solid curves are for partial rates (integrated over angle)
and dashed curve is for total rate (the width). In the limit of
vanishing intensity the index becomes an integer (No+ S for the
partial rates, and No for the total rate ).
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the departure from nonvanishing lowest-order perturba-
tion theor~ at intensities not far below the lowest intensity
(5.5x10' W/cm ) for which a multiphoton ionization
threshold is crossed. We have normalized the results for
the index of nonlinearity, in Fig. 3, so that the sum of par-
tial rates equals with width I;. In our calculations we re-
tained harmonic components

~ y;„) with photon index n in
the range —3 & n & 7, each angular partial wave of

~ y;„)
was expanded in 40 basis functions, with I ~ 7, and we
took

~
x

~

~ 0.4 and arg(x) =1.07 rad. The results shown
are stable with respect to changes in the ranges of the pho-
ton index and I, the number of basis functions, and the
value of x.. Finally, we note that the present method is
also useful in a weak-field perturbative treatment.
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