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Squeezing and dressed-state polarization of driven atoms
coupled to a frequency-dependent vacuum reservoir
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We consider the response of an isolated two-level atom to strong-field excitation in the special
case where the atom decays via coupling to a frequency-dependent photon-mode density. It is
found that atomic squeezing substantially in excess of that found in the case of free-space atoms
arises. The enhanced squeezing is related to a polarization of the atom-field dressed states that is

also found to occur.

INTRODUCTION FORMALISM

Squeezing' of laser-driven atoms and the fluorescent
light scattered from them as received the attention of
several authors over the last few years. A number of
different situations have been investigated. Walls and
Zoller drew initial attention to this general problem with
their work on the squeezing of atomic and field observ-
ables in the case of a single, externally driven, two-level
atom in free space. A number of other workers have ana-
lyzed closely related single-atom and multiple
atom effects. The subject of atomic squeezing has also
arisen in the general context of optical bistability, where
situations involving both single-atom and collective
atomic' ' behavior have been analyzed. Recently, an

experimental observation of field squeezing under condi-
tions similar to those analyzed in the context of optical
bistability has been reported. ' It should also be noted
that collective atomic squeezing has also been discussed
in relation to Rydberg atom masers. '

In the present paper, we concentrate on the atomic
squeezing that occurs when a single atom, whose relaxa-
tion is determined through coupling to a frequency-
dependent reservoir of photon modes, is exposed to a
strong external driving field. It is the presence of the
frequency-dependent reservoir that differentiates the
present situation from those previously analyzed. Such a
frequency-dependent mode density arises physically
when, for example, an atom is placed inside a mode-
degenerate optical resonator. ' By controlling the fre-
quency distribution of the reservoir modes, one can rnodi-
fy an atom's relaxational dynamics and, as we point out,
generate significantly larger values of atomic squeezing
than are possible in the presence of the essentially
frequency-independent photon-mode density characteris-
tic of free space. Because mode-degenerate cavities pro-
vide one means of producing frequency-dependent pho-
ton reservoirs, we discuss this problem in terms of atoms
confined within cavities. In using this description, the
implicit assumption is made that the cavity is of a type
that possesses a frequency-dependent total mode density.

Consider a single atom. The atom is driven by an ap-
plied field, and resides in an open-sided optical cavity
that modifies the free-space density of photon modes. As
modified, the photon-mode density consists of a spectral-
ly flat background of free-space-like modes plus a spec-
trally concentrated peak of cavitylike modes. The fre-
quency of maximum mode density is denoted by ar, . This
system can be described by the Hamiltonian

H = '
o3+Q(e ' o+e ' crt)

2 3

+ f Ik I.„"„dk+f Ik
I
b„'b„dk

+fg, (k)(c„tr+o ce)dk

+fge(k)(bktr+tr bk)dk,

(2b)

where the o's are the usual Pauli matrices describing a
two-level atom, to, (toL) is the frequency of the atomic
transition (driving field), and 0 is the driving-field Rabi
frequency. The operators ck and bk correspond, respec-
tively, to cavity-type and free-space-type photon-modes.
The coupling constants ge(k) and g„(k) are connected to
the corresponding photon-mode densities. Since

I ge(k)
I

is needed only in the neighborhood of ar„cot,
and co„ it may be treated as a constant. The coupling

I g, (k)
I

is taken to be a single Lorentzian of full width
at half maximum I . For further discussion see Ref. 20.

The first step in solving the problem of time evolution
of the system, described by Hamiltonian (I), requires the
derivation of atomic Bloch equations, i.e., equations
describing the evolution of mean values of the atomic ob-
servables o, o. , and o.3. In doing so, it is convenient to
introduce the reservoir response functions

f I g, (k)
I

exp[i(
I
k

I

—to, )t]dk=y, l e ~' ~, (2a)

f Ige(k) I expI:i( Ik I
~ "jdk=x»«)
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Note that Eq. (2a) expresses the fact that photon modes
associated with the cavity resonance have a finite
response time I '. It is clear that interaction of the
atom with the cavity (background) modes contributes an
amount y, (yb) to the overall undriven spontaneous
emission rate y„„ if the atoms and the cavity are reso-
nant (co, =co, ).

Assuming 0, I » y b, y„the Bloch equations may be
derived by eliminating the photon operators through a
first-order expansion in yb or y, (Born approximation).
However, if the case Q ~ I or b, , —:(coL —co, ) & I is to be
included, one is not allowed to perform a Markov ap-
proximation for the cavity modes. This is due to the fact
that for Q or b i greater than I the atoms change their
state, before the cavity field has a change to adjust to it.
The resulting Bloch equations must therefore contain
characteristic memory terms. The memory extends to
times of the order of I ' and affects the damping terms
as well as dynamical frequency shifts. The explicit (but
rather complicated) form of these Bloch equation is pub-
lished elsewhere. Here we concentrate on qualitative
discussion and presentation of some quantitative results.

A similar approach can be used to obtain the equations
for all the single-time correlation functions, such as
atom-field correlations, etc. Contrary to the Markovian
theory (valid in free space), the equations for multitime
correlation functions have to be derived separately from
the Bloch equations, since the quantum regression
theorem (see, for example, Ref. 21) does not hold in our
present case.

One should stress that the equations obtained this way
are valid only in the sense of a perturbative expansion in
y„/I' and y /Q, where v=b, c. This expansion can be
systematically corrected to include the terms of higher
orders. The calculations of higher-order terms for
single-time correlation functions have in fact been done
by us in order to study the regime when y, is comparable
to I or 0, and will be presented in Ref. 20. For most of
the purposes of this communication the lowest-order re-
sults are suScient.

I.et us now concentrate on stationary (long-time,
t ~ ao ) atomic-squeezing effects. Such squeezing is
characterized by variances of different components of the
Bloch vector. The relative squeezing parameters are
defined as

5 o, (t) 1 —(cr,(t))
r i ——lim = lim

~

(o'$(&))
~

-
~

(o'$(t))
~

(3a)

(3b)

The atomic states are squeezed with respect to o'& (oq)
when r

~
(rz ) is smaller than l. As we see, the parameters

r, and r2 can be calculated directly from the stationary
solutions of the modified Bloch equations. It is the pa-
rameter r, which shows squeezing for b i comparable to
Q in free space and which is expected to do so in the
cavity as well.

DISCUSSION

We now qualitatively consider the behavior of the
steady-state values of o. , and o.

&
in free space and in a

cavity in order to obtain some insight into resulting
atomic squeezing. In free space and for a fixed, but large
0, the atomic inversion o.

&
vanishes approximately for

6i ——0 and approaches —1 for hi»Q. On the other
hand, the atomic coherence component o. , vanishes for
both 6i ——0 and 6& »0, but attains a nonzero maximum
somewhere in between. The ratio ri achieves its min-

imum value (i.e., squeezing is maximized) in the region
hi-Q, where o.

&
is maximized. The extent of squeezing

in free space is determined by the quantitative behavior
of o i and cr& as a function of b i.

Let us now consider atomic behavior in the presence of
a frequency-dependent photon-mode density as described
in the preceding. For simplicity, we assume that the den-

sity of background modes is negligibly small (yb &&y, ).
Provided that

( Q2+ g2) l /2 ))I

it is possible to tune the cavity close to particular
dressed-state transition frequencies [i.e., coL, and

coL +(Q +b,f}' ]. By tuning close to the sideband fre-
quencies [coLE(Q +4/)' ] one enhances one of the
transitions between the dressed states. In this way, one
is able to modify the steady-state dressed-state inversion
which is proportional to

(4)

where Q' = ( Q +b,f )
' . In effect, one can polarize the

dressed-state populations. Note that this polarization
effect (an asymmetry in populations within dressed-state
doublets) is induced by a difference between the density of
photon modes at co=~L +0' and co=coL —O'. By induc-
ing a dressed-state polarization, one also modifies the
values of the steady-state atomic observables ( o, )
(i =1,2, 3).

Note also that the polarizing effects discussed in the
preceding can be obtained even in the resonant case. Fig-
ure 1 shows the population inversion of the dressed states
for b,

&
——0 and hz ——30y, as a function of Q (for 5& ——0,

the inversion is simply proportional to 0 &}. The reduc-
tion of relative Bloch vector fluctuations (as represented
by r, —1) is shown in Fig. 2. Although no squeezing is
obtained in the resonant case, the comparison with the
free-space results ( I = 10000y, ) shows dramatic
differences. Note that o. , does not vanish as it does in the
free-space case.

Similar results are presented in Figs. 3 and 4 for the
nonresonant case (5,&0). As we see, dressed-state polar-
ization is again observed. For b, &&0, the dressed-state in-

version is no longer simply equal to o„but it becomes
ever more nearly so as 0 grows larger than 5i. Thus in
the 0& 6i region, at least, we can see from Fig. 3 that
the cavity enhances the value of o, It turns out that the
behavior of o& as a function of 0 is only weakly affected
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FIG. 1. o.
&

vs Q/y, for 6,=0. In free space (I =10000y, ),
cr& is identically zero. In cavity (hz ——30y„ I =10y, ), cr,
displays a broad maximum that peaks in the vicinity of Q=hz.
In the resonant case (5& ——0), cr1 corresponds to the dressed-
state inversion. yb /y, =0.01.

FIG. 3. Dressed-state inversion cod, [as defined in Eq. (4}] vs

Q/y, for 6& ——10y, . In free space co« is 1 for small Q (because
of large 6&) and decays to zero as Q grows. In the cavity
(5&——30y„ I = 10y, ), co«stays close to 1 for much larger Q due
to a broad maximum at Q'=52. yb/y, =0.01.

by the cavity.
Results plotted in Fig. 4 indicate that the cavity in-

creases both the extent of squeezing and the range of 0
values over which it occurs. As mentioned in the preced-
ing, free-space squeezing is optimized when Q=b

&
and

attains a maximum value of about 16%. In the cavity,
optimal squeezing occurs for 0'=62 and attains a rela-
tive value of 60%. The cavity width I = 10@„laser-atom
detuning 6& ——10y„and the laser-cavity detuning
62——30y, were chosen by trial and error to maximize the
squeezing.

Unfortunately, the large atomic squeezing effects de-
scribed in the preceding do not carry over to the light

scattered by atoms. In fact, total field variances (associat-
ed with both background and cavity field modes} are
squeezed by only a few percent. While the field scattered
into the background modes is directly related to the in-
stantaneous value of the atomic dipole moment, squeez-
ing of this field appears to be destroyed because of the
small fraction of photons actually scattered into the back-
ground modes (recall we have restricted our attention to
the case of y b «y, }. The cavity field, on the other hand,
is connected to the atomic dipoles through convolution-
type time integrals extending over times of the order of
I '. The convolution process evidently degrades the
squeezing of the cavity field. If one considers the spec-
trum of squeezing associated with the cavity field, one
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FIG. 2. Relative variance (r& —1) vs Q/y, for b

&

——0. In free
space r& —1 grows with Q. The growth corresponds to the fact
that o 3~0 for Q —+ Do as 1/Q . In the cavity
(52 ——30y„ I =10y, ) we find that r, is always greater than 1

and is maximum for "small" Q (due to the fact that o.
3 crosses

0). For large Q, r& displays a broad minimum centered around
Q=hp. yb/y, =0.01.
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FIG. 4. Relative variance (r, —1) vs Q/y, for b& ——10y, . In
free space the variance has a minimum at Q=5& amounting to
16% of squeezing. In the cavity (62——30y„ I =10y, ), the
minimum appears at Q'=52 amounting to 60% of squeezing.

yb/y, =0.01.



1078 BRIEF REPORTS 38

finds that squeezing occurs mainly for the sideband fre-
quencies, and that the maximum squeezing observed is
roughly 15%. Interestingly, however, peak squeezing
occurs in a region of parameters different from that
which maximizes squeezing in free space.

The most interesting quantum-statistical result of our
investigation, however, consists of the large atomic
squeezing and dressed-state polarization effects described.
From the intuitive physical description of these effects, it
is clear that they should not be suppressed by many-body
effects. Control of the spectral properties of the vacuum
apparently provides one with a powerful means of modi-
fying fundamental light-matter interactions.

Finally, we should mention that we have investigated

the optimal conditions for the squeezing and polarizing
effects described here, and found that they correspond to
moderately broad cavities (I &yb, y, ), large Rabi fre-
quencies (0 »y„,), cavity frequencies close to one of the
transition frequencies between the dressed states of the
system, and atom-laser detunings roughly comparable to
0'.
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