
PHYSICAL REVIEW A VOLUME 38, NUMBER 2

Brief Reports

JULY 15, 1988

B""fR'p'"" '"' short papers w"tc" «p««n compl«ed «sea«h u»tch, while meeting the usual Physics} Review standards of
sct'entt'jic tiuality', does not warrant a regular article .(Addenda to papers previously published in the p}iysiea1 Revievr by the same

authors are included in Brief Reports )A .Brief Report may be no longer than 32 printed pages and must be accompanied by an

abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors

Analytical evaluation of multicenter molecular integrals
over Slater-type orbitals using expanded Lowdin alpha functions

Herbert W. Jones
Department of Physics, Florida A&M University, Tallahassee, Florida 32307

(Received 22 February 1988)

The Lowdin alpha functions, which are the functions associated with the spherical-harmonic ex-

pansion of a displaced Slater-type orbital, are expressed using C matrices to represent the polynomi-
als in terms of the displacement distance a and the radial distance r. These polynomials are multi-

plied by the sum and difference of exponentials. The expansion of the exponentials leads to the use

of F. and F matrices. By keeping only the r variable identi6able, further simpli6cations of the alpha
functions are possible, which makes for easy programming of a11 multicenter integrals. Also, no
singularities appear in these developments. Everything is demonstrated by using 1s orbitals as pro-
totypes.

I. INTRODUCTION

The author has shown' how an infinite series of formu-
las may be generated by computer algebra to represent
the potential produced by the product of two separated
Slater-type orbitals (STO's}; also, a triple infinite set of
formulas may be generated to represent the value of a
four-center integral. These procedures can be general-
ized for all STO's. However, the programming effort
necessary for carrying out this task presents a formidable
obstacle. In addition, it appears that all formulas so
developed must be expanded in a Taylor series using in-

teger arithmetic for formula evaluation for certain ranges
of parameter values.

The advantages of expanding the alpha function using
an E-matrix representation were demonstrated in a pa-
per on the charge density about the origin. (Several E
matrices are shown. ) An F matrix is necessary for r & a,
but for s orbitals this matrix is the transpose of the E ma-
trix. These matrices are generated using integer arith-
metic and are stored; they are considered to be part of the
data base when using STO's. It was also shown that a
further simplification of the alpha function is possible if
all parameters except the radial variable r are absorbed
into appropriate coeScients leading to one-dimensional
matrices or vectors Yt(j) and Zt(j). Another advantage
of the expanded alpha function is that the troublesome
factor g, —gb, which often leads to singularities, does not
appear in the course of developments.

To demonstrate the feasibihty of our method, values
for an overlap, a three-center nuclear-attraction integral

(potential), an exchange integral, and a four-center in-
tegral are produced. It should be clear that the 1s orbital
is an adequate prototype for any orbital because every
STO is characterized by a C matrix, and in the integrals
the radial and angular parts always separate.

II. E AND FMATRICES

A 1s orbital in its coordinate system is given by
X=/ r e ~"/&m. . If it is displaced a distance a along the
z axis it may be expanded in spherical harmonics or
Legendre polynomials in the original coordinate system
as

g3/2 a&

X= g atPi(cos8},(, .

where

2I +1 I+1 I+1
a, = g g Ct(t',j)&tj(g )' ' '(g )'

i =0 j=O

and

e «'[( —1}je~"—e ~"], r (a
H,-. = '

e ~"[(—1)'e~' —e ~"], r &a .
(1)

The E matrix results when e~' and e ~" are expanded
and the triple sum is reduced to a double sum by corn ut-
er algebra. It is also expedient to expand e~' and e ' to
arrive at an F matrix, which for s orbitals is the transpose
of the E matrix. In this work, by trial and error, we
found that 36 terms in our expansions are sufficient
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(J,„=36),and 1,„=24 is used.
Thus

g3/2 g3/2

X, = e ~'" and Xb —— ga(P((cos8) .

e
—ga

)I +I

e
—gr

)I + 1

I + 1 max

g El(i j )(ga)'(P)~, r &a
i =0 j=l
1+1 36

g g +, (i,j)(ga)'(gr)J, r &a .
j=Oi =I

A further simplification results by just keeping r intact,

I+1
YI(j )=g' g E&(i,j)(ga)' ' 'e (4)

i=0
36

Using orthogonality of the Legendre polynomials,

36

S=4(g, gb)3/ g Yo(j)f'dr e '"rJ
j=1

+ g Zo(j )f "dr e '+ ' "r'+'
j=O

(9)

B. Three-center nuclear-attraction integral
(electrostatic potential)

With a =2, g, =gb ——1, we get 10-digit accuracy, as
confirmed by the overlap formula S =e '( 1+a +a /3 ).

leading to

max

g YI(j)rJ, r &a

I+1
e ~" g ZI(j)r~ ', r &a .

i=0

These two integrals differ only by a constant. Working
with the potential, we seek the potential at the point
(rz, 82) due to the charge density given as the product of
two ls orbitals, X, located at the origin and Xb at (0,0,a),
a =2, g, =gb ——1. Hence,

V(»„82)= f dU, X,(1)Xb(1)/r» . (10)

We substitute the Laplace expansion for 1 lr&z,
With these simplifications the programming of multi-

center integrals becomes manageable, and singularities do
not appear. 12

III. EXAMPLES OF VARIOUS MULTICENTER
MOLECULAR INTEGRALS

A. Overlap

The simplest multicenter integral is the overlap

5= g, 17& 1dvl .

Locating g, at the origin and gb at (0,0,a) we have

X Yz '(Bi,A)Y (Bz,tpz),

where r is the larger of r, and rz and r is the smaller.
Using orthogonality of the angular functions we obtain

V(rz, dz) = g Vl(rz )P&(cosdz),
I

with

)3/2 r I

VI(rz)= dr& r, e ' ', , a&(r) . (12)
21 +1 o r'.+'

Explicitly,

4(g g )3/2

VI(rz) =
2l+1

J Jmax

X ~iJ~)f «& r +'+ e ' '+r' g Y( )f d» 'r'+' 'e
f2 j=1 I 2

I+1
+rz g Z&(j) dr, r, e ', rz&aj —21 (~ +gb)rl

j=0
(13)

4(g g )3/2

V, (r, )= 2l+1
max

g Y,(j )f dr, r', +'+ e '"'+ g Z((j )f dr, ri+'e
2 j=l 0

lyl
+rz g ZI(j)f "dr, r/, e

' '+ ''"', rz&a .
j 0 2

(14)
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To obtain numerical results we must change the in-

tegrals to summations by use of three formulas (the first
one due to Silverstone ):

f
QO k

n —mr n+1drr e =a ( —wa)
o k 0 k!(n +k+1)

n nt &n —k

fx"e "dx= —e "g ' k, , n&0
0 (n —k}! w" +' '

4 36 36 Yi(J)( —1)
VI(r) = r'+ j+'

21+1 . ,„0k!(I+j+k+3)
36

+r g YI(j)f dr rj+' 'e

j=1
36 36 Y (j)( —1)"r2+1+"

+
0 k!(—I+j+k+2)

36
+r'g Z&(j)f "dr r~ ''e ", r &a .

j=l
( —w)"+, Ei( —wx),

n —1! n )0. (17}

For an example, we found the potential at the point
(0,0,0.5) due to ls orbitals ((=1) at the origin and at the
point (0,0,2) to have the same 10-digit accuracy as in the
formula case. '

C. Exchange integral

For the two-center exchange integral we place the or-
bitals X,(1) and X&(1), the product of which represents
the electron density of electron "1," at the origin and at
the point (0,0,a), respectively (a =2, g= 1). The orbitals

X, (2) and Xd(2) for electron "2"are placed in correspond-
ing positions. We write this two-electron repulsion in-
tegral as

K =f fX, (1)Xb(1)r,2'X, (2}Xd(2)du, du2 .

Performing the first integral we have the potential as
given in Sec. III B. Making the substitutions and using
orthogonality we obtain

Now we use an in-house version of computer algebra to
sort, add, and group terms with equal r exponents. This
results in a simple power series. The r )a case is some-
what more complicated. We find terms I /r'+ ',
r 'Ei( —2r), e "Ir", and r "e ", where n is an integer,
multiplied by polynomials.

To get the value of the exchange integral we must in-
tegrate over the charge density X,Xd. This is a straight-
forward procedure, but we do need another integral,

f dr e 'Ei( 2r)r"—
a

n! 1

k~0 (n —k)! 2"+'

&( a" "e 'Ei( —2a)+ f dr e "r"
a

(18)

In our example, we get 9-decimal-digit accuracy using
Ss of central-processing-unit (CPU) time; the accuracy is
confirmed by using the Sugiura formula.

D. Four-center integral

re= ps;,
l

with

A completely formula approach has been given for this
integral. Orbitals X, (1) and X&(1) are again located at
the origin and at (0,0,a), a =1, g= l. Orbital X, (2) for
electron "2" is at (a, y, I ) in spherical coordinates
(r, 8,y) and Xd(2) is at (a, 5, b ). Using the Legendre addi-
tion theorem we may write

4 a)
Kl —— dr r Vlale

2I +1 0
(16)

ao m (4 )
1/2

X, =2 g g a Y4(l, y)Y(8y)* (19)
m =Op= —m +2m +1

To carry out this integration we must find Vl as a func-
tion of r (dropping the subscript 2). Let us consider the
case r2 & a. In the second term of Eq. (13), we replace an
integral,

and
eo n (4 )

i/2

X&
——2 g g ~„Y„"(&,&)'Y„'(&,q ) .

n =0v= —n +2n +1 (20)

dr rj+
1 1

2

r2

0 1 1
'r rj+' e ' ' — drr +' 'e

0
1

Making the proper substitutions for this electron repul-
sion integral we may write the resulting integral as the
sum of the product of radial functions multiplied by an-
gular functions,

I=QQQI( „Ai „,
I m n

Expanding the Silverstone integrals that are functions of
r into 37 terms we get where
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and

I& „——fdrr V&a a„

X F„"(b„5)(m,p ~
1,0

~
n, v),

(21)

IV. CONCLUSION

Computations have shown that the analytic method
presented here in which only the identity of the r variable
is maintained is as accurate as the complete formula
method; in addition the programming is much simpler
and easier to generalize. Also the troublesome g, g—b re-
ciprocal does not appear, and therefore only one expres-
sion is necessary for all parameter values, and the compu-
tations appear to be completely stable. We believe that
the clarity of the method presented here will lead to
many improvements, the most obvious being the in-
clusion of look-up tables and vectorization.

where the angular bracket represents Gaunt coeScients.
The evaluation of II „ is quite similar to that of KI, since
we use the same VI. However, an additional integral is
required.

We take I from 0 to 9 and m and n to a maximum of 20
with m+n &20. We compared the hybrid integral II,
with I when y=I =fi=b =0. We obtained 6-digit accu-
racy (I& ——0.507 045).
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