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The density-wave theory of Ramakrishnan and Yussouff is used to study phase transitions be-

tween liquid, liquid-crystalline, and crystalline phases. The different phases considered are liquid,
nematic, smectic, discotic, bcc plastic crystal, orientationally ordered bcc, and a new incommensu-

rate bcc crystal with orientational order. The direct correlation function, required as an input for
the theory, is expressed approximately in terms of five generalized Fourier coefficients. The theory
is then used to obtain sections through the phase diagram in the five-dimensional space of these
coefficients. Simple approximations for the direct correlation function of hard ellipsoids of revolu-

tion are used to compare these phase diagrams with those obtained from experiments and numerical
simulations. Molecular-field theories of smectic and discotic ordering are reexamined, and, given
the potentials they use, it is shown that an orientationally ordered bcc crystal has a lower free ener-

gy than either the smectic or the discotic phase. The conditions required to stabilize smectic and

discotic phases are examined.

I. INTRODUCTION

There have been many theoretical studies of phase
transitions from liquid to liquid-crystalline meso-
phases' and, over the past decade, of transitions from
liquid to solid phases (crystals in most cases) using the
density-functional approach. However, there have
not been many attempts to unify the theoretical study of
liquid-mesophase-solid transitions in systems with orient-
able molecules and to understand carefully how such
phases occur via an interplay of the parameters that favor
orientational and positional orderings. Lee, Tan, and
Woo' and, recently, Frenkel and Mulder, " Singh and
Singh, ' and McMullen and Oxtoby' have taken some
steps towards such a unification: they have studied tran-
sitions between isotropic liquid, nematic, plastic-
crystalline, and some orientationally ordered phases.
Singh and Singh' and McMullen and Oxtoby' use the
Ramakrishnan-Yussouff density-wave theory. "' We also
use this density-wave theory to study the systematics of
liquid-mesophase-solid transitions and extend signifi-
cantly the work of Singh and Singh' and McMullen and
Oxtoby. ' In particular, we examine transitions between
the following phases: isotropic liquid(L); nematic
(iV) ' smectic (Sm) ' ' discotic (D) ' a bcc
plastic crystal (bccP) with no orientational order
two bcc crystals with orientational order (bcc01 and
bcc02), which differ because they have different lattice
constants; and an incommensurate bcc crystal with orien-
tational order (1bcc0). We do not distinguish between
smectic- A and smectic-C phases' ' ' because these
phases have the same free energies given the approxima-
tions that we will make (Sec. II).

Extensive experimental work has shown that systems
with liquid-crystalline phases exhibit a rich variety of
phase diagrams. ' ' ' Over the past 15 years such
phase diagrams have been studied by numerical simula-
tions of orientable molecules of various sorts. "

Some of these simulations use lattice models, so that they
are suitable only for the study of orientationally ordered
phases. However, other simulations study continuum
models with hard ellipses ' (in two dimensions) and hard
spherocylinders ' and hard ellipsoids of revolution (in
three dimensions). These continuum models are suitable
for the study of both positionally and orientationally or-
dered phases. Our study has been motivated by a desire
to understand the results of the simulations of these con-
tinuum models and the experiments on mesogenic sys-
tems (e.g. , systems with liquid-crystalline mesophases).

There are some obvious limitations of our study. (I)
We do not consider various crystalline and liquid-
crystalline phases: fcc, hcp, cholesteric, ' and smectic-
B I, ' ' to —name but a few. (2) We use the
Ramakrishnan-Yussouff theory, which neglects fluctua-
tions that are important at continuous transitions (e.g. ,
many nematic —to —smectic-A transitions ) and weakly
first-order transitions (e.g. , the liquid-to-nematic transi-
tions' ' ); the treatment of such fluctuations is beyond
the scope of this paper. Many qualitative features of the
phase diagrams we obtain are insensitive to these limita-
tions; some are not. In Sec. V we discuss which of these
qualitative features are incorrect, what the correct
features are, and how they may be obtained.

Before presenting the details of the calculations, we
summarize our principal results. To do so, it is necessary
to introduce the elements of the Ramakrishnan- Yussouff
theory. This theory is a molecular-field theory in
which the two-particle direct correlation function plays
the role of a two-particle potential (Sec. II). This correla-
tion function, required as an input for the theory, can be
obtained, in principle, by measurements in the (super-
cooled) liquid phase (Sec. II) or from theories of the
liquid phase (Sec. IV). In systems of nonspherical mole-
cules the direct correlation function of the liquid
c(r,2, 0„02)depends on r, 2

——r, —r2, where r, and r2
specify the positions of the centers of masses of molecules
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(We examine the consequences of this approximation in
Secs. II—V.) Thus the two functions

and

Pllq
co(q):— , coo (q)(4~)'" (2a)

P1Iqcz(q): iyz c zz(oq ) (2b)(20~}'"
are the only input required for the theory we describe in
Sec. II. [We have defined co(q) and cz(q) with the nor-
malization factors (4n )

' and (20 m )
'~ for conveni-

ence in the following discussions; pflq is the density of the
liquid. )

Different forms of the functions co(q) and cz(q) lead to
different forms of ordering. Figure 1 shows schematic
plots of these functions. If the peak in co(q) at q =qo is
sufficiently large, then the free energy of the system is
minimized by the formation of a density wave (wave vec-
tor of magnitude qo) with no orientational order; the pre-
cise nature of this density wave (bcc, fcc, etc.) depends on
other features of the function co(q), such as its value at
secondary maxima. Similarly, the peak in cz(q) at

q =0 favors the formation of an orientationally ordered
(nematic) phase with no positional order; the peak in
cz(q) at q=qz favors the formation of density waves
(wave vector of magnitude =qz) with orientational order.

We parametrize the functions co(q) and cz(q) by their
values at q =0, q =qo, and q =q2. At all other values of
q we take these functions to be zero. We also assume that
co(q =0)= —~, i.e., the liquid is incompressible. (We
examine the consequences of these approximations in
Secs. II—V.)

We now present various sections through the phase di-
agram in the five-dimensional space of parameters co(qp),
co(qz), cz(0), cz(qo), and cz(qz); we relate them below to
phase diagrams in spaces of parameters that can be con-
trolled easily in experiments and numerical simulations.

In the systems we consider, we expect that q2 &qo.
Thus we see from Fig. 1 that in these systems co(qz) is
large and negative. The phase diagrams sho~n in Figs.
2(a) —2(d) are obtained at one fixed value of co(qz ), which
is large and negative, and for different (but fixed) values
of cz(qo). (These are schematic phase diagrams; they are
based on the phase diagrams obtained by doing the calcu-

1 and 2, and on 0, and Q2, which specify the orientations
of these molecu1es. We restrict ourselves to the study of
systems with only one type of molecule, which has both
cylindrical and center-of-inversion symmetry. For such
systems c(riz, Qi, Qz) can be expanded in terms of the
spherical harmonics Y&,( Q i ), Yi ( Qz ), and

I I 2 2

Yi~(r, z}; a subsequent Fourier transform over
~
r, z ~

yields the generalized Fourier coefficients c» I (q) of
1 2

c(r,z, Q„Qz),where q is the magnitude of the wave vec-
tor (Sec. II}. Symmetry considerations force 1

„
lz, and L

to be even integers.
In our study we assume

ci I I (q)=0 for L&0 or li, lz &2 .
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FIG. 1. Schematic plots of direct-correlation-function com-
ponents co(q) and c2(q) [for definitions see Eqs. 2(a) and 2(b)] vs

q for the isotropic liquid phase of a system of orientable mole-
cules.

lations described in Secs. II and III.) As long as
co(qz ) &0, the topologies of the phase diagrams are as
shown in these figures. Sum rules force the following ine-
qualities: co(qo) &1 and cz(qo) & l. Also, in systems of
physical interest we expect (Fig. 1) cz(qz) &cz(0). Thus
we plot phase diagrams in the cube 0&co(qo)&1,
0&cz(0) & 1, and 0&cz(qz) & 1; we expect only the re-
gion with cz(qz ) & cz(0}to be of physical interest.

At small and negative values of cz(qo) ( &0}we obtain
the phase diagram of Fig. 2(a); when cz(qo) =0 we get the
phase diagram shown in Fig. 2(b}; as we make cz(qo)
more and more positive, we obtain the phase diagrams of
Figs. 2(c) and 2(d).

All the phase transitions we obtain are first-order tran-
sitions. These occur at first-order phase boundaries. In
Figs. 2(a) —2(d), bold lines indicate where phase
boundaries meet the faces of the unit cube in which we
display our phase diagrams. Lines of three-phase coex-
istence are shown as dot-dashed lines; lines of four-phase
coexistence are shown as dashed lines. Points of four-,
five-, and six-phase coexistence are indicated, respec-
tively, by squares, pentagons, and closed circles.

As cz(qo) increases from the value which yields Fig.
2(a) to the one which yields Fig. 2(b), the orientationally
ordered bcc phase bcc01 grows at the expense of the
plastic-crystalline phase bccP and the nematic phase X.
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As c2(qo) increases further [Figs. 2(c) and 2(d)], bcc01
continues this growth, now also at the expense of the
liquid L. Furthermore, the incommensurate, orientation-
ally ordered phase 1bccO also starts growing slowly, at
the expense of the liquid L, the bcc plastic crystal bccP,
and the second orientationally ordered bcc crystal bcc02;
however, this growth is appreciable only when cz(qo} be-
comes greater than Ki [a positive number which depends
on the value of co(q2)]. The growth of the phase bcc01
continues as c2(qo) increases, and eventually no lines
{points) of four-phase (five-phase) coexistence remain [as
in Fig. 2(d)] when c2(qp)&K& [whose value depends on

cv(q2)].
The most significant result of our study is that neither

smectic nor discotic phases appear in the phase diagrams of
Figs 2(a) .—2(d). This is a surprising but important result
because various molecular-field theories of smec-
tic' ' ' and discotic orderings are special cases of
the theory we use. (We show this in detail in Sec. II.}
The reason for the discrepancy between our theory and
these molecular-field theories is that the latter do not al-
low for three-dimensional positional ordering (bcc, in
particular) at the same wave vector q2 (Fig. 1) at which
they allow for smectic or discotic ordering. 'o 6 ~ (This
shortcoming of such molecular-field theories has been
pointed out, in a slightly different context, by Harrowell
and Oxtoby. ') Smectic and discotic phases appear only
as metastable phases in our theory, i.e., they correspond
to local but not global minima of the variational free ener-

gy we use (Secs. II and III); the oriented bcc crystal
(bcc02} always has a lower free energy than the smectic
and discotic phases in our theory. Roughly speaking, the
reason for this is as follows: smectic, discotic, and bcc02
phases appear when the system lowers its free energy by
creating oriented density waves with wave vector qz.
Since there are 2 such waves in a smectic phase, 6 in a
discotic phase, ' and 12 in a bcc02 phase, the system
lowers its free energy the most by forming a bcc02 phase
(i.e., Fs~ & FD &Fb„oz,where F stands for the free ener-

gy and the subscripts refer to the phases); the bcc phase is
further stabilized by cubic terms in a Landau expansion
of our free energy. The molecular-field theories' '

use co(qz) =0. Even at this value of cp(q2) we do not find
thermodynamically stable smectic or discotic phases (Sec.
III). Nor do we find such stable smectics or discotics at
negative values of co(q2) which disfavor the formation of
the bcc02 phase more than they disfavor the formation of
discotic and smectic phases. At large and negative values
of co(qz) the free energies of the metastable smectic and
discotic phases come close to the free energy of the stable
bcc02 phase, but the latter still has the lowest free ener-

gy (Sec. III).
For mesogenic systems, experimental phase diagrams

are available mostly along the temperature ( T}
axis' ' ' or, in some cases, in the pressure-temperature
(P T} plane. Smect-ics and discotics are commonly
found in such phase diagrams; however, they are embar-
rassingly absent in the phase diagrams of Fig. 2. [As we
will discuss in detail in Sec. V, we believe that we need to
relax some of the constraints imposed in Eq. (1}to obtain
smectic and discotic phases. ] Nevertheless, it is interest-

ing to map the phase diagrams of Fig. 2 onto P-T phase
diagrams to see which experimental features our theory
can account for. This mapping is not easy: to convert
the phase diagrams of Fig. 2 into P-T phase diagrams, we
need to know how the direct correlation function de-
pends on P and T. However, to the best of our
knowledge, even the two functions co(q) and c2(q) [let
alone cI t L (q)] are not known for any mesogenic system

1 2

at any temperature or pressure.
Nevertheless, we can use the following rough argu-

ments to show that there is a qualitative correspondence
between the phase diagrams of Fig. 2 and experimental
phase diagrams: as the temperature T decreases, the
peaks of co{q) and c2(q} rise. Thus, lowering the temper-
ature is equivalent to following a path that moves radially
outward from the origin in the phase diagrams of Fig. 2.
Therefore the sequence that might result upon cooling a
mesogenic system can be obtained by following radial
paths (not straight in general) outward from the origins
of Figs. 2(a)-2(d). Note, in particular, that it is possible
to obtain the sequence L ~N~bccP~bcc01, as sug-
gested by recent experiments; however, given the topo-
logies of Figs. 2(a)-2(d), such a sequence of transitions is
improbable and should occur, at best, only in a few meso-
genic systems.

Figure 3 shows a plot of the phase diagram of a system
of hard ellipsoids of revolution. This phase diagram is
based on the numerical simulations of Frenkel, Mulder,
and McTague. " We plot it in the packing fraction
(ri}-eccentricity (a /b ) plane. (a is one half the height of

-1.2

-1.0

—o.e

—0.6

-0.4

y- 0.2

I

).0 1.25 2.0 3 00

2.75

FIG. 3. A part of the phase diagram for a system of hard el-
lipsoids of revolution as obtained from the molecular-dynamics
simulation of Frenkel and Mulder (Ref. 11). The symbols I, N,
PS, and S represent, respectively, isotropic liquid, nematic, fcc
plastic crystal, and (distorted) fcc crystalline phases. p is the
reduced density related to the packing fraction g through
g=(m. /6)p . Shaded areas are regions of two-phase coex-
istence.
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the axis of revolution and b is one half the width of the el-

lipsoids. } To compare the phase diagrams of Figs. 2 and

3, we must know how the direct correlation function

c(r, z Q„Qz)varies as a function of g and a lb for a sys-
t

tern of hard ellipsoids of revolution. This is not known

exactly. In Sec. IV we use an approximation for
c(r, z, Q„Qz)of a system of hard ellipsoids of revolution

to compare the phase diagrams of Figs. 2 and 3. We ob-
tain a fair, qualitative agreement between these phase dia-
grams for the liquid-to-plastic crystal and liquid-to-
nematic transitions, but not for other transitions. This is
not surprising because the approximation we use for the
direct correlation function is reasonable only in the liquid
phase at a low packing fraction g (Sec. IV). Another
qualitative feature common to the phase diagrams of
Figs. 2 and 3 is the absence of smectic and discotic
phases. (See Secs. IV and V for a detailed discussion of
this point. ) There are, of course, qualitative differences
between Figs. 2 and 3: since our theory only allows for
bcc positional ordering, it does not yield the change in
crystal structure obtained in going from the plastic-
crystalline phase to the orientationally ordered phase in
Fig. 3. Also, in the numerical simulations that yield Fig.
3, the change in the orientational order parameter is con-
tinuous across the phase boundary that separates the
plastic-crystal phase from the orientationally ordered
crystalline phase; in our calculations the change in this
order parameter is discontinuous across this phase
boundary. Finally, the reason that our calculations do
not yield any discontinuous density changes at phase
boundaries, unlike the numerical simulations, " is be-
cause we make the approximation that the Quid phase is

incompressible.
Recent simulations of a system of parallel hard

spherocylinders have obtained a smectic phase in such
systems. It is not clear to us why a system of parallel
hard spherocylinders shows a smectic phase, whereas a
system of hard ellipsoids of revolution does not. We
comment on this point further in Secs. IV and V.

The remaining part of this paper is organized as fol-
lows. In Sec. II we describe the Ramakrishnan-Yussouff
theory and discuss how it has to be extended to study
liquid-mesophase-solid transitions. In Sec. III we present
the numerical results that lead to phase diagrams like
those shown in Fig. 2. In Sec. IV we compare our results
with experiments and numerical simulations. In Sec. V
we conclude this paper with a discussion of the shortcom-
ings of our theory and how they may be overcome.

II. DENSITY-WAVE THEORY FOR ORDERING
IN LIQUID-CRYSTALLINE SYSTEMS

The Ramakrishnan-Yussouff density-wave theory for
the freezing of a liquid has been described in various
places. Its extension to the study of liquid-crystalline
phases is straightforward and has been discussed by
several authors. To make this paper self-contained,
we give a brief outline of this density-wave theory.

The basis for the Ramakrishnan- Yussouff density-wave
theory for the ordering of liquids is an expansion for the
free-energy functional F for a nonuniform density p(r, Q }
(the average density of molecules at the point r with
orientation Q),

P(F F„)=Pf—dr f dQ p(r, Q)v, (r, Q)+ fdr fdQIp(r, Q)ln[p(r, Q)/p„q]—[p(r, Q) —p„q]]

f—dr—, f dQ, fdrzf dQzc' '(r, , r ,zQ, , Qz)[p(r, , Q}—p„][p(rz,Qz) —p„]
——,fdr, fdQ, fdrz fdQz f dr3 f dQ3c' '(r, , rz, r3, Q, , Qz, Q3)[p(r, , Q, ) —p„)

X[p(rz, Qz) —
p~; ][p(r3,Q3) —p~;q]—

Here F~; is the free energy of the uniform, isotropic
liquid (supercooled) of density p~;q, P= I/(ks T); ks is the
Boltzmann constant; v, (r, Q) is an external, one-body po-
tential; and c' ', c' ', etc. , are the direct correlation func-
tions in the isotropic liquid, which are given by

—5 [P(F—F„q)]c' '(r„rz,Q„Qz)=
5p(r, , Q, )5p(rz, Qz) p„.,

5(r, —rz)5(Q, —Qz)
(4a)

P1Iq

etc. Translational invariance yields c' '(r&, rz, Q&, Qz)
(2)c (rlz Q] Qz}, where riz= ~ z'

If we minimize P(F Fb ) with respect —to p(r, Q), we
get

p(r, Q)
=exp[ —Pu, s(r, Q)],

PiIq

where

—pv, ~(r, Q)= —pu, (r, Q)+ fdr, fdQ, c' '(r, r„Q,Q, )[p(r„Q,) —p„q]

+ ,' f«, f«-, f«,f«;"'(...,., ,Q„QQ)[pz( , , r~Q) —phq][p(rz, Qz) —p~;q]+
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i.e., p(r, Q) essentially assumes the value it would have in
a noninteracting fluid with an effective, one-body poten-
tial (molecular-field}, which is self-consistently deter-
mined by Eqs. (5}and (6}. [Since Ramakrishnan and Yus-
souff' do not consider the possibility of orientational or-
dering, they have p{r,Q)=p(r) and c' '(r]z, Q„Qz)
=c' '(

~
r, —r2

~
), etc.] In the remainder of this paper we

neglect in Eqs. (3) and (6) the terms containing the corre-
lation functions c'"', with n & 3.

Note that if we assume that the particles of the fluid in-
teract via a pair potential V' '(r]z, Q, , Q2), then
molecular-field approximations ' use an effective,
one-body potential

(2) A. A.

dr]d Q] V ((r—r] ),Q, Q] )[p(r], Q] ) —p] q]

in addition to any externally imposed potential. Thus
these molecular-field approximations are special cases of
the Ramakrishnan-Yussouff approximation with a c' '

that is assumed to be —P V'2'.

Our task is now clear: we have to find solutions p(r, Q )

of Eqs. (5) and (6}with v, set equal to 0. If there is more
than one solution, we pick the one which yields the
lowest minimum of the functional F F„[Eq—. (3)]; this
solution yields the density distribution in the thermo-
dynamically stable phase.

Equations (5) and (6) (with v, =0) always have the trivi-
al solution p(r, Q)=p„,i.e., the isotropic liquid with a
uniform density pfiq To investigate the existence of non-
trivial solutions, in particular, solutions which character-
ize phases with orientational or positional ordering (or
both}, it is convenient to expand p(r, Q) as

p(r Q)=pliq 1+ g ge ltu(mG)I' I(mQ) (7)
G I, m

The expansion coefficients tui (G) are order parameters
that characterize different types of positional and orienta-
tional ordering [e.g., in a phase with only positional or-
der, Pl (G) =0, for l, m&0, and ]upp(G)&0; in a Phase
with only orientational order, tui (G)=0, for G&0, and

jul (0)&0]. Note that the nature of the positional order-
ing depends not only on the order parameters but also on
the set of reciprocal-lattice vectors G used in Eq. (7).

We can also expand c' '(r, 2, Q],Q2} [henceforth we
drop the superscript (2)].

I, l~ L

(2l+1)'"
rl ( G)—: pip( G) (10a)

p„ I I 0
I( G) = ] ~2 (} (} (} cll(]

(4]r )

P, (Q.z) —= (2l+1)'"P,(Q z),

(lob)

(10c)

stituting Eqs. (7)—(9) into Eqs. (5) and (6) (with c'"'=0 for
n & 3) we get an infinite set of coupled equations for the
order parameters l4I (G). We now make the following
approximations.

(1) We restrict our study to systems with molecules of
only one type. Thus we need to consider only even values
of L in Eqs. (8) and (9) [i.e., cl I I (r]z ) =0 for odd L].49

1 2

(2) We restrict our study to systems with molecules
which have both cylindrical and center-of-inversion sym-
metry. Thus we need to consider only even values of I,
and l2 in Eqs. (8) and (9) and even values of l in Eq. (7).

(3) We assume that V'I I L (G)=0 for L&0 [Eq. (1});i.e.,
we assume that the interaction between two molecules 1

and 2 depends upon their orientations 0& and Q2 and

upon the distance r, 2 between their centers, but not on

r]2. Since L =0 is the only value of L we allow in Eqs. (8)
and (9), we have l, =l2 ——l and m, = —m2—:m. By
choosing the direction along which the molecules align in
orientationally ordered phases to be the z axis, we can
take m =0. (One of the consequences of this approxima-
tion is that smectic- A and smectic-C phases have the
same free energies in our theory. }

(4) We further assume that cl I I (G)=0 for I, , lz &2
1 2

[Eq. (1)]. this assumption is based on the hope that low-
order (i.e., low l, , 12, and L) cl, L (G)'s suffice to stabilize

1 2

the phases we are interested in (Sec. I).
(5) We parametrize the functions cppp(G) and c22p(G)

{or the related functions cp(G) and cz(G) [Eq. (2)]) in

terms of their values at G =0, qp, and q2. (See Fig. 1 and
the accompanying discussion for the physical motivation
for this approximation. ) At all other values of G we as-
sume that cppp(G) and c22p(G) are zero.

(6) Finally, we assume that the liquid is incompressible,
so that cppp(0) = —ao.

If we make the approximations listed in the preceding
paragraphs, the infinite set of equations for the order pa-
rameters ]ui (G) is replaced by a finite set. To write this
set of equations it is convenient to define

c(r„,Q, , Q, )= g M I'l...(Q, )

11,12,L,
m1, m2, %

and

Pp=—fdr fd Q exp g e' 'ri(G}cI(G)pi(Q z)

]

X CI
] I~L ( r ]2 },

cl I L(G)= f dr(i) (2L+1j)L(Gr)cl I L(r), (9)

where the jL's are spherical Bessel functions, then by sub-

where ( ' ' ~) is a Wigner 3-j symbol, the 1; 's are

spherical harmonics, r]2 ——
~ r]2 ~, and r]2=r]2/r]q

define

(10d)

where the I'I's are Legendre polynomials. Then, given
the approximations (1)—(3} and (6), we can rewrite the
free energy (3) as (c'"'=0 for n & 3)

P(F —F„q) = —,
' g ci(G)[rl(G)] —ln(((}p)

Pliq V G, I

and the self-consistent equation for the order parameters
as
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TABLE I. Notations for the various mesophases considered in the paper and the molecular fields that describe the phases. [The
components go(q2) and gz(qo) will also be present in the molecular field when co(qz) and c2(qo) are nonzero. But they are rather
small, and are not included in the table for the sake of simplicity. ]

Notation

Sm

bccP

bcc01

Phase

Isotropic liquid

Nematic phase oriented along n

Smectic phase oriented along n,
with layers perpendicular to z

Discotic phase oriented along
n, with 2-d triangular ordering
perpendicular to z

bcc plastic crystal (smallest re-
ciprocal vectors of length qo)

Oriented bcc crystal (smallest
reciprocal vectors of length qo)

Molecular field

g(r, 0)= 1n[p(r, 0)lp„~]

go(0) +g,(0 )P~ (Q n )

gp(0) + [$2(0)+2(2(qg )cos(qpz'r )]P2(Q'n )

go(0)+ (2(0)+(2(qq) $ e Pz(Q n);
G

G: the 6 smallest (unit
length) reciprocal vectors for
the 2-d triangular lattice

go(0)+ go(qo) g e"'
G

G: The 12 smallest (unit
length) reciprocal vectors for
the bcc lattice

go(0)+go(qo) $ e +$2(0)Pz(Q n);
G

G as in bccP

bcc02

IbccO

Oriented bcc crystal (smallest
reciprocal vectors of length qz)

Incommensurate bcc crystal
with oriented density waves of
wave vectors q2 and (mainly)
unoriented density waves of
wave vector of length qo

go(0)+ g2(0)+$2(q~) $ e ' P2(Q.n);
G

G as in bccP

(0(0)+ (2(0)+$2(q2) $ e p2(Q n)
G

iqoG r
+g,(q, )e
G as in bccP

1 1 8'o
r((G) =

ZG c/( G) yo a7., ( G)
(12)

g(r, Q)= g (1(G)e' 'PI(Q n),
G

where gl(G)=r&(G)ci(G) is also given for each one of
these phases.

where ZG is the number of vectors G, with
~

G
~

=G
(ZG ——12 for the first set of reciprocal-lattice vectors for a
bcc crystal).

Note that Eqs. (11) and (12) are valid for all I and G
given assumptions (1)—(3) and (6) in the preceding para-
graphs, i.e., as long as L =0 the liquid is incompressible
and consists of identical molecules with cylindrical and
center-of-inversion symmetry. Assumptions (4) and (5)
reduce Eq. (12) to a finite set of equations, since we allow

only I =0 and 2 and G =0, qo, and qz (Fig. 1).
Note further that Eqs. (11) and (12) are di6'erent for

different types of ordering. The types of ordering (i.e.,
phases) that we consider are summarized in Table I. The
molecular field

As we mentioned in Sec. I, various molecular-field
theories of liquid-crystalline ordering ' " are special
cases of the theory we describe here. In these molecular-
field theories c(r, z, Q&, Q2) is replaced by
—PV' '(r~2, Q„Q2),where V' ' is a two-body potential.
In other words, if instead of trying to determine
c(r, 2, Q&, Qz) from experiments or theories of liquids, we

use the approximation

c(r», Q, , Q, ) = —P V"'(r», Q „Q,), (13)

then the results of our theory and these molecular-field
theories should be the same. Note that these theories
make the same approximations that we make (L =0,
I =0, 2, etc. ) even though the approximations are not
stated as explicitly as we have done. In particular, the
theory of MCMillan37 corresponds to the following choice
of parameters:

1 ~o e ~o a6 ~o
lokT'" ' 2 kr'

B B B
(14)

co(q&) =0, c2(qo) =0 .

(The parameters a, 5, and Vo are as defined in

McMillan's work. ')
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III. NUMERICAL METHODS AND RESULTS 1.00

Given the approximations that we have made, the
infinite set of equations (12) reduces to a set of five, cou-
pled, nonlinear equations in the variables ro(qp) 1O(qz),
rz(0}, rz(qo), and rz(qz). We solve these equations by
standard iteration or Newton methods.

The evaluation of the right-hand side of Eq. (12) re-
quires some care. In the expression for Po [Eq. (10d)] we

expand

exp g e' 'rI(G)eI(G)PI(Q z)
I,G

O

EJ

0.95—

0.90—

in powers of (1/ZG)QGe' ' and P&(Q z). We then in-

tegrate each term in the series separately. We evaluate
the angular integrals analytically and the spatial integrals
(over a unit cell of the ordered phase being considered) by
using a 24-point Gaussian quadrature. For certain values
of ci(G), the resulting series converges slowly, so we re-
tain many terins in the series (up to 85 in some cases) and,
to avoid roundoff errors, we use high-precision arithmetic
(up to 32 figures in some parts of the calculation and nev-
er lower than 16 figures).

In principle, we can obtain the phase diagram in the
five-dimensional parameter space of co(qo), co(qz), cz(0),
cz(qo), and cz(qz). Schematic, three-dimensional sec-
tions through this phase diagram are shown in Fig. 2 and
were discussed earlier. Here we present detailed numeri-
cal results for two-dimensional sections through the
phase diagrams of Fig. 2, on the basis of which Figs.
2(a) —2(d) are drawn.

Consider first the section with co(qz)=cz(qz)=0. In
Fig. 4 we display phase diagrams in the co(qo) —cz(0)
plane for different values of cz(qo). As we move up from
negative values of cz(qo) [cz(qo)= —0.01 in Fig. 4(a)]
through cz(qo) =0 [Fig. 4(b)] to positive values of cz(qp)
[cz(qo) =0. 1 in Fig. 4(c)], the phase bcco 1 grows at the
expense of bccP, N, and eventually L [cf. Figs. 2(a) —2(d)].
For sufficiently large and negative cz(qo) ( & —0.0173),
the phase bcc01 lies outside the unit square in which we
portray the phase diagram. Similarly, for sufficiently
large and positive values of cz(qo), the phases N and bccP
shrink and finally disappear [for cz(qo) &0.212 in the
case of N and for cz(qo) &0.130 in the case of bccP).
Note that some of the phase boundaries in Fig. 4 are
parallel to the co(qo) or cz(0) axes; this is an artifact of
the approximations we have made.

We next consider the section with co(qo)=co(qz) =0
and plot the phase diagram in the cz(qz )-cz(qo) plane for
different values of cz(0): cz(0) =0 in Fig. 5(a) and

cz(0)=0.5 in Fig. 5(b). As cz(0} increases, the incom-
mensurate bcc phase IbccO grows at the expense of
bcc01, bcc02, and L. [Recall that, on physical grounds,
we expect cz(qz) & cz(0).]

Finally, consider the section with co(qo)=co(qz)
=cz(qo)=0. (This is the case most studied in various
molecular-field theories of smectic' ' and discotic
ordering. ) For these values of co(qo) cp(qz), and cz(qo),
we display in Fig. 6 the phase diagram in the cz(qz )-cz(0)
plane. Solid lines indicate first-order phase boundaries.

o.85 I

0.7
I

0.8
r.p(qp)

I

0.9 1.0

1.00

( I V)

BCC01

'N

0.95—

I
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/
/

(b)
/

/
/. .

g (ii )

0.90—

0.8 5 l

0.7

/
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/
/

/
/

/
/

/
I I

0.8

BCCP

I

0.9 1.0

1.0

0.8-

~/

/
/

/ r
L

02- / r
/

pk I

0 0.2

0.6—
Cl

CF

4J
0.4-

0.4
I

0.6

Cp(q

0.8 1.0

FIG. 4. Sections of the phase diagram in the cp(qp)-c2(0)
plane for cz(qz)=0, cp(qz)=0, and varying cz(qp). (a)

c2(qp ) = —0.01 (b) cp(qp ) =0 and (c) c2(qp) =0.1. (See Table I
for an explanation of the notations for the phases. ) Note that in

(a) and (b) the L-bccP and the L-X phase boundaries actually ex-
tend until c2(0)=0 and cp{qp)=0, respectively. The dashed
lines show in these figures are lines along which the order pa-
rameters (displayed in Fig. 8) have been calculated.
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0.6

BCC01

(a)

0.4—
C)

CP

cv
LJ

IBCCO

Note that neither smectic nor discotic phases appear in
this phase diagram; the transitions to smectic and discot-
ic phases are always preempted by a transition to the
orientationally ordered bcc phase bcc02. [For
c2(qo) &0, bccol or 1bcco might appear instead of
bcc02 (Fig. 5), but never smectic or discotic phases. ]
The dashed (dot-dashed) line indicates where the liquid-
smectic (liquid-discotic) phase boundary would have been
had we not considered other ordered phases such as
bcc02. The dashed line is precisely the phase boundary
obtained by McMillan in his theory of smectic ordering.
[In McMillan s theory, the nematic-smectic transition be-
comes continuous at a tricritical point; this tricritical
point lies in the region c2(0}& 1, which we do not show
in our phase diagrams as it violates the sutn rule men-
tioned in Sec. I.]

We have already given (Sec. I) the basic reason for the
metastability of smectic and discotic phases in our
theory: once it becomes possible for the system to lower
its free energy by forming oriented density waves with
wave vector q2, it goes into a phase which has the largest
number of such density waves. Thus bcc02 (12 density
waves) is thermodynamically stable whereas discotic (6
density waves) and smectic (2 density waves) are only
metastable (Fs &Fn &Fb„o2);the bcc phase is further

1.0

0.8—

0.6—

0.4—

0.2—

0
0

'

—~ ~ ~ ~ ~ ga ~ ~ ~ ~ ~ ~ ~ ~ ~ oo

I
I

I
I c4%to)
I ~ a

I ~
I

I

I

I

I

(~~)~ (Ol

0.2 0.4
l

06
c, (q, )

0.8 1.0

FIG. 6. Section of the phase diagram in the c2(q2)-c2(0)
plane for cp(qp)=0, cp(q2)=0, and c2(qp)=0. The solid line
shows the actual phase boundaries for the L-bcc02, N-bcc02,
and the L-N phase transitions. The dot-dashed line and the
dashed line show the "phase boundaries" at which the discotic
(D) and the smectic (Sm) phases, respectively, become stable rel-
ative to the isotropic liquid (L) and the nematic (N). If the rela-
tions (14) are used, the L-Srn and N-Sm phase boundaries
translate precisely to McMillan's (Ref. 37) phase boundaries.
However, both the D and Sm phases are metastable relative to
the bcc02 phase, hence the L-Sm and L-D phase boundaries are
not real. The dotted line represents the L-N phase boundary
when both these phases are metastable with respect to bcc02.
The thin dashed lines are lines along which the order pararne-
ters (displayed in Fig. 9) have been calculated.

0.2—

0
0

I

0.2

BCC02

0.4

C2 (q, )
0.6

0.6—

(b)

0.4—
BCC01

IBCCO

0.2—

0
0 0.2

BCC02

0.4

~.(q)
0.6

FIG. 5. Sections of the phase diagram in the cz(q2)-cz(qp)
plane for cp(qp) =0, cp(q2) =0, and varying c2(0). (a) c2(0)=0
and (b) cz(0)=0.5.

stabilized by cubic terms in a Landau expansion of our
free energy. By the same argument one might expect that
the larger the number of such density waves in a phase
the more it is disfavored by large and negative values of
co(q2) (Fig. 1). Thus we have tried to find thermodynam-
ically stable smectic and discotic phases in regions of the
phase diagram where co(q2 } is large and negative. How-
ever, we have met with no success: in Fig. 7 we plot the
phase diagram in the co(q2)-cz(qz) plane, with

co(qo) =c2(qo) =0 and c2(0)=0.854. (Solid, dashed, and
dot-dashed lines have the same meanings as in Fig. 6.)
As expected, the preempted L-D and L-Sm boundaries
come close to the L-bcc02 phase boundary as co(q2) be-
comes more and more negative; however, for suf6ciently
large and negative co(q2) (Fig. 7), these boundaries be-
come parallel. Thus the L-bcc02 transition always
preempts the L-D and L-Srn transitions.

A word of caution: it is possible that smectic and
discotic phases occupy some smal1 volumes in the five-
dimensional parameter space we investigate; and it is pos-
sible that we have missed these volumes. However, these
volumes are certainly not as large as indicated by previ-
ous molecular-field theory calculations. ' '

All the phase boundaries in our phase diagrams are
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0 0.2 0.4 0.6 0.8 1.0

tion with numerical simulations of the experiments on
mesogenic systems.

IV. COMPARISON WITH NUMERICAL SIMULATIONS
AND EXPERIMENTS

-4.0-

-8.0—
C7

LJ
-12.0—

-16.0—

-20.0

I~—&- I

L!

t

t

li

FIG. 7. Section of the phase diagram in the co{qz)-c&(q2)
plane with co(qo) =0, cz(~o) =0, and c&(0)=0.854, showing the
e8'ect of large negative co(q2) on the L-bcc02 phase boundary

( ) and the L-D ( ———), and L-Sm ( ———), "phase
boundaries" (Fig. 6).

To compare the results of Sec. III with those of numer-
ical simulations and experiments, we need to know how
the direct correlation function changes as the pressure,
temperature, etc. , are changed. However, this is not
known reliably for any mesogenic systems either from ex-
periments of from numerical simulations (e.g. , simula-
tions of a system of hard ellipsoids of revolution).

We attempt here to compare our results with those of
computer simulations of a system of hard ellipsoids of re-
volution by following the method of Singh and Singh
we use a simple, but crude, approximation for the direct
correlation function of a system of hard ellipsoids of re-
volution. We approximate this system by a hard-sphere
system with an effective, hard-sphere diameter D given by
the Gaussian-overlap model of Berne and Pechukas, '

A X
D(r, z, Q„Qz)=Do 1—

1 —x (Q, Qz)z

X[(r» Q, )'+(r» Q, )'

erst-order boundaries. Order parameters jump at such
boundaries, as does the entropy. To calculate the jump in
the entropy we need to know the dependence of the direct
correlation function on temperature. ' This is not avail-
able for any mesogenic system, so we do not calculate the
entropy jumps at various transitions. However, the
jumps in the order parameters follow simply from our
calculations. In Figs. 8 and 9 we show representative
plots of the variation of the order parameters rz(0), etc. ,
along chosen lines in the parameter space.

In Fig. 8(a) we show how the order parameters rz(0),
rz(qo), and ro(qo) vary along the line cz(0) =0.389co(qo)
+0.664 shown in the phase diagram of Fig. 4(a). Note
that the sequence of transitions L ~N~bccP~bcc01
is obtained as in some recent experiments. (In these ex-
periments, the structure of the orientationally ordered
crystal is not determined. ) The sequence of transitions
L-bccP-bcc01 and L-N-bcc01 are obtained easily by
moving along straight lines in the phase diagrams of Fig.
4. Figures 8(b) [cz(qo) =0] and 8(c) [cz(qo) =0.1] show
representative plots of the order parameters along such
lines for the sequence L-bccP-bcc01; Figs. 8(d) and 8(e)
show analogous plots for the sequence L-N-bcc01. Note
that the order parameter ro(qo) [rz(0)] does not jurnp at
the bccP-bcc01 (N-bcc01) transition if cz(qo) =0; this is
a nongeneric feature which is not present if cz(qo)&0. In
Fig. 8(f) we show an example of a direct L-bcc01 transi-
tion. Figures 9(a) and 9(b) show two scans through the
phase diagram of Fig. 6. In the first [cz(qz)=0. 284], a
direct L-bcc02 transition is obtained; in the second
[cz(qz }=0.209], the sequence L-N-bcc02 is obtained. In
Sec. IV we compare the results summarized in this sec-

—2x(r(z Q))(r)z Qz)

—1/2

x(Q, Q, )] (15a)

where

x =(a b)/(a +b —),
Do ——2b,

(15b)

(15c)

3 +B(r»/D)+ A(rI/2)(r)z/D),

c(r,z, Q„Qz}= r,z/D & 1,

Q, r, 2/D &1,

(16a)

where

3 = —(I+2z)) /(1 —r))

B =6[1+(q/2)]z/( I —r))

(16b)

(16c)

rj is the packing fraction. In Eq. (16a) all of the depen-
dence of c on r&z, Q, , and Qz comes from D [Eq. (15a)].
This approximation for c(r&z, Q&, Qz) should be reason-
able at low values of the packing fraction g and for
a/b= l. (The more eccentric the ellipsoids, the lower
must r) be for the validity of this approximation. )

We use the approximation (16) to calculate co(qo),

and a and b are, respectively, the lengths of the semima-
jor and semiminor axes of the ellipsoids of revolution.
We next approximate the direct correlation function by
the form it assumes for hard spheres in the Percus-
Yevick approximation, namely,
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FIG. 8. Variation of the order parameters ~&(0) (solid line), r0(q0) (dashed line), and r2(q0) (dot-dashed line) along the various lines
marked in the phase diagrams of Fig. 4. (a) line (i) in Fig. 4(a); (b) line (ii) in Fig. 4(b); (c) line (iii) in Fig. 4(c); (d) line (iv) in Fig. 4(b);
(e) line (v) in Fig. 4(c); (fl line (vi) in Fig. 4(c).
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cz(0), etc., as functions of ri and a lb. We then convert
the phase diagrams of Sec. III into an g al-b phase dia-
gram such as the one obtained from numerical simula-
tions" (Fig. 3}. Figure 10 shows the rl-a/b phase dia-

gram we obtain. We restrict ourselves to the region
alb & 1 because, at the level of our approximation (16),
this phase diagram is symmetric about the line a/6 =1
under the replacement

a/blab/a

Sh. aded regions in

Fig. 10 indicate where the approximation (16} leads to
unphysical values of cz(0}, etc. , such as cz(0) & 1. Note
that only the phases L, bccP, and N appear in the phase
diagram of Fig. 10. This is because one (or more) of the
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FIG. 9. Variation of the order parameters v.2(0) (solid lines),

~0(q2) (dashed lines), and &2{q2) (dot-dashed line) along the vari-
ous lines marked in the phase diagram of Fig. 6. (a) line (i) in

Fig. 6; (b) line (ii) in Fig. 6.

FIG. 10. Calculated phase diagram in the g (packing
fraction)-a/6 plane for a system of hard ellipsoids of revolution.
This phase diagram is obtained from the phase diagrams of
Figs. 4-7 using the approximations discussed in Sec. IV [Eqs.
(15) and (16}]for the direct correlation function.

cz's and co's assume an unphysical value [because of ap-
proximation (16)] before the other phases shown in Fig. 2
are stabilized.

There is fair qualitative agreement between the L-bccP
and L-N phase boundaries in the phase diagrams of Fig. 3
(computer simulations) and Fig. 10 (our calculation).
(Note, however, that the crystalline phases obtained in

the numerical simulations which yield Fig. 3 have fcc or
distorted fcc structures, whereas we only consider bcc or-
dering. ) Another point of agreement between our study
and the computer simulations" is that neither yields
thermodynamically stable smectic or discotic phases.

Clearly we need a better approximation than Eq. (16}
for c(r&z, Q|,Qz) to uncover what lies in the shaded re-

gion of Fig. 10 and then to compare it with Fig. 3. How-
ever, as pointed out earlier, given the approximate calcu-
lations we describe in Secs. II and III, no matter what ap-
proximation we use for c(r&z, Q&, Qz) we cannot obtain
smectic or discotic phases (Sec. III) except as tnetastable
states. Also, the orientational order parameter jumps
discontinuously at the bccP-orientationally-ordered-solid
transition in our theory, whereas it changes continuously
in a system of hard ellipsoids of revolution.

Very recent simulations on a system of parallel hard
spherocylinders have yielded a smectic phase. We have
not tried to compare our phase diagrams (Secs. I and III)
with those obtained from these simulations. To do so we
would need an approximation such as (16) for a system of
parallel hard spherocylinders. Our calculations apart, it
is puzzling that very similar simulations of systems of
hard ellipsoids of revolution and parallel hard sphero-
cylinders yield qualitatively different results, namely,
the former shows no stable smectic phase whereas the
latter does.
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As we have mentioned previously (Secs. I and III) it is
not easy to compare our phase diagrams with those deter-
mined experimentally. However, even a crude compar-
ison is instructive, though often embarrassing, for our
theory as well as for all molecular-field theories '

that are special cases of it. We have mentioned many
times the absence of stable smectic and discotic phases in
our theory. We list some other points in the following.

Though the crystalline phases of mesogenic systems
have not been studied as thoroughly as their liquid-
crystalline phases, it is well known' ' that the crystal-
line phases often have structures that have a much lower
symmetry than the bcc phases we consider. Given the
approximations we have made, it is not possible for us to
obtain such low-symmetry crystalline phases as thermo-
dynamically stable phases. However, it would be in-
teresting to look for incommensurate crystalline phases
(like 1bccO, but perhaps with lower symmetry) in meso-
genic systems. (Incommensurate smectics have been ob-
served recently. ) We should warn the reader, though,
that the approximations we have made (Secs. II and III)
overestimate the stability of incommensurate phases.

Another experimental observation that deserves ex-
planation is the phase diagram shown in Fig. 11. It
shows how the transition temperatures for various transi-
tions in mesogenic systems behave as a function of the
length of the alkyl-chain tail of the mesogenic molecules
that comprise the system. In most cases TL N, the tran-

300'

260(

sition temperature for the liquid-nematic transition, de-
creases as n, the length of the alkyl-chain tail, increases. '

This is contrary to what we would expect on the basis of
our theory (Fig. 10}and computer simulations of systems
of hard ellipsoids of revolution (Fig. 3): in both of these
studies TL N increases as a /b, the eccentricity of the ellip-
soids, increases (for decreasing, the packing fraction is
equivalent to increasing the temperature ). The reason
for this discrepancy is obvious: we cannot hope to model
long alkyl-chain tails which are jlexible by increasing the
eccentricity of ellipsoids that are hard and completely
inftexible. Some molecular-level theories have been pro-
posed to explain phase diagrams such as the one shown
in Fig. 11; however, these theories do not consider posi-
tionally ordered phases. Unfortunately, it is not clear
how to put in information about the flexibility of alkyl-
chain tails into the direction correlation function we
use.

In experimental mesogenic systems the transition from
a plastic crystal to an orientationally ordered crystal is of
first order. At this transition the jump in the entropy is
often substantially lower than the jump in the entropy at
the liquid-plastic crystal transition. Density-functional
theories, such as ours and that of McMullen and Oxto-
by, ' can be used, in principle, to calculate these entropy
jumps. ' However, such calculations can hardly be ex-
pected to give numerically reliable results, for neither our
study nor that of McMullen and Oxtoby' allows for a
change in the crystal structure at the transition from the
plastic crystal to the orientationally ordered crystal; such
a change in the crystal structure occurs almost invariably
at this transition.

V. CONCLUDING REMARKS

220
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No. of carbon atoms in the n-alkyl chain
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FIG. 11. Experimental plots of transition temperatures vs

chain length for two homologous series of mesogenic com-
pounds. The symbols I, N, S, and C represent, respectively, the
isotropic liquid, nematic, smectic and crystalline phases (Ref.
57). Transition temperatures for I-N and I-S transitions are in-
dicated by triangles, for N-S transitions by closed circles, and
for N-C and S-C transitions by open circles. Lines are drawn
through data points to guide the eye.

We have listed in the preceding various discrepancies
between our theory (and other molecular-field theories
that are special cases of it) and experiments on and simu-
lations of meso genic systems. These discrepancies
presumably arise because of the various approximations
we make.

(1) We neglect high-order correlation functions
[c'"'=0 for n )3].

(2) We neglect c' 's for L&0 or /&, iz & 2.
(3) We parametrize the functions co(G) and c2(G) [Eq.

(2)] in terms of their values at G =0, qo, and qz', at all
other values of G these functions are taken to be zero,
and the fluid is assumed incompressible, i.e., co(0)= —00.

(4) We allow for only one form of three-dimensional or-
dering, namely bcc.

(5) We restrict ourselves to mesogenic systems in which
the molecules have a center-of-inversion symmetry (this
is usually not the case}.

(6) We neglect effects of fluctuations on the order pa-
rameters we use.

It is not easy to tell precisely which of the shortcom-
ings of our theory follow from which one of the approxi-
mations we have made. Consequently, it is di%cult to de-
cide how best to improve on our theory (and all other
molecular-field theories which are special cases of it),
especially because the removal of most of the approxima-
tions listed in the preceding involves substantial e6'orts.
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These limitations notwithstanding, we believe that the
theoretical framework presented in this paper is superior
to earlier molecular-field theories for phase transitions in
mesogenic systems and removes some of their obviously
unsatisfactory features.

For example, consider the isotropic-nematic transition.
According to the theory presented here this transition
takes place when cz(0}=0.908. The transition tempera-
ture, the entropy jump at the transition, and the tempera-
ture dependence of properties below the transition are
determined by the temperature dependence of c2(0). In
molecular-field theories, e.g., McMillan's, c2(0) is sim-

ply parametrized as Vo/(5k' T), where Vo is a molecular
energy scale. Hence the transition temperature is

Ttt L
——0.2203VO/k&, the order parameter rz(0) at the

transition, equal to 0.959 36, and the entropy jump at the
transition, ' given by

—ka[r2(0)] ( Vo/10k' T~ I )= —1.0133k',

is universal; and properties below the transition, which
depend on Vp/(ka T) cc T/Ttt t are universal functions
of T/TN I . None of these results of conventional
molecular-field theories is in agreement with experiments.
Our theory does not lead to such disagreement. Of
course, fluctuations must be included for an accurate
description of isotropic-nematic transitions since these
are weakly first order. This is beyond the scope of this
study.

Conventional molecular-field theories' ' do not al-
low for volume or density changes at mesophase transi-
tions. We can allow for such changes quite simply by re-
laxing our incompressibility assumption, i.e., by allowing
co(0) to be finite.

To understand the systematics of the dependence of the
transition temperatures, the entropy jumps at the transi-
tions, and properties in the ordered phases on molecular
lengths (or diameters), we must know how the Fourier
coeScients of the direct correlation function, such as
cp(q } and cz{q },depend on molecular lengths (especially
the lengths of the flexible alkyl-chain parts) or diameters.
To the best of our knowledge, it is not known how co(q),
etc., depend on these lengths. Thus some of the detailed
comparisons that have been made between earlier
molecular-field theories and experimental results are of
questionable significance.

Finally, our study brings into sharp focus a big Aaw of
conventional molecular-field theories ' They can-
not account for the thermodynamic stability of smectic
or discotic phases (relative to three-dimensional orienta-

tionally ordered crystalline phases). To explain the sta-
bility of smectic and discotic phases is one of the major
challenges that mean-field theories of mesophases must
face.

It is likely that two features not included in our theory
may be responsible for stabilizing smectics and discotics.
(1) The detailed q dependence of ct(q) inay be important.
[So we might have to allow for nonzero ct(G) at many
more values of G than we have done here. ] (2) It may be
necessary to include Fourier components ctt.L(q), with
L&0, which couple the directions of orientational order-
ing and positional ordering. We hope to present else-
where the results of studies investigating these possibili-
ties.

In conclusion, we want to point out that detailed ex-
perimental studies of phases (including crystalline phases)
and phase transitions in mesogenic systems subject to
very strong electric and magnetic fields should shed a
great deal of light on many of the questions raised in this
paper. For, with such fields, mesogenic molecules be-
come orientationally aligned and, for suSciently strong
fields, we can assume that they are fully aligned in the
nematic phase. Then, within the framework of our
theory, the transitions to positionally ordered (smectic,
discotic, or crystalline) phases are determined by the
direct correlation function c' '(riz', z, z) (assuming the z
axis to be along the alignment direction), which can be
thought of as an anisotropic, but purely position-
dependent, direct correlation function. Much more can
be said about such an anisotropic correlation function in
a fully oriented system than about c' '(riz,'Qi, Q2). For
example, Lebowitz and Perram ' have shown how to cal-
culate such functions for a system of oriented, hard ellip-
soids of revolution using the Percus- Yevick approxima-
tion. Also, such a function can be measured by scattering
neutrons off strongly oriented mesogenic systems. Thus
one can study experimentally and theoretically the sys-
tematics of the relationship between this anisotropic
direct correlation function and the phase transitions be-
tween various positionally ordered phases.
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