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Computationally induced "irregularity" in the spectra of integrable quantum systems

Ersin Yurtsever and Jurgen Brickmann*
Institut fii r Physikalische Chemic, Physikalische Chemi I, Technische Hochschule Darmstadt,

Petersenstrasse 20, D 610-0 Darmstadt, Federal Republic of Germany
(Received 4 January 1988)

The nearest-neighbor spacing distributions P(S) for the variationally determined eigenvalues of
two separable model Hamiltonians (two-dimensional quartic oscillators) are studied as functions of
the dimension n of the variational basis. For large basis sizes the spacing histograms for a given en-

ergy range can be well fitted by a Poisson distribution, reflecting the regularity of the spectrum of a

completely separable Hamiltonian. The decrease of n leads to histograms of qualitatively different

spacing (for the same energy range as before), which can be well fitted by Brody distributions Pq(S).
The Brody parameter q controls the transition between a Poisson (q =0) and a Wigner distribution

(q =1). For large n, q =0 holds. When n falls below a critical value, q =1 results, i.e., Pq(S) turns

over into a Wigner distribution. The latter is assumed to characterize a completely irregular spec-
trum in the classically chaotic energy range of a nonseparable Hamiltonian. The transition between

a regular and an irregular spectrum is shown to be induced only by a change of numerical accuracy.
We conjecture that similar behavior should also be observed in nonseparable systems.

I. INTRODUCTION

Since the elegant studies of Kolmogorov, Arnold, and
Moser' (KAM), it is well known that the classical dynam-
ics of even small systems can display two types of tnotion,
regular or irregular (often termed chaotic), within the
same range of the total energy of the system. KAM
showed that a collection of nonlinearly coupled oscilla-
tors can display regular behavior (similar to that of separ-
able systems) as long as the value of a control parameter
A, does not exceed a critical value A, In simple examples
such as the Henon-Heiles or the Barbanis system, the
control parameter is simply a linear factor in front of the
nonlinear coupling term in the potential-energy function
of the system. As predicted by KAM the threshold for
regularity can be observed in the model systems either
with a given total energy and a critical A, value or with
fixed A. at a critical energy E, .

Several attempts have been made to carry over the
well-understood concepts of regular and chaotic dynamic
behavior of classical systems to quantum mechanics in
order to establish quantum chaos, ' but there is still no
consensus on its definition or nature, nor even on its ex-
istence.

Following the arguments of Percival, a regular state
can be labeled by a vector quantum number
n =(n, , . . . , n&) if the system has f degrees of freedom.
A state with quantum number n corresponds to those
phase-space trajectories of the corresponding classical
system that lie on an f-dimensional invariant toroid with
action constants Il, . These are given by the semiclassical
quantum condition I =Pi( n +a I4), where the com-
ponents a,- of n=(o. ~, . . . , uf ) are integers equal to the
number of "turning points" of the projection of the tra-
jectory onto the position space of the ith irreducible cir-
cuit I, of the torus, i.e., the number of places on I,-

where the torus is "normal" to the position space. The
regular states are very much like the quantum states of a
completely separable system. Percival predicted that the
energies of an irregular spectrum should be more sensi-
tive to a slowly changing perturbation than are those of a
regular spectrum. Indeed, Pomphrey, in numerical stud-
ies of the quantum Henon-Heiles system, found a drastic
change of the eigenvalue sensitivity to slight changes in
the perturbation (measured by recording the second
differences b with respect to the nonlinear coupling pa-
rameter) with increasing energy. Eigenvalues of the mod-
el Hamiltonian with energies less than a critical value E,
were found to be insensitive, while above E, eigenvalues
were very sensitive to small changes in the perturbation.
The latter were assigned to belong to the irregular spec-
trum, while the former were termed regular. The critical
energy for this transition was found to be roughly equal
to the energy for the onset of chaotic motion in the corre-
sponding classical system.

Pomphrey's sensitivity analysis was applied by several
authors " in numerical treatments of nonlinearly cou-
pled quantum oscillators. In most of these studies a more
or less monotonic increase of the number of eigenvalues
with high 6, value with increasing energy was reported,
but it should also be noted here that Weissman and
Jortner' did not find any irregular behavior of the eigen-
states of the Henon-Heiles system. They conjectured that
Pomphrey's findings may be related to improper compu-
tation or to a lack of a suitable reference to the possible
values of 6, . In many papers' ' the irregularity of a
quantum state was also related to the occurrence of
avoided crossings in the energy spectrum as a function of
the coupling parameter. Noid and co-workers ' explic-
itly related avoided crossings or crossings of eigenvalues
in plots of E, (A, ) versus A. to extremely large second-
difference results, and they conjectured that avoided
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crossings provided a mechanism for the origin of such
large second differences. Isolated avoided crossings offer
a way of substantial mixing of the nodal pattern of two
wave functions and may also be responsible for the irreg-
ular pattern found by Stratt et a/. ' from numerical stud-
ies of some nonlinearly coupled oscillators. However,
isolated avoided crossings do not lead to an irregularity
in the level spectrum. Only if a particular state partici-
pates simultaneously in many —overlapping —avoided
crossings, would irregularity be generated. This was re-
cently demonstrated by Noid and co-workers and other
authors. ' ' ' Brickmann and Levine' conjectured
that if irregularity is identified with the occurrence of
"overlapping avoided crossings, " one should expect a de-
crease rather than an increase of the second derivatives of
the eigenvalues (or second difference) in going from the
low-energy to the high-energy range after passing a
domain where isolated avoided crossings (with extremely
high 6; values) dominate. This conjecture was numeri-

cally tested by Ozkan et al. ' who studied the Henon-
Heiles system and this three-dimensional analog. The ar-
guments given above may be summarized as follows.

(i) A regular eigenstate of a nonintegrable Hamiltonian
may always be correlated to one eige~:state of an integr-
able Hamiltonian which, however, is generically not iden-
tical for all the regular eigenstates of the system, as has
been demonstrated by Hose and Taylor. ' Each regu-
lar state is related to its own effective separable Hamil-
tonian. Hose and Taylor developed a theoretical concept
which is the quantum analog to that of KAM in classical
physics.

(ii) On the other hand, an irregular state always needs
contributions with comparable magnitudes from several
eigenstates of some integrable Hamiltonian in order to be
adequately described.

This characterization is closely related to a criterion of
Rice and Nordholm and Rice. These authors have
assigned regularity to those states which remain "isolat-
ed" in action space upon addition of a nonlinear mode
coupling term to one particular separable zero-order
Hamiltonian, and irregularity to a delocalization in this
space. The Nordholm and Rice criterion has to be
modified because of the arbitrariness of the separable
reference Hamiltonian.

All the concepts described above may well be suited to
identify regularity for individual states from analytical or
numerical considerations —even when there is no
straightforward procedure available to find a separable
Hamiltonian for this state —but they generate only very
weak criteria for identifying individual irregular states.
There are many open questions. How many zeroth-order
states —they may be eigenstates of different zeroth-order
Hamiltonians —are necessary to compose an irregular
state? Is there generically a smooth transition between
regularity and irregularity. Is it possible, in principle, to
identify individual irregular states or can irregularity be
assinged only to a certain energy range, wherein all states
show qualitatively similar behavior? The questions may
be at least partly answered from the quantum phase-
space treatments of Heller and co-workers or from
similar criteria of Lay, ' from entropy-type measure-

ments of Brickmann and co-workers for the population of
eigenstates representing a wave packet, or from
statistical analysis of the energy eigenvalue spectrum
(see Ref. 46 for a recent review), which is mostly based on
methods used for the study of random matrix ensem-
bles.

All these criteria, however, are not rigorously proved
for "real" quantum systems, i.e., for systems which are
not close to the classical limit (A'~0). Nevertheless, they
are frequently applied in numerical studies of model sys-
tems &2, i6 —&9, 2s —33,42 —4s, 48 —s8 In these studies the eigen-
states of a Hamiltonian containing nonlinear coupling
terms between different degrees of freedom are approxi-
mately determined by applying standard methods like the
linear variation scheme. The observed qualitative behav-
ior (for example, that of the spectrum) is consequently al-
ways related to approximate quantities, and it is by no
means clear in all these cases whether an identified irre-
gularity it a generic property of the system or just the re-
sult of the method of calculation. It is therefore not
surprising that different authors sometimes find com-
pletely different qualitative results for identical systems.

It is the aim of this work to demonstrate, with a few
numerical examples, that the approximately determined
eigenstates of a separable Hamiltonian may show regular
as well as irregular behavior and that a transition be-
tween both types (as identified with methods mentioned
above) can be generated in a certain energy range just by
a change of the numerical accuracy of the calculation.
%'e focus our intention on the spectral properties of the
system. In Sec. II some basic results necessary for the
characterization of spectral fluctuations are reviewed,
while Sec. III deals with the description of the model sys-
tems and of the numerical procedure. In Sec. IV the nu-
merical results are presented and discussed in detail,
while the final section, Sec. V, gives some conclusions.

II. STATISTICAL ANALYSIS
OF THE EIGENVALUE SPECTRUM

Berry -and Tabor have postulated that the distribu-
tion of eigenvalues for regular states should substantially
differ from that of irregular ones. In the regular regime a
Poisson distribution,

P(S)=exp( —S), (l)
for the nearest-neighbor distance S of the deconvoluted
spectrum is expected. The latter is obtained from the
original spectrum by deconvolution, i.e., by scaling with
the aid of a smooth function such that the average densi-
ty becomes equal to unity.

Theoretical arguments suggest that the statistics of
irregular states (at least in the semiclassical limit) are the
same as the ones of ensembles of real symmetric matrices
with elements distributed according in a Gaussian way.
For such systems P(S) is closely approximated by the
Wigner distribution,

P(S)=—S exp( ——,'~S ) . (2)

Generic systems do not conform to these special cases,
and one should expect a superposition of (l) and (2) in
spectra where both regular and irregular terms occur in
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the same energy range. Such intermediate cases can be
described by the Berry-Robnik distributions,

P(q;S)=exp —(1—q)S ——
q S

4

reason we start from a completely separable Hamiltonian
Ho with discrete spectrum o(H), and we assume that
there is no symmetry in the system [in order to avoid
nongeneric structures in cr(Ho)]. Let us consider a
second separable Hamiltonian H~ with [Ho, H, ]&0 and
a complete set of eigenstates [ ~

i ) ], i.e. ,

X 1 —q + —q'S —(1—q) R (qS)
2

(3) H, ~i)=E, ~i),

with

g (z) =1 e—xp(mz /4)erfc(~' z/2), (4)

such that H] also generates only discrete eigenvalues E, .
Then the projection operator

which is obtained from the semiclassical limit for systems
whose classical energy surface is divided into a number of
separate regions in which the motion is regular or chaot-
ic. Another approach —the statistical analysis of
nearest-neighbor spacings in nuclear spectra —leads to
the Brody distribution,

P (S)=aS exp( —/3S'+~),

a=(1+q)P,
P= I'+'[(2+q)/(I+q)],

which has also been successfully applied numerical treat-
ments of nonlinearly coupled quantum systems. For
both intermediate distributions the parameter q specifies
a continuous change between the Poisson distribution
(q =0) and the Wigner distribution (q =1), i.e., q rough-
ly measures the amount of irregularity in a certain energy
range.

In this work we applied the Brody distribution for the
numerical analysis for two reasons. Firstly, this distribu-
tion generates analytical expressions within the integral
fit of histogram distributions (see Sec. IV) and, secondly,
the systems studied here do not have classical counter-
parts (see Sec. III), so that the semiclassical Berry-Robnik
distribution has no preference.

III. GENERATION OF A MODEL
HAMILTONIAN FROM A SEPARABLE SYSTEM

In most of the discussions on regularity and irregulari-
ty in nonlinear quantum systems, the total Hamiltonian is
treated as a sum of two parts,

H =Ho+ Wg (6)

where Ho is an integrable Hamiltonian (with purely regu-
lar spectrum) and 8'& is a nonlinear operator (dependent
on a control parameter A. ) which is responsible for the oc-
currence of chaotic trajectories in the corresponding clas-
sical case. As was mentioned above, the special proper-
ties of H can only be analyzed on the basis of approxi-
mately determined eigenfunctions of this operator and,
consequently, it seems to be questionable whether the
identified regularity (or irregularity) is a property of H or
whether it is simply related to the quality of the approxi-
mation.

We wish to demonstrate that inappropriate choices of
the numerical procedure can generate that type of behav-
ior which is commonly termed "irregularity. " For this

P„= g ~i )(i
i=]

is used to partition the Hamiltonian Ho according to

Ho P„HO——P„+Q„HOQ„+ P„HO Q„+Q„HOP„

=H„—W„,
with the block-diagonal Hamiltonian H„,

H„=P„HOP„+Q„HOQ„,

(9)

(10)

and the perturbation

W„= P„HOQ„— Q„HOP„—.

Rewriting (9) so that it is similar to (6),

H„=HO+ W„, (12)

IV. RESULTS AND DISCUSSION

In order to ensure that the spectrum of Ho is purely
regular, we select two model potentials which are ex-
pressed as simple sums of quartic oscillators in x and y
directions,

Ho ————,'(d /dx'+d /dy )+ V(x,y),
V(x,y)=P4(x)+Q4(y) .

(13)

Here and in the following, we use generalized units. The

we are formally in the same situation as in the case of the
coupling between a regular system Ho and a nonlinear
perturbation. The control parameter is now the number
of eigenfunctions n used for the construction of P„[Eq.
(8)], but we are in a much better position than in most
nonlinear Hamiltonians; the lowest n eigenstates of H„
can be exactly determined by diagonalizing P„HOP„, i.e.,
the accuracy in the determination of the eigenvalue spec-
trum is only limited by the numerical errors of the diago-
nalization procedure. This fact enables us to follow the
spectral properties of H„ in the low-energy regime as a
function of the control parameter A, =1/n. For A, =o the
spectrum is exactly that of the separable Hamiltonian
Ho, i.e., we expect a completely regular sequence. With
increasing A. (or decreased size of the secular matrix) a
change of the qualitative behavior may take place,
reAecting an improper choice of the secular basis. In Sec.
IV the results of numerical treatments of two model sys-
tems of noninteracting quartic oscillators are presented in
order to demonstrate these spectral changes with explicit
examples.
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energy is measured in multiplies of Ace, while distances
occur as multiples of (mcolfi)', where m is the mass of
the particle and co an arbitrary frequency.

The parameters for the one-dimensional potentials
P4(x) and Q4(x) are given as follows. For model 1,

P4(x) =0 5ox —0.0080x'+0.000018x
(14)

Q4(y) =0.72y —0.0096y +0.000018y

For model 2,

P (x)=0.5000x ——'x3+ ' 4
3600

(15)

Q4(y) =0.5408y —0.024 996 978y +0.000 324 96ly

(a) "

0

Both polynomials of model 1 have double minim b t f
e discussion presented in this work, we focus on the

motion in the region of the local minimum at x = =0
'g. &. This minimum is not an absolute minimum

of thee potential. We, nevertheless, only consider one-well
states around the origin of the coordinate system, because
o t e enormously high barriers of the potentials separat-
ing this well from the others (approximately XL ——10 ei-

genvalues are expected within this well). Any reasonable
variational calculation for a limited number of eigenval-
ues N &(NL can be easily restricted to the well region.

In model 2 the potential has an absolute minimum at
x =y =0 and inflection points in x and y directions. The
parameters for P4(x) and Q4(y) are chosen such that
both inflection points have identical energy values. The
Figs. 2(a) and 2(b) depict the two-dimensional potential
surfaces.

For separable problems such as those of models 1 and
2, the eigenvalues are given as E =E"'+E' ' h
E~&~ and E~2~

nm n m, w ere
an are the eigenvalues of the one-dimension 1

~ ~

amiltonians for the motion along the x and y directions,
respectively. The one-dimensional eigenvalue equations
can be approximately solved with arbitrary accurac b
expanding the trial wave function in terms of the eigen-
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FIG. 2. Potential V(x,y) of model 2. (a) Three-dimensional
view. (b) Equipotential lines.

FIG. 1.. Potential V(x,y) of model 1 in the region of the local
minimum at x =y =0.

functions of the harmonic oscillator. Since these func-
tions form a complete set, all the eigenvalues uniforml
converge to the exact results upon increasing the number
n~ of basis functions. We analyzed the eigenvalues of the
one-dimensional systems as functions of n . 0 1 h
that did n

nz. ny t ose
at i not change within an absolute error of 10

GEU
further

generalized energy units) are considered fe or our
ur er analysis. Note that the energy difference of two

a jacent states in the one-dimensional models is in the or-
der of 1 GEU. Once all possible combinations from these
two sets are formed, a maximum ener E thy ~;, e exact"
eigenvalue in the two-dimensional problems, is deter-

~~ ( )lm Wit atmined, which guarantees eigenvalues E E; h
east six-digit accuracy. This upper limit is defined as
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E~"=Eo(x)+E,„(y), E' '=E,„(x)+Eo(y),
(16)

where Eo(x) is the lowest one-dimensional eigenvalue in

the x direction and E,„(y} is the highest accurate eigen-
value in the y direction, and vice versa. Even though it is
possible to obtain accurate eigenvalues above this limit,
the statistical analysis cannot be carried out, as there
would be contaminations into the spectrum from inaccu-
rate eigenvalues and the spacings would not actually cor-
respond to the one of the exact solution. In our calcula-
tions 2200 eigenvalues below E =72.0 GEU and 1100 ei-
genvalues below F. =45.0 GEU are used to the first and
second potentials, respectively.

In principle, the eigenvalues of nonseparable Hamil-
tonians can be approximately determined as in the one-
dimensional cases with the aid of the linear variational
scheme. Now the many-dimensional trial function is ap-
proximated as a linear combination in the product space
of basis functions in each dimension. If no symmetry
conditions are imposed, then a simple direct-product set
is built and the resulting matrix equations are solved to
the desired accuracy. However, this procedure can be
very slowly convergent, depending on the nonseparable
part of the potential and the amount of anharmonicity in
the Hamiltonian. In analogy to the well-analyzed tech-
niques of the molecular-orbital calculations, self-
consistent-field and adiabatic approximations have been
developed to produce good starting function sets to
enhance the convergence. Still, at the end, one has to set
up and diagonalize large matrices to obtain reliable high-
ly excited states. The quality of such calculations surely
depnds on the ability of the chosen basis to represent ade-
quately the nonseparable part of the potential. The prop-
erties of such a system, analyzed on the basis of approxi-
mately determined eigenstates, are therefore related to
both the numerical accuracy and to the structure of the
Hamiltonian. In this work we explicitly exclude the
second influence. In order to mimic a seemingly nonse-
parable problem, the coordinate systems of our model po-
tentials have been rotated by 30 in the counterclockwise
direction, so that each potential is now composed of 12
terms. The basis of the variational scheme is chosen as a
set of products of harmonic-oscillator functions along the
nonrotated coordinates. The basic frequencies of the cor-
responding oscillators are obtained from the harmonic
parts of the rotated potentials. In each coordinate the
same number of basis functions is chosen. It is possible
to obtain better results by using different-size sets, but
this procedure is not applied, as it would bring an extra
optimization problem.

The matrix equations are solved on the IBM 3090 of
the Technische Hochschule Darmstadt Computing
Center by a modified version of the Ortega diagonaliza-
tion which uses Householder tridiagonalization and
Sturm sequences. A typical run time for a matrix of
1225&(1225 is 16 min of 64-bit double precision utilizing
the vector processor.

The use of basis sets with a varying number of basis
functions is equivalent to the construction of different
Hamiltonians H„[s eEeq. (10)], i.e., the diagonalization

p(E) = g 5(E' E; )—,
&=1

(18)

is approximated by a smooth function
I.

N(E)= g a E~ .
p=0

The order of the polynomial is usually the number of de-
grees of freedom (here 2). The smooth density of states
results as

p(E) =dN/dE, (20)

and the average spacing is obtained as Z(E)=l/p(E),
and the normalized spacings become

S;= E;+,—F.,

Z[(E;+,+.E, )/2j
(21)

For the model systems described above, a polynomial of
second order is used to fit the smoothed number-of-states
function N(E) of Eq. (19). Higher-degree polynomials
produce better fits for the step function but do not
change the quantitative results of P(S} statistics. How-
ever, due to the extra nodes of the higher-order polyno-
mials, their use may be misleading for long-range statisti-
cal analyses.

As mentioned above, the continuous change from the
"regular" to the "irregular" part of the spectrum can be
observed by monitoring the change of the parameter q of
Berry and Robnik ' ' or Brody. ' In both cases the
number of spacings in a given interval is approximated by
a continuous function. We fit the nonlinear parameters
in a nonstandard way to numerically determined histo-
grams of the number of spacings versus spacing. The fit
is performed by matching the incremental integrals of the
distribution function to be determined to the bars of the
histograms. In the standard point-by-point fitting pro-
cedure the choice of the points in the abscissa is not
unique since the histograms consist of bars of finite thick-
ness. Even though this arbitrariness may not pose an im-
portant problem, the fitting to the integral is still a more
sound technique and can be applied to histograms of any
thickness. We start from the optimization function

K —1 S 2

e= g (DM, ) —M f P(S)dS
i=0 l

(22)

with the width D of a single block of the histogram, the
number of blocks K, the number of spacings M, in the
histogram block i, the total number M of spacings in the
analysis, and the variable S, of the continuous function

of the corresponding variational matrices gives the lowest
n eigenvalues of these operators with the accuracy of the
diagonalization procedure. P(S}statistical analyses (see
Sec. II) are now carried out for difFerent energy regions.
In order to apply a reasonable test, the eigenvalue spec-
trum is deconvoluted to uniform density of states. For
this reason the number-of-states function N(E),

N(E) = f p(E')dE', (17)
0

with the density of states,
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there is a qualitative change between regular and irregu-

lar (or chaotic) behavior in our model systems in chang-

ing the control parameter A, =1/n, although there is no

nonintegrable classical analog for these systems. The ob-

served transition is solely a consequence of improper nu-

merical approximations.

V. CONCLUSIONS

One of the standard procedures for the analysis of
common properties of quantum states within a given en-

ergy range is the study of nearest-neighbor spacing distri-
butions of the energy eigenvalues. It is known, from
theoretical arguments, that in the semiclassical limit a
Poisson distribution is expected for those energies where
the corresponding classical motion is completely regular,
i.e., where the trajectories migrate on toroids. For those
energies where almost all trajectories move chaotically, a
Wigner distribution is predicted in the semiclassical limit,
while in the intermediate-energy range a mixture of both
(Berry-Robnik or Brody distribution) with a mixing
coefBcient q is expected. Numerical studies seem to indi-

cate that q is roughly equal to the ratio of irregular to
regular trajectories in the corresponding classical energy
range. However, this correspondence is very weak. We
demonstrate that one can generate a Wigner-type spacing
distribution of an eigenvalue spectrum of a separable
Harniltonian, and it seems to be reasonable that there are
many ways to construct quantum systems with any
desired spectral property. With two explicit examples it
is shown that all possible spacing properties in an eigen-
value spectrum can be generated just by projecting a
given separable Hamiltonian to two orthogonal subspaces
of the Hilbert space and solving the eigenvalue equation
in both subspaces independently. If one of the subspaces
has finite dimension, the eigenvalue equation reduces sim-
ply to a diagonalization of a finite matrix.
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