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We elucidate the non-Abelian gauge structure associated with nuclear quadrupole resonance.
The Abelian part of this structure has been experimentally observed. The phases to be observed in
various non-Abelian experiments are computed.

Berry's remarkable discovery' that gauge structures
exist naturally in slowly varying quantum systems has
generated a great deal of interest, both theoretically
and experimentally. In particular, it has been shown
that a non-Abelian gauge structure emerges if a set of
quantum states remains degenerate as the Hamiltonian
varies.

In an interesting recent experiment, Tycko demon-
strated the effect of Berry's phase on the magnetic reso-
nance spectrum of a rotating magnetic sample by using a
pure nuclear quadrupole resonance. The spin quadrupole
Hamiltonian describing Tycko's experiment is effectively
given by

H=(S B)

=(S„sin8cosg+S sin8sinq&+S, cos8) 8 . (1)

Besides being invariant under rotation and under time
reversal (S~—S and B~—B), the Hamiltonian is also
invariant under the operation S~—S. It is of course this
additional symmetry (of the instantaneous Hamiltonian)
that guarantees the pairwise degeneracy of states as we
move about in parameter space (that is, as we vary B adi-
abatically).

In the actual experiment, a spin- —,
' Cl atom in a NaC103

crystal is used. Clearly, the four spin- —,
' states fall into

two doubly degenerate sets and thus we can expect to see
a non-Abelian gauge structure in accordance with the
general analysis of Ref. 4. Unfortunately, the actual ex-
perimental setup was such that only Abelian phases were
observed. In Tycko's experiment, the magnetic field re-
sults from an internal electric field gradient in the crystal.
When the crystal is rotated, an effective magnetic field
arises. In the subsequent theoretical analysis, we will just
treat the equivalent problem of a spin in a rotating mag-
netic field and we will speak as if an external magnetic
field were being rotated. In this paper, we elucidate the
non-Abelian structure and comment on how this struc-
ture can be observed in experiments analogous to (but
more complicated than) Tycko's.

We begin by reviewing the general framework. Let g,
be an N-fold degenerate set of orthonormal instantaneous
eigenstates of the Harniltonian H

~ rl, ) =E
~
ri, ). (With

no loss of generality, by replacing H by H —E, we can set
E=0.) The assumption that H varies adiabatically im-

plies that the true wave function may be expanded in
terms of

~
7), ):

~ g, ) = gb ~
rib ) Ub, . Plugging into

i (Blt)t)
~ g, ) =H

~ g, ), we find immediately that

U~= —X &Vb li. &U (2)

Berry s essential insight was the recognition, in the non-
degenerate case, that the phase & rl

~
il ) cannot be trivially

absorbed, as was erroneously asserted by various stan-
dard texts read by generations of physicists. Rather, a
gauge structure can be defined as follows. In general, H
depends on a number of parameters x",p=1, . . . ,p, and
H varies as the parameters x"(t) vary with time. We can
thus define the gauge potential

ahp 9a & fbax~

so that &g,
~ itb ) =Q„A,b„(dx "/dt) and Eq. (2) can be

integrated immediately to give

U,b
—— Pexp —f A„dx" (4)

ab

yvhere P indicates to path-ordered product. In what fol-
lows, we use the notation of differential forms and write
A, b

——A,b„dx". We will also suppress the indices
a, b, . . . , on the matrix form. The gauge group in ques-
tion corresponds to the unitary freedom in choosing the
basis states

~ g, ) . With a difFerent choice
~ g,'=gb

~ gb )cob„we have the transformed gauge po-
tential A'=co Aco+co den. Here co is an NXN unitary
matrix. The gauge field F =dA + A h A transforms co-
variantly, of course: F'=co Fco. The trace of U for at

closed loop is gauge invariant. Thus we have a
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U(X) =SU(lid) X U(1) gauge field existing on a @-

dimensional space.
After a complete cycle, the physical situation returns

to what it was at the start of the cycle but the states

~
i4 & are multiplied by the unitary matrix

U=Pexp( —f A). The states evolve into linear com-
binations of each other. Diagonalizing U to have eigen-

iE,. T
values e ' (where T is the time taken to complete the
cycle), we can also say that the corresponding eigenstate
has shifted in energy by E;. ' The unitarity of U implies
that g; E; T is an integer multiple of 2m (see below).

Given this general framework, we can easily calculate
the gauge potential by parametrizing the Hamiltonian in
Eq. (1) as

—I yS —I OS 2 I 8S 1 yS

keeping in mind that this set of coordinates is not every-
where defined on the 2-sphere. (This fact introduces cer-
tain subtleties to be discussed below. ) Then, as noted in
Ref. 4, we obtain the instantaneous eigenstates immedi-
ately as

tia1 is that which is generated by a monopole of strength
2m.

It may be instructive to compare the nondegenerate sit-
uation studied by Berry, ' namely, that for the spin dipole
Hamiltonian H =S B. As remarked above, the "unrotat-
ed" Hamiltonian Ho, here BS„serves only to determine
the degeneracy structure. Thus, the formulas in (6) ap-
ply, with the indices a and b and A omitted and with the
states

~

a & comprised of some eigenstates of S, with ei-
genvalue m. Berry thus obtained A &

——0 and
A„=( i)—m cos8 exactly as in the preceding, except that
m may be equal to —,

' in this case.
In the

~

m
~

= —,
' sector we obtain a truly non-Abelian

structure with

0'3 0 ) 02
A =( i) —cos8 —asin8 dy+a d8

2 2 2

with a=—S+—,
' an integer. In this sector, while S, is

represented by ai/2, S„and S are represented by
a(o~/2) and a(oz/2), respectively. The corresponding
gauge field

where
~

a &,
~

b &, and so on, are simply (1,0,0,0) etc., in
the standard spinor notation. We proceed with the calcu-
lation taking the spin S as arbitrary. [Notice as usual
that for S half-integral

~
il, & at p=2ir is equal to ( —1)

times
~ il, & at tp=0. The states

~ ri, & provide a double
covering of parameter space. Thus, the phase factor U
determines the phase change in addition to the phase pro-
duced by rotation through 2m. ] Evaluating the general
formulas (3), we find

A,b~=( i)(a —
~

(cos8S, —sin8S„)
~

b &,

A,be ——( —i)(a
[
S

[
b & .

(6)

It is worth emphasizing that these formulas are quite
general and hold whenever H has the form

—'yS —'HS 'OS 'yS
H =e 'e 'Hoe 'e

The "unrotated" Hamiltonian Ho serves only to deter-
mine the degeneracy structure, namely, the gauge group.
In particular, it does not matter if Ho is S, or S, raised to
any even power. Also, Ho can in general be a many-body
Hamiltonian. The analysis also clearly does not depend
on the system being nuclear. We also remark that if Ho
is anisotropic, for instance, Ho ——aS„+PS» +yS,
=a'S +y'S, +const, we will have to use the general ro-i' ~OS„ i@S
tation e 'e "e ' and the gauge potential will exist on
a three-dimensional space.

The states
~

a & can be taken to be the eigenstates
~

m &

with S,
~

m &=m
~

m &. For the problem at hand, the
states (+m) form a doubly degenerate secotr. For

~

m
~
&—,', we obtain only an Abelian structure with

Ae ——0 and A =( i)m cos8—. This follows since S can-
not cause transition with hm ~ 1. The corresponding
field strength F =( i)m dQ (w—here dQ=sin8d8dy is
the invariant area element) shows that the gauge poten-

F = ( i) ( a— 1) —d 0
2

is formally the same as the Abelian field strength in the

~

m
~
&—,

' sector. Nevertheless, the gauge structure is
non-Abelian. What is physically relevant is not so much
F as the Wilson loop

TrU =TrP exp —f A

the path ordering is clearly essential. Note that the
gauge field does not satisfy the sourceless Yang-Mills
equation. In particular, F& does not depend on cp, while

[A~, Fe&] is proportional to sin 8a2. Note also that F
vanishes for a= 1 (that is, S = —,

'
) as it should since the

problem collapses in that case, Ho (and therefore H) be-
ing proportional to the unit matrix.

We now see that, since in Tycko's experiment 0 is held
fixed (with cos8=1/&3) while tp varies cyclically, the
non-Abelian character of A is lost. (The reason that the
fixed 8 path is followed in Tycko's experiment is simply
that a rotation about a fixed axis is the only rotation of a
crystal that can be performed rapidly enough to produce
an observable phase shift. ) A is proportional to the fixed
matrix (cos8o i —a sin8cr, ) with eigenvalues +(cos 8
~a sin 8)'» and thus after each rotation of y through
2ir we obtain the phase shifts +m.(cos +a sin 8)' for
the appropriate eigenstates, in agreement with Tycko for
a =2 (that is, S=—,'). As the magnetic field turns, the two
states

~ i)+~, »2~ & and
~
i) ~, »2~ & rotate into a linear com-

bination of each other. The two degenerate levels are
split by DE=2m(cos 8+a sin 8)'» /T, where T is the
time period over which the adiabatic variation goes
through one cycle. Note that at 0=m. /2 the phase factor
e+™aacquired in each cycle is + 1 or -1 for a=S+
even or odd, respectively. Actually, there is an additional
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factor of ( —1) to be explained later. [Also note that the
+ eigenstate is largely the spin up state near the north

pole (8-0) and turns into the spin down state near the
south pole (8-n). The same applies for the —eigen-
state. ]

(There is a point of potential confusion here. It would
appear naively that even in the a= 1 case the two states
are split by 2m/T, while, in fact, the Hamiltonian is pro-
portional to the identity operator. The resolution is, of
course, that when a quantum state has acquired a phase
e'& it is the phase factor e'& and not the phase angle g
that is defined. Thus e'" and e '" represent the same
phase. In other words, by looking at Berry's phase, the
energy splitting is determined as only modulo 2n /T
Note that this ambiguity is of the same order in I/'r as
the energy splitting and so is potentially substantive. In
Tycko's experiment, however, the ambiguity can be
resolved, since we can follow the buildup of Berry's phase
infinitesimally in time. With the fixed-8 path chosen by
Tycko, the derivative of Berry's phase with respect to y is
a constant: A does not depend on q. In other words, the
physical situation in Tycko s experiment is essentially sta-
tionary. Thus we can integrate the phase change to ob-
tain the phase shifts per cycle as cited above. )

In this gauge, the state
~

m =+—,') is rotated by the
matrix expim(cos8o3 asin—8o, ) into a linear combina-
tion of itself and the state

~

m = —
—,
' ). It is easy enough

to go to another gauge by diagonalizing the matrix

(cos8o 3
—a sin8o t }=co cos8a 3'

i X(o~I2)
with co=e ' and tang=a tan8, that is, instead of the
basic states

~
ri, ) we choose

~
ri, ) =g~ ~ ri~ )~~. Thus

we compute

A =N ACO+N dN

2

(
.
)

COSH a3d (a —1) . 2 a2d8
cos' 2 a 2

In this basis,

(73 0'
(F'=( —i)(a —1} cosX +sinX dQ .

2 2

Note that cos8/cosX=(cos 8+a sin 8)' as it should.
To observe the non-Abelian character of Berry's phase

in this situation, it is necessary to vary 0 as well as y. In
general, we would like to compute U for an arbitrary loop
on the 2-sphere. In practice, the computation is intrinsi-
cally non-Abelian and difficult, since each segment in the
time-ordered exponential loop integral does not commute
with the next. The integral can, however, be evaluated
by numerical methods.

At first sight, one might think that one could compute
U for loops consisting of cyclic motion on the sphere,
maintaining a fixed angle with some arbitrary unit vector.
It would appear that the non-Abelian structure would
come into play, since both 0 and p vary. However, it is
clear that the original Hamiltonian is rotational invariant
and the z axis is preferentially picked out only by conven-
tion. The gauge factor obtained can only differ from the
gauge factor obtained by tracing the "standard" fixed-0

loop (with the appropriate 8) by an inessential similarity
transformation. This rotational invariance is reAected in
the invariance of gauge invariant (geometrical) quantities
such as

TrF h eF =( —)(a —1) —,
' sin8d8dy .

Under a rotation, the gauge potential A changes by a
gauge transformation, of course.

We note that the gauge potential we obtain here is the
same as the gauge potential obtained by Wilczek et aI.
in an analysis of diatomic molecules. This is hardly
surprising: although the physical situations involved are
different, the mathematical steps leading to the deter-
mination of the gauge potential are the same. In more
mathematical language, one would say that the rotation-
ally invariant connection on the sphere is essentially
unique. A general (but rather involved) proof has been
given by Forgacs and Manton. " A casual proof accept-
able to many physicists can be sketched as follows. Let
F=Q~CJ. (cr~ /2)d Q Since.

TrF A eF = g C. —,'dQ,

g C is invariant by assumption. By a gauge transfor-
mation, we can rotate C, to the standard form

C&
——C2 ——0 and C3 ——const. The loophole is, of course,

the question of whether the required gauge transforma-
tion can be carried out globally.

As noted, to explore the non-Abelian structure in nu-

clear quadrupole resonance, we should traverse a "non-
Abelian" path in which 8 and tp both vary. It seems to us

that such a path can be traced in an experiment with an
external magnetic field by varying the field suitably. For
instance, we may have crossed magnetic fields with 8,
varying at a different frequency from B and B . Of
course, we also do not want T to be so large that the ener-

gy splitting is infinitesimal.
To "see" the non-Abelian character of the gauge struc-

ture, we have to show how the noncommutativity pro-
duces physically observable effects. Consider three closed
loops A, 8, and C, that all start (and end) at the same
point xo on the sphere. Denote the phase factor generat-
ed by traversing each of the three loops to be U„, Uz,
and Uc, respectively. Consider the composite path in

which one traverses first A, then B, and finally C. After a
cycle, the phase factor U=UCU~U„ is generated. In
contrast, were one to traverse the three loops in the or-
der, first A, then C, then B, the phase factor would be
U'=U&UCU„. while detU=detU', in general TrU is

not equal to TrU' and thus U and U' have different eigen-
values leading to different energy shifts. ' Of course,
each of the loops A, B, and C may be traversed many
times, in which case U~, Uz, and Uc represent the phase
factor for each loop raised to a suitable power.

We were told' that in certain types of experiments it
may be easiest to trace paths made up of segments along
which either 8 or y is fixed. (It is not clear to us, howev-

er, how to go around the "corners. ") Theoretically, it is

of course effortless to calculate U for such path segments.
We now mention some subtleties associated with the
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usual difficulty with spherical coordinates, namely, that y
is not defined at the north and south poles. To see that
something is remiss, consider computing

U=Pexp — A

for an infinitesimal small loop circling the north pole.
i(o 3/2)271

We find, using (7), that U-e ' =(—1). Thus there
is a singularity at the north pole. Similarly, there is a
singularity at the south pole. The gauge potential in (7),
call it Az (E for equatorial), can only be defined on a
coordinate patch including the equator but excluding the
north and south poles.

To understand what is going on, we refer to the analo-
gous situation of the Dirac monopole. As noted earlier,
the same formulas that produce AE also produce in the
Abelian case the gauge potential aE ——( i)m—cos8 dp and
the gauge field fF ——daE ——( i)m—dQ. Here too, the
phase factor exp( —JaE) for an infinitesimal small loop
circling the north pole is equal to -e' "=(—1) for
m = —,'. Similarly, there is a singularity at the south pole.
Consider, in contrast, the gauge potential as ——( —i)
m (1+cos8)dy. Clearly, since as and az differs only by a
term proportional to dy, the corresponding gauge field

fs is identical to fE. The same remark can be made for
the gauge potential a~=( i)m ( ——1+cos8}dy. Suppose
for the moment that m is not known. Since (1+cos8)
vanishes at the north pole, a& is defined on the sphere ex-
cluding a region around the north pole. Similarly, aN is

defined on the sphere excluding a region around the
south pole. The requirement is that in the overlap region
where both az and a& are defined they must be related by
a gauge transformation. We have aN —a& ——2imd y
=e 2™~de' ~. Indeed, a~ and a& are related by a
gauge transformation effected by e 2™~,provided that
e ' + is defined, that is, if e2' ' ~'=1. Thus m is quan-
tized to be integer multiple of —,'. This represents one of
the standard arguments' for the quantization of magnet-
ic charge.

But what about aE? Since a~ —aE ——imdy
=e ™~de™",aE is related to az by a gauge transforma-
tion effected by e™".However, for m half-integral, this
gauge transformation, although locally legitimate, is not
globally legitimate. The phase integral exp( —faz) in-

tegrated from y=O to 2m. differs from exp( —ja~) by
e' "=(—1) for m half-integral. ' One way of describ-
ing the situation is that the equatorial patch on which aE
is defined is not a legitimate patch since it is not simply
connected. (Strictly speaking, the patches on which az
and az are located should be subdivided into smaller
patches. The overlaps between patches are also required
to be patches and hence each of the overlaps has to be
simply connected. )

It is now clear what the problem is with the non-
Abelian gauge potential AE. By analogy with the Abeli-
an case, we can define A& ——p AEp+p dp with the glo-
bally illegitimate (but locally legitimate) gauge transfor-

—i(,o 3/2)y
mation with p=e . We obtain

0'3 0 ) 0'2
A &

——( i ) (—1+cos8) —a sin8 cosy —sing
2 2 2

0'2 0 )dq+a cosy +sing d8

The result is more complicated in the non-Abelian case but the essential feature is that the combination (1+cos8) en-
sures that Az is not singular at the south pole. We can now also define AN ——p A&p +p dp with a globally legiti-
mate gauge transformation with the single-valued function p =e ' . For completeness, let us record that

0'3 0'i
A~=( i) ( —1+—cos8) —asin8 cosy +sing&

2 2 2

02 0 I
d y+ a cosy' —sing d 8 . . (1O)

The moral of the story is that we should use Az and
Az rather than AE. However, we note that in practice it
is easier to compute with AE. For instance, along a fixed
0 path, A~ and Az depend on y, while AE does not. We
can always use AE, keeping in mind that for a line seg-
ment from point 1 to point 2

2 2
exp — As ——p(2)exp —f As p (1}.

1 1

Thus, for a closed path over whith y does not vary by
more than 2m, Tr U can be safely computed with AE. On
the other hand, for a path that wraps around once from
qr=O to @=2m, exp( —$Az) d. iffers from exp( —)As)
[and exp( —fA~)] by an extra factor of e ' =( —1).
This factor, however, does not matter in the computation
of energy splitting. Thus, in particular, contrary to what
was stated earlier, the phase factor acquired in each cycle

I

around the equator should actually be ( —1) or (+ 1) for
a= even or odd, respectively.

The careful discussion above is necessary; otherwise,
one can easily fall into confusing traps. For instance, it is
contemplated experimentally' to have a path (the
"orange slice" ) going from the north pole to the south
pole along some longitude and then back to the north
pole along some other longitude. By looking at Az [in
Eq. (7)] one would conclude erroneously that since the
gauge potential is independent of y the phase acquired on
the south-bound leg cancels that acquired on the north-
bound leg and the net phase factor is unity. To do the
calculation correctly, we must compute with AN (say)
and take care to stay within the north patch. We will ac-
tually compute the phase factor for the "spherical trian-
gle" path in which we start from the north pole and go
south at a fixed y, to latitude 6I, go at fixed 0 to y2, and
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then return to the north pole along longitude y2. The
phase factor desired for the "orange slice" path is then
obtained in the limit O~m.

Since the final quantity TrUsz ——Trexp( —I zzAN ) (ST
stands for spherical triangle) can only depend on yz —y~,
we take yi ——0 and yz

——h. We read off from Eq. (10) that
[o2Z2)e

we have for the south-bound leg 8'=e ' and for
the north-bound leg

( IV'} '=exp i—a (—cosbo 2 si—m ho i)
2

For the east-bound leg along fixed 8, we note that Az
varies along the integration path. Fortunately, we know
that

f'~„
=p2e"p — ~E p~

1

V=exp

=exp —ia&b/2exp[i(cos8cr& asi—n8o'i)b j2) . (11)

cosysr ——cosi) cos—+sing sin —cos(X—a8),
2 2

(12)

where rl =(cos 8+a sin 8)'~ b, /2 and I is as defined ear-
lier.

Let us look at some special cases of this otherwise rath-
er opaque expression. As 8~m, we have for the "orange
slice" path

We are thus to evaluate cosysz ———,
' Tr Us+

=-,' Tr(W') 'VW. (This implies an energy splitting of
hE =2y IT, of course. ) After a tedious computation, we
find

phase factor Us„obtained for the "spherical rectangle"
path starting from the point (8„$,), then going to (8z, g, )

along a fixed-P path, then to (82,$z) along a fixed-8 path,
then to (8, , Pz) along a fixed-P path, and finally back to
(8„$,) along a fixed-0 path. We find readily that

S&~ S2~ . S~~ . p2~
—,
' TrUsR =cos cos +sin sin cosQ,

2 2 2 2

(15}

where p;=(cos 8;+a sin 8, )', Q =a(8z —8, )
—(Xz —X, ), and b =Pz —P, . As 8i ~0, this expression
reduces to the result for "spherical triangle, "Eq. (12).

Incidentally, we can now read off the rotation of states
in Tycko's experiment. The appropriate phase factor as
the magnetic field is moved along a fixed-8 path from
/=0 to P=b, is given by V in Eq. (11). In particular,
starting with the initial state

~ rI+ ) =(1,0), we find the
amplitude of being in the state ~g )=(0, 1) to be
( —i)sinful single' ~, which we note vanishes only for some
certain values of 6, namely, for

6=2k m. /(cos 8+a sin 8) '~, k = integer . (16)

As already mentioned, V contains an extra factor of
e ' = ( —1) for b, =2n..

In the Abelian situation, Berry could, and wisely did,
avoid these complications by immediately using Stokes's
theorem to write all expressions in terms of the gauge
field F. The corresponding theorem is, however, not
available for non-Abelian gauge potentials.

Incidentally, our discussion also allows us to illustrate
an interesting feature of non-Abelian gauge potentials.
Suppose we are given the gauge field

2bcosl os cos ——( —1 ) sin
2 2

(13)
F =( i)(a —1) —1Q

2

ad 6 . ab . 6 . am.
cosysz ——cos cos—+sin sin —sin

2 2 2 2 2
(14)

For a even, this is equal to cosa'/2 cosA/2, for a odd of
the form 4k +1 with k an integer, cos(a —1)h/2, and for
a odd of the form 4k+3, cos(a —1)h/2. Perhaps this
peculiar dependence on a can be tested by using nuclei
with different spin.

In practice, it is easier to compute with Az [or its
gauge transform in Eq. (8)] than with A~ and Az. As
long as the path under consideration does not touch the
poles and does not wrap around the sphere, we can safely
compute with Az. For instance, we can compute the

This is decidedly not unity as one would conclude errone-
ously from computing with AE naively. In particular,
for b, =m, we have the factor ( —1) +'. [This factor can
of course also be read off directly with
W=(IV') '=e ' and V=e ' =( —1).] Note
that since the path is a great circle this factor must agree
with the phase acquired upon going around the equator
once as computed from Eq. (7) but with an extra factor of
( —1) included.

For &=a/2, we have g =ah/2 and 7=n. /2, and thus

on the sphere. We know that the field strengths Fz, Fz,
and Fz calculated from Az, Az, and Az, respectively
are all equal to Fz ——F& ——FE ——F, since these three gauge
potentials are related by (locally legitimate} gauge trans-
formations that commute with oi. (We can of course
also check this equality by direct computation. ) Howev-
er, as already noted, TrPexp( —f Az) differs by a factor
of ( —1) from TrPexp( —f AN&). This represents a
non-Abelian version of the Aharonov-Bohm
phenomenon. Imagine removing the caps around the
north and south poles. Knowing the field strength in the
nonsimply corrected equatorial "patch" does not deter-
mine for us the net phase change as we go around the
loop.

Consider next the gauge potential

~ 2 CT3
Az ——( i )(a —1)cos8— dP

2

with the corresponding field strength F~ =FN ——Fz
=FE——F. As we go around the equator once,

Tr exp — Az ——Tr exp I, a —1 mo 3
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Since this differs from Trexp( —J Az)=Tr exp(iamo3),

A~ is clearly not related to Az by a globally legitimate
gauge transformation. In fact, Az is not even related to
AE by a locally legitimate gauge transformation. To see
this, we consider the gauge covariant quantity

D&Fe&
——t)gs&+[ A&, Fs& j, namely, the source current of

the gauge field. Computed with Az, this quantity is
clearly zero. On the other hand, as has already been not-
ed, it is not zero when computed with AE. This is in con-
trast to the Aharonov-Bohm phenomenon, in which the
two relevant gauge potentials, while not related by a glo-
bally legitimate gauge transformation, are related by a lo-
cally legitimate gauge transformation. '

In their original discussion on non-Abelian gauge
structures, Yang and Mills spoke of the degeneracy of the

proton and neutron under isospin and imagined trans-
porting a proton from one point in the universe to anoth-

er. That a proton at one point can be interpreted as a
neutron at another in an isospin invariant world necessi-
tates the introduction of a non-Abelian gauge potential.
We find it amusing that this discussion can now be real-
ized analogously in the laboratory.
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