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The Kramers-Henneberger transformation is used to treat potential scattering of electrons in the

presence of a strong laser field. As a Srst step, the one-dimensional scattering by a polarization
potential is considered. It is shown that the static part of the effective potential, often called the
dressed potential, may support more bound states than the original potential depending on the in-

tensity and frequency of the Seld. Exact results for the transmission and re6ection coefBcients are

presented and two approximations are discussed: A perturbative approach based on the above

transformation and the adiabatic approximation.

I. INTRODUCTION

The reasons for calculating charged-particle scattering
in an intense laser field are many and varied. This pro-
cess plays an important role in areas such as plasma
physics and also atomic physics, where it allows the ob-
servation of new resonances. This variety of motivations
has stimulated a lot of theoretical studies starting with
the well-known Kroll and Watson' work on the soft-
photon approximation. Perturbative treatments
abound but their range of validity remains to be clearly
established. To the best of our knowledge, the only ex-
isting nonperturbative approach has required a simplify-
ing assumption about the potential, ' namely, that it is
separable. Recently, a new nonperturbative method
based on the Kramers-Henneberger (KH) transforma-
tion ' has been proposed by Gavrila and Kaminski. "
Their work suggests that this transformation might be
particularly useful in the case of intense high-frequency
fields where an expansion of the scattering amplitude in
inverse powers of the Laser frequency is reasonable.

The motivation for this work is quite simple: It is to
test the scheme of Gavrila and Kaminski and also to
consider some more general aspects of potential scatter-
ing using the KH transformation. %hen linearly polar-
ized light is considered, as in our case, the problem
"reduces" to the solution of an infinite system of coupled
(two-dimensional) second-order differential equations. A
complete numerical solution of this problem is therefore
very complicated; so, we decided, as a first step, to re-
strict our treatment to one dimension. Although this
simplification seems unrealistic, it nevertheless allows us
to test several approximations within this approach and,
we believe, provides information about the number of
equations we have to take into account.

Section I of this paper is devoted to a brief outline of
the general method. In Sec. II we apply this method to
one-dimensional scattering of electrons by a polarization
potential; the transformed potential and in particular its
static part, usually called the dressed potential, are ana-
lyzed in detail. It is shown that the dressed potential
may contain, depending on the laser parameters, more

bound states than the undressed potential. This new
feature may lead to new laser-induced resonances in the
scattering cross section. In Sec. III we present results
for the reAection and transmission coeScients and test
the assertion of Gavrila and Kaminski, namely, the ex-
istence, in the high-frequency limit, of an iterative solu-
tion of the Schrodinger equation in the transformed rep-
resentation. It is shown that this assertion, within our
model, must be treated with due care and attention; in
fact, if the limits delineated by Gavrila and Kaminski
are strictly observed the iterative solution is a reasonable
approximation to the full wave function. %e have also
tested the adiabatic approximation; this approximation
is shown to be inadequate except at very high frequency
when the coupling between the elastic and inelastic
channels is weak.

II. THK MODKI

%e consider the scattering of an electron by a polar-
ization potential of the form

V(r)=
(p2+ „2)2

where A is the potential strength and P is chosen arbi-
trarily (but difFerent from zero). The scattering occurs in
the presence of a strong laser field. This field is treated
classically within the dipole approximation as a mono-
chromatic infinite plane wave linearly polarized along
the incident direction of the electron,

E(t) =Eosin(cot ) .

The dynamics of the system are governed by the
Schrodinger equation

i% (r, t)= [ ifiV qA(t)] +V—(r) 4'(—r, t),1

Bt 2'

where m and q are the mass and charge, respectively, of
the electron. A(t) is the vector potential,
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A(t)= Aocos(rot) .
~ 10Let us now introduce the new wave function

where

differential equations for the components P„(x,
1 d + oo

P„+[Vo (E—;+neo)]P„+ g V„P=0 .
dx

foal = —oo

(m@n )

0

Ui ——exp I dr A'(r)
2mb

U& ——exp J dr A(r) V
Ptl

U, is the usual phase transformation which removes the
A term from the Schrodinger equation (3) while t is
the so-called "space-translation" transformation origina-
1 d b Kramers. The physical meaning of the

alllatter transformation has been discussed in detal y
Henneberger, ' lt is usually written as

U& ——exp(a V),

where

a =aosin(cot ), ao ———q Ao/ni ro .

The new wave function satisfies the following
differential equation:

ih (r, t)= V2+ V(r+a(t)) 4(r, t) . (10)
dt 2m

As is clear from Eq. (10), the introduction of the electric
field (2) transforms the spherical symmetry of the prob-
lem into a cylindrical symmetry; as a result, the Geld
mixes states of different angular momentum, which
greatly complicates the numerical calculations. There-
fore, keeping in mind the purpose of this paper, we work
as a first step in a one-dimensional space and consider
the following equation (from now on we use atomic units
except where stated):

1 3
i'd%(x t)/r)t = —— + V(x+a(t)) 4(x, t) .

Bx

In practice, is sys, th' s stem of equations has to be truncate
to N equations. Introducing —n, ( an, 0,
lower and upper limits of N, respectively, we can write N
as

N =n, +n, +1 .

The choice of the value of n, and n, is discussed in de-
tail in Sec. III. The boundary conditions of the problem
are a Aux of particles of energy E; and momentum
k; =Q(2E; ) in the incoming channel and a flux of scat-
tered particles of energy E„=E;+nm and momentum
k„=Q(2E„) in the outgoing channel n, where
n =0,+1,+2, . . . . %hen E„&0,the outgoing channel
is open and when E„~Oit is closed. The solution of the
system (15) provides the reflection and transmission
coefficients r„and t„,respectively, in channel n; these
coef6cients as well as the method used to calculate them
are discussed in the Appendix.

Before analyzing the solution of the system (15, let us
first examine in detail the zeroth-order Fourier com-
ponent Vo(ao;x ), which is the time average of the poten-
tial in Eq. (11) and is often called the "dressed" poten-
tial. From Eq. (14), we get after some manipulation

2P x+ a—o+ 3iPx

F' 1 h V (a x ) as a function of x for variousFlgule s ows 0 QO,

values of ao and unit values of A and P. The Presence of
the two minima at x =ciao reflects the fact that classi-
call the charge responsible for the potential (1) appears
to oscillate in the KH picture with an amp i u
staying longer at the end points than in the middle
~here it gives rise to a weaker potential. In Fig. 2 we

In order to solve Eq. (11) numerically, we follow the pro-
cedure proposed by Gavrila and Kaminski. Since the
potentla ls a per

~

1
0

iodic function of time, we use the
Floquet theorem and seek a solution of the form

1

-5

Vo (u.u.)

+ Qo

4(x, t)=e ' g P„(x)e (12)

%e also Fourier analyze the potential,

+ oo
~

—ill QPtV(x +a(t) )= g V„(ao;x)e

The Fourier components can be written as

&
i" ~d& cos(n8)

[p +(x+a cos8) ]

where we take (1) into account. By inserting (12) and
(13) into (11) we get an infinite system of coupled

FIG. 1. Plot of the dressed potential Vo(a&', x) as a function
of x for a0=0, 1,3 a.u. The potential parameters A and P are
equal to 1 a.u.
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FIG. 2. Plot of V„{ao/x)i" (n =0, 1,2), the first terms in the
Fourier expansion of the potential V, as a function of x for
ao ——3 a.u

energy levels of Vo are plotted as a function of ao. For
a0=0 (field-free case) Vo reduces to V, which in this par-
ticular case (/1 =1 a.u. and P= 1 a.u. ) supports only one
bound state. When the 6eld is switched on, this level
moves upwards, as expected, since Vo becomes more
shallow. Furthermore, as o.o increases, new bound states
appear; the behavior of these is totally different from
that of the ground state: They become more and more
bound with increasing ao until a particular value of ao,
when they start to move upwards like the ground state.
Although the appearance of the new bound states may
seem surprising at first sight, given that the depth of the
potential decreases with ao, we must remember that the
number of bound states also depends on the range of the

compare Vo(ao;x) with V„(uo,x)h" (n =1,2) for au=3
a.u. A striking fact which is evident from this figure is
that the magnitude of the higher-order components is
similar to that of Vo(ati;x ) except for large values

~

x
~

&&txo, in which case we have

—Aaa
V. (&o» )

x &&ao Pg t~

This similarity in magnitude indicates that one must be
cautious in treating the first few V„(n&0)perturbative-
ly. Section III will throw more light on this point. It is
also interesting to analyze the energy levels of Vo. These
levels are, in the high-frequency limit, the dressed levels
of the atom in the presence of the 6eld. ' At lower fre-
quencies, however, it is necessary to include the e8ect of
the time-dependent part of the potential . In Fig. 3 the
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FIG. 3. Behavior of the energy levels of the dressed poten-
tial Vo as a function of ao. The potential parameters A and P
are equal to 1 a.u. ; in this case, the potential V only supports
one bound state at E= —0.40 a.u.

FIG. 4. Plot of the reQection and transmission coeScients
r„and t„asa function of X„the number of closed channels
for (a) n =0 corresponding to the elastic channel and (b) n =1
corresponding to the channel in which one photon has been
absorbed. The other parameters are EI =10 eV, ao=2 a.u. ,
and E; =2 eV; /t and P are equal to 1 a.u. and the number of
open channels is kept fixed at 17.
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potential. For high values of ao the range of Vo, essen-

tially determined by ao, increases; when this effect is
dominant, it is conceivable that new bound states may
appear, as in our case.

To what extent may perturbation theory be used to
treat the high-order Fourier components of the potential
(13), in particular at high frequencies? In the absence of
a general rule that answers this question, we chose to in-
vestigate how many channels have to be included in
solving the system (15) numerically for various values of
the laser parameters ao and ro.

Consider first Fig. 4, which shows ro, to, I"„t,as func-
tions of X„the number of closed channels included in
the calculations (the number of open channels is fixed
and equal to 17} for the case where the photon energy
EL ——10 eV, ati=2 a.u. , 2 =1 a.u. , P= 1 a.u. , and E; =2
eV. Under these conditions, the photon energy is about
twice the binding energy of the ground state of Vo. As
we see from the figure, re and to become stable after the
inclusion of three closed channels while r, and, in par-
ticular, t, require more than five closed channels to be-

come stabilized. The main point which emerges from
this result is that channels whose energy is far below the
ground state of Vo are important; in other words, it is
clear that the first Fourier components of the potential,
V I,V z, cannot be treated as perturbations.

%e can contrast this with the situation where EL is
much greater than the binding energy of the ground
state denoted by Ee (an) and the incident energy of the
electron. As shown in Fig. 5(a), where EL ——6 eV,
Eo ———0.25 eV, E; =0.5 eV, and ao ——10 a.u. , we find
that the total number of contributing channels is about
nine (five open and four closed

channels�},

i.e.,
significantly reduced compared with around 23 for the
previous case. In addition, it is clear that the inclusion
of the 6rst coupling terms V+, ,V+2 only aFects to and ro
by less than 10%. We therefore expect that a perturba-
tive treatment of V+&, V+2, etc. , is reasonable. Let us
note that in this case the "Gavrila-Kaminski" conditions
(namely, EL » ~EO ~, Er &&E;, coro&&1) are fulfilled.
However, if the potential is sufficiently strong (but still
satisfying the condition EL »Eo), the incident electron
may feel the structure of the potential strongly by virtual
emission of one photon (E, +ED-El ); in that case,
shown in Fig. 5(b), the number of channels to be taken
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FIG. 5. Plot of ro and to as functions of XT, the total num-
ber of channels, for the case EL ——6 eV, ao ——10 a.u. and the in-
cident energy is (a) E; =0.5 eV and (b) E; =5 eV; A =0.2 a.u.
and P=1 a.u.

FIG. 6. Plot of (a) ro and to', (b) rl and t, as functions of
XT, the total number of channels, for the case EI ——1.8 eV,
ao= 3 a.u. , and E; =2 eV; A and P are equal to 1 a.u.
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(a.u.)
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0.1 0.5 0.9
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FIG. 9. Behavior of t& as a function of E[ (in eV) for vari-
ous values of ao (in a.u. ) for the case EL ——1.8 eV; A and P are
equal to 1 a.u.

FIG. 11. Plot of the n =0 adiabatic curves as a function of
x for the case o;&——3 a.u. , FL ——1.8 eV, and the potential param-
eters 2=1 and p=1 a.u. The curves labeled by [9,10] and

[14,15] have been calculated using 9 and 14 closed channels
and 10 and 15 open channels, respectively, plus the elastic
channel.

These states are obtained by removing the kinetic energy
terms from the Hamiltonian and diagonalizing the
remaining coupling matrix (A 2 for E; =0) for each value
of x. By doing this we find the set of potential curves
that very-slow-moving electrons would "see." In the
strict adiabatic limit where the velocity of the electron
tends to zero, we ignore any coupling between these
curves induced by the motion of the electron. An elec-
tron with vanishing speed would then "follow" one of
the adiabatic curves. It was thought that these adiabatic
curves would help us to understand the reflection and
transmission coefficients. We argued that in the limit of
very strong coupling the perturbation due to the kinetic
energy terms would be small and we could think, e.g., of
resonances as being due to the electron moving on a par-
ticular adiabatic curve. The form of the adiabatic curves
we obtained appears to rule this out.

In Fig. 11 we have plotted the (n =0) adiabatic curve
for the case o,o——3 a.u. and EL ——1.8 eV. These curves
have been constructed using, in addition to the elastic

Q

channel, nine closed and ten open channels for the 6rst
case and 14 closed and 15 open channels for the second
case. We can see that as we increase the number of
channels the adiabatic curves converge to Vo. This
clearly shows that a very large number of channels is
needed for convergence and con6rms the participation of
these channels in the coupling process. It also shows,
more importantly, that the adiabatic curves have the
same form as the uncoupled curve. In other words, the
adiabatic approximation will be no better at describing
resonance positions than the completely uncoupled
states. %'e could investigate whether a perturbation
scheme which uses the adiabatic states as a basis and
treats the kinetic energy as a perturbation is a fruitful
line to follow. %'e do not think this is worthwhile since
the analysis would have to involve a full configuration-
interaction treatment if it is to succeed. %'e should
remember that it would have to generate considerable
shifts and widths to achieve agreement with theory.
Such a scheme holds little advantage over the full com-
putation we have made. We would, therefore, suggest
that adiabatic perturbation theory is not the way for-
ward.
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E~(eV) APPENDIX

FIG. 10. Plot of to and t, as functions of the incident ener-
gy E; (in eV) for the case Ez ——10 eV, ao ——2 a.u. , and A and P
are equal to 1 a.u.

In this appendix we describe in some detai1 the pro-
cedure adopted to calculate the reAection and transmis-
sion coeScients. We start by considering the system of
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equations (15) truncated to N equations with N given by
Eq. (16). For clarity, we use Greek latters for the index
labeling the channel functions [the Fourier components
of 4(x, t)]; in addition, this new index runs from 1 to N
mstead of —72~ to ng.

From the theory of differential equations, the homo-
geneous system (15) has a set of 2X linearly independent
solutions. As a result, the channel function P& is actual-
ly a linear combination of 2% functions, each denoted by
Xi J(1(j &2N Th. ese Xz satisfy the following equa-
tion:

4(x)=
+1,1 +1,X

+1,%+ 1 +1,2N

+X,N + 1 +%,2N

(A3)

where A and 8 are constant (i'&&N) matrices. Using
this notation, system (15) becomes

Xi, ——QEi „X„,, 1&j (2E,
x

dI 4(x)=E(x)4(x) .
x

(A4)

where E&
„

is given by

Ei „——2I Vi „—5i„[E, (n,——A, +1)co]I . (A2)

In terms of the functions Xi the general solution may
be written in matrix form as

I is the identity matrix and the elements of F. are given
by (A2).

%'e now suppose that the incident electron is moving
from the right (x =+ ao) towards the left (x = —oo). In
addition, we assume that all the Fourier components
V„(x)of the potential V{x+asin(cur)) [see Eq. (18)]
tend to zero faster than 1 jx for large values of x. Under
these conditions, the asymptotic behavior is

—ik )x

—ik&x

T=E T, (A5)

—lk
1
x

e
ikix

e
ik2x

e

—ik~ x
e

The wave vector k„is defined by

k„=+(E;+neo), E;+neo~0 (A7)

t

With this normalization, the conservation of probability
1s expressed as

for an open channel and
g(ri„+ti,) =1, (A12)

k„=i+
~
E;+no) ~, E;+neo(O (A8)

for a closed channel. The elements of the J matrix are
given by

k„+,

rejecting the fact that the only incoming Aux occurs in
the channel corresponding to the energy E;. R and T
are the reQection and transmission matrices, respective-
ly. %e de6ne the re6ection and the transmission
coefBcients in channel k as follows:

where the sum over A, includes the open channels only.
In order to solve the system (A4) numerically, we

adopt the following procedure: First, we divide the x
axis into three intervals, I,= ( —oo, —x, ), Iz = ( —x„x,),
I3 ——(x„+ce). x„apositive number, is chosen such
that the solution @(x) in the intervals I, and I2 is given
to a good approximation by the expressions (A5) and
(A6), respectively. From Eq. (18), it is clear that x, is
essentially dependent on ao. The second step consists of
propagating numerically the solution 4(x) from
x = —x, to x =+x, . At x = —x„the solution has the
form (A5) but since at this stage we do not know the
transmission matrix T, we replace it by an arbitrary but
nonzero matrix 8; thus,

(A 1 1) 4(x = —x, )=K 8 . (A13)
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The numerical algorithm used in this calculation is
based on the de Vogelaere method. '

At x =x„werequire that the solution 4(x) and its
first derivative 4&'(x) be continuous. In other words, we
have to And the constant matrix A such that

A =4 '(K J+K+R ) (A17)

~here as usual the superscript —1 denotes the inverse of
a matrix. This procedure uniquely determines the
reflection matrix R as well as the transmission matrix T
given by

4(x, ) A =K J+K+8, (A14)
(A18)

4'(x, )A =K 'J+K+'R, (A15)

g =(e -'K+ +e-'K+)-'(e-' —C -')K-J (A16)

where K+' and K ' are the first derivatives of K+ andE, respectively. After trivial rnampulation we obtain

As a test of the computer code, we replace E(x) in
(A2) by a constant matrix for which case the system can
be solved analytically. In addition we also check, in
each case presented here, the conservation of probability
given by Eq. (A12).
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