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Exact two-body solution of the Lorentx-Dirac equation
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%'e exhibit a solution to the Lorentz-Dirac equations for two classical point particles in circular
orbits, each interacting with the retarded field of the other. The 6elds produce the exact tangen-
tial force required to balance the loss of energy by radiation.

INTRODUCTION

Previous attempts to 6nd exact solutions to the special
relativistic electromagnetic two-body problem have a11

made use of Fokker-type action principles and, at least
partly, advanced potentials. In these theories the in-
teraction is purely action at a distance; the 6elds have no
physical reality and particles do not experience a self-
force. Thus Schild, '

by using time-symmetric (advanced
plus retarded) potentials, found a solution in which the
two particles move in circular orbits about a common
center. Similarly, Bruhns and Fahnline have studied a
class of solutions to the time-asymmetric problem in
which one particle is acted upon by the retarded 6eld of
the second, while the second is acted upon by the ad-
vanced field of the 6rst.

All these solutions are stationary because the particles
do not radiate in these theories. In contrast, the stan-
dard formulation with purely retarded fields results in
the I.orentz-Dirac equation, with its nonlinear self-force
term due to radiation reaction, and well-known
difficulties of preacceleration and runaway solutions. It
might be imagined that the I.orentz™Dirac equation
~ould not allow stationary circular orbits because the
energy of the system would be radiated away. However,
the existence of the runaway solutions (in which a parti-
cle in a free-field region increases its energy without lim-
it) should alert us to the possibility of the existence of
solutions which apparently violate energy conservation.
Indeed Eliezer, though he does not 6nd exact solutions,
presents evidence that there are no solutions to the
fixed-center Coulomb-force problem in which the parti-
cle spirals into the center.

We therefore aim here to examine the possibility that
with purely retarded interactions, stationary circular
solutions exist. The idea is to include radiation by using
the Lorentz-Dirac equation of motion for each particle,
which interacts with the full retarded field of the other.
We will 6nd that the force has a component in the direc-
tion of motion and can be used to exactly balance the ra-
diation reaction force.

METHOD QF SGI.UTIQN

E= [(n —p)(1 —p )/R +nX[(n —p)Xp]/c],xR
g= nxE/c,

where o =e/(4neo) and it= 1 —n P. Here P=vlc and P
are to be evaluated at the retarded position of the parti-
cle, I is the unit vector from the retarded position to the
observation point, and R is the retarded distance. For
circular motion the electric 6eld at the diametrica11y op-
posite point becomes

E= [(n—P)(1 P+2P —cos P) lR Ptt/c], —
KR

(2)

where P is the retardation angle, i.e., the angle between
the retarded and actual positions of the particle. We
consider now two diametrically opposite particles of op-
posite charges (cr, = —tr2~0) and evaluate the field of
one at the position of the other. The retardation angle
then satis6es

—2P a. cosP sin(2$) J,
0"

2F„= I [psin(2$)+cosp](1 —p~+2$2)
4tc3r cos2$

—2P ttcosgcos(2$) ),
where we have used the following relations for the
tangential and radial components of the vectors in-
volved: n, = —sing, n„=cos((}, P, = Pcos2$, —
P, =P sin2$, P„=—P sin2$, P„=Pcos2$, and Plc
=2P cos( P ) /R.

We now attempt to satisfy the I.orentz-Dirac equation
for particle 1. In covariant form it reads

since one particle rotates through 2((} about the center of
the circle in the time it takes for light to travel to the
other particle. Thus the tangential and outward radial
components of the field of particle 2 at position of parti-
cle 1 are (with r the radius of the orbit)

0'2
F-, =

3 z I [pcos(2$) —sing](1 —p +2t(}~)
4tt r cos P

The retarded Lienard-%'iechert potentials for a point
particle lead to the following fields:

28]or]
ma„= F„,,v'+ (a„—U„a lc ),

3c
(6)
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where U and a are the four-velocity and acceleration, and
is the retarded field of particle 2. If we can satisfy

(6), then by symmetry the equivalent equation for parti-
cle 2 will also be satisfied. The second term in (6) is the
radiation reaction force I'„„„,. Its space component for'

circular motion is always directed oppositely to the ve-
locity snd has magnitude

2e icr iPF„„,= p2)2 2

Thus for s circular motion to be a solution to the
Lorentz-Dirac equation we need the following relations
to hold:

~ «Et =~react

ei(E, +uB)= —m (1—P )
'i

u /r,
where 8 =[E —(E n) ]'~ /c is the magnitude of the
magnetic 6eld, which is directed normal to the plane of
the orbit and so it produces s purely radial force.

Equation (8) ensures that the tangential force compen-
sates for the loss of c:nergy by radiation. VA'th the Geld
(4), it is independent of r and has the unique solution for
PE(0, 1) of /=0. 368267. This solution was obtained
numerically with Brent's algorithm. We note that this
value is obtained from geometric considerations alone.
To complete the solution it is merely necessary to solve
Eqs. (5) and (9) for r, which requires the specification of

the charge snd mass. For example, for the electron-
positron system we obtain r=4.42 fm, or about two
classical electron radii.

MSCUSSIGN

It is usually considered that the Lorentz-Dirac equa-
tion gives physically meaningful results only when the
force due to radiation reaction is small compared to the
external force. This is certainly not the case with this
solution. One may consider the existence of the above
solution with its apparent violation of energy conserva-
tion as another example of the breakdown of classical
point-particle electromagnetism when extended beyond
its domain of applicability. Since the system is a rotat-
ing dipole it will have a nonzero total radiation rate.
This should be no more surprising than the existence of
runaway solutions to the Lorentz-Dirac equation, since
in this model the point particles have an infinite self-
energy to draw upon. Perhaps the most surprising as-
pect of the above solution is its uniqueness.

%e intend to discuss the unequal mass case in a future
paper. However, order-of-magnitude estimates would
seem to eliminate the possibility of any solution of the
above type resembling the hydrogen atom. For the
ground state we have p=0.05, so that the retardation
angle (() needed is also of this order; whereas by consider-
ing the position of the center of mass we can see that the
maximum angle possible is of the order m, /m =0.0005.
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