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A particle in a one-dimensional 5-function potential possesses both discrete and continuum solu-
tions. The con6guration-space Green's function and propagator for this problem are derived by
explicit summation over the spectrum of eigenstates. The momentum-space Green s function is
also obtained. The propagator does not contain the classical action function in any simple way, in
contrast to the usual structure in Feynman's path-integral formalism. Various analogies between
the 5-function and Coulomb problems are discussed.

I. INTRODUCTIGN

A particle moving in an attractive one-dimensional 5-
function potential, variously known as a one-dimensional
hydrogen atom or a "deltahydrogen" atom, constitutes
the simplest quantum-mechanical problem admitting
both discrete and continuum solutions. The Schrodinger
equation in atomic units (irt=m =e =1) has the form

1 d —Z5(x) g(x)=EQ(x) .
dx

A 5 function scales in the same way as a Coulomb po-
tential, i.e., V(M ) =A, ' V(x) for both 5(x) and

~

x
~

arrd has been used as a one-dimensional analog of the
Coulomb potential. ' The solutions to Eq. (1) have been
discussed by a number of authors.

There is but one bound state,

x)=Z' 'e-
I I Eo Z~/2

resembling a hydrogenic 1s orbital. To derive the con-
tinuum solutions, consider the superposition of a free-
particle wave incident from the left, e' " (or from the
right, e '"") with a wave scattered by the 5-function po-
tential, e' ~" ~. These respective solutions can be written

y+(x) [ekikx+f(k)eik ~x
~ ] / ()v2~

Substitution into Eq. (1), recalling that
—,'(d /dx ) ~x

~
=5(x), identifies the scattering ampli-

tude,

f(k) = —Z/(Z+ik ),
with the energy eigenvalues Ek ——k /2. Note that the
pole of the scattering amplitude, at k= —iZ, corre-

sponds to the bound state, with the residue proportional
to tPo(x). Alternative continuum eigenfunctions are the
even and odd standing waves,

(x)=n '~ sin(kx),
(5)

pk"'"(x)=[n(k2+Z )] ' [k cos(kx) —Z sin(k
~

x
~
)] .

The eigenfunctions in the form (3) are 5-function nor-
malized,

&t(k I kk &=5(k k'» &0k I

—fk+ &=0.

For derivation of the Green's functions, we will re-
quire the density matrix

po(»y)=Co(x)yo(y)=ze-, X—= [x (+ (y [

Pk(x y) =A'(»f4k (y)]'+0k (»[Wk (»]"
yodd( )yodd( ) + eleven( )yeven(y )

=pk(x y)+pk(x y)+pk(x y»

pk(x, y) = cos[k(x —y )],1

i Z
pk(x, y) = —— cos(kX),Z2+k2

pk(x, y) =——1 Zk
sin(kX) .~ Z+k

The term (9) corresponds to the free particle. One can
readily demonstrate the closure property, showing the
completeness of the above set of eigenfunctions, '
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po(x, y ) +I pk (x,y }dk =5(x —y } . (12) 6+(x,y, k ) = (ik) 'e'""[e '"«+f(k)e' «],

II. GREEN'S FUNCTIONS

The con6guration-space Green's function can be ob-
tained by explicit summation over eigenstates,

in agreement with (17).
The deltahydrogen and Coulomb Green's functions

show remarkable structural analogies. As shown origi-
nally by Hostler, the three-dimensional Coulomb
Green's function can be represented in the form '

po(x, y) „pk(x,y)6+(xy, A)=. . . z+I, , dk, ImA~0. 6+(r, , r2, k ) = —[m(» —y)] ax
g+(x,y, k),

By

The contribution from the terms {9}-(11)are evaluated
by contour integration along the real axis closed by an
infinite semicircle in the upper half of the complex plane,
as follows:

with

g+(x,y, k ) =(ik ) 'I {1 —i v)M P( ik—y )

X IV+( —ikx),

(22)

(23)

2 ~ cos[k(x —y)]dk 1
~

e'kl"-«ldk

o iP —k n k k
iit (x —y ~

(14)

in terms of the variables

x =r, +ri+r, z, y:r, +r—2
—r, 2, v—:Z/k . (24)

The function g+(x,y, k) is a solution of the quasi-one-
dimensional Coulomb problem

2Z cos(kX )dk
0 (Z'+k'}(k' k~)

Z' ikxdk

(Z'+k')(A, ' —k')
Z —ZX Z 2 eikX+, (15)

+Z ~ A +Z
2Z p ~ k sin(kX)dk

(Z +k2)(At —k }

iZ g ke'"xdk

(Z'+ k ')(A, ' —k ')

Z~
—ZX Z i A,X

+ . (16)
A, +Z )l. +Z

Adding these together, we find that the contribution
of the discrete spectrum is exactly cancelled, just as in
the case of the Coulomb Green's function. ' With re-
version to k as the wave-number variable, the deltahy-
drogen Green's function works out to

k di Z+,+—g+(x,y, k)=5(x —y), 0&y &x & ~ .
x

(25}

Using formulas given by Buchholz, io the asymptotic
forms of the Whittaker functions M and W as x,y~00
imply

g+(x,y, k )-(ik) 'exp(ikx /2+iv lnkx )

X exp( iky /—2 i v ink—y )

exp(iky/2+iv inky )
I'(1 —i v)
I' 1+iv

x,y ~ a& (26)

somewhat resembling the deltahydrogen Green's func-
tion (21).

The momentum-space Green's function can be ob-
tained by Fourier transformation of (17),

6+(x,y, k)= —. e" l"-»l — . .'"'l" l+l«l~
ik Z+ik

This result can alternatively be obtained from Sturm-
I.iouville theory, whereby the solution to

k' l d'
+Z5(x) 6+(x,y, k ) =5(» —y) (18)

dx

I

G(p,p', E)= . Z ik
2m Z+ik (E T)(E—T')—

E=k /2, T=p /2 . (28)

6(p,p', E)= J J G(x,y, E)e '«"e'««dx dy .
00 —00

(27)

Noting that Imk ~0 in carrying out the integrations, we
obtain

is given by

6+{ k }
2u(y)u(x)

u(x)U'{x)—U(x)u'(x)

For the case x ~y ~ 0, we use

U(x)=e'"", u(y)=e ' «+f(k)e'"» .
Thus

(19}

(20)

1/2

4'0(p) = 2 Z 3/2

p
2 +Z 2

For comparison with (28) we give a representation of the

The 6rst term represents the free-particle Green's func-
tion while the residue at k =—iZ identi6es the ground-
state momentum-space eigenfunction, "
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momentum-space Coulomb Green's function derived by
Schwinger, " integral formalism. . %e will now evaluate the propaga-

tor for this problem, again by summation over eigen-
states,

l

G(p, p', E ) = Z I
2n' (& —&)(E 'r—') ' (3O) K(x,y, t ) =po(x, y)e'

where I is a complicated de6nite integral which we need
not enumerate.

+I pl (xy)e '" '~ dk . (31)

This result is equivalent to Fourier transformation of the
Green's function using

III. DKI.TAHYDROGKN PROPAGATOR

Goovaerts et al. had earlier considered the 5-
function potential in the context of Feynman's path-

l

K= I (G+ —G )
' 'dE

2 fT oo

The following integrals are required

(32)

~" dk = ~ [2 osh(ZX) e — rf(Z&p —X/2v p) —e erf(Z&p+X/2&p)] (33)

[2 sinh(ZX )+e erf(Z/&P X/—2&P) e—erf(Z~P+X/2&P)] . (34)

Note that

1+erf( —u ) =1—erf(u) =erfc(u) . (35)

Identifying p with it /2 and defining

u =X/2+~ —Z &&=(
I
x

I
+

I y I
)/v'2it Z&i—t /2, K(x,y, t)-(2@it) ~ exp

i (x —y) 2iZt x
ln

8t x —y y
L

where U is a conQuent hypergeornetric function of the
second kind.

Again, we compare (37) with the asymptotic form of
the Coulomb propagator

the propagator works out to

K(x,y, t )=Eo(x,y, t)+ —e zxe'z '~ erfc(u)
2

=E (x,y, t)+ exp[i—( [ x
~
+ ~y ~

)2/2t]
2

Z (2~it)'"
~~ (x+y)xy

&C exp + ln(xy)
i (x +y) 2iZt

St x+y (41)

Xe" erfc(u),

in which E is the free-particle propagator

K (x,y, t)=(2@it) ' exp[i(x —y) /2t) . (38)

with the initial condition K(x,y, O)=5(x —y).
The function of u in (37) can alternatively be ex-

pressed as follows. "

It can be verified that (37) satisfies the time-dependent
Schrodinger equation

. 8 1 8
i +——+Z5(x) E(x,y, t)=O,

In contrast to the case when the Hamiltonian is a
quadratic form in generalized coordinates and moments,
the deltahydrogen propagator does not exhibit the
canonical structure in Feynman's path-integral formal-
ism,

E(q „q2, t ) =F(t)exp[iS(q, ,q2, t )] . (42)

Here S represents the classical action function, a solu-
tion of the corresponding Hamilton-Jacobi equation. In
other non quadratic cases which we recently con-
sidered, ' the propagator still contains S in a slightly dis-
guised form. For example, the radial propagator for the
two-dimensional harmonic oscillator is given by

K~( ipse ~pt2)=( —i) pip2N csc(Q)t )

—z2
Q i ~ e 'dze" erfc(u)= ——

—co Z —l Q

( —u)"

n =0 pgI" —+1
2

2Q oo 8 dZ

0 g +gg

Xexp[ —,'i co(pi+ p2)cot(cot ) ]

XJ [copip2csc(cot )),
whereby the corresponding action is

S(p„p~, t )=—,'co(p, +pq)cot(cot ) topipicsc(cot ) . —

(43)

(44)

cc

—u ' g ( —1)"(-,')„u
@=0

In Sec. IV we will derive the action function for deltahy-
drogen. Evidently, the deltahydrogen propagator does
not make use of this function in any direct way. From
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another point of view, the structure of (37) does suggest
a sum containing two alternative classical trajectories, an
idea discussed by Crandall.

Hamilton's principal function can now be obtained by
a Legendre transformation,

S(x,y, t)= 8'(x,y, k) —
—,'k t .

In the context of quantum-mechanical propagators,
the action function denotes the integral of the Lagrang-
ian over a classically allowed trajectory, viz. ,

S(x,y, t )= I ' L {x',t')dt' . (45)
y, O

This is called Hamilton's principal function in classical
dynamics. S is a solution of the Hamilton-Jacobi equa-
tion

(51)

which gives k as an implicit function of x, y, and t
With v=Zlk, (51) becomes

Z t =vZ(x —y) —v 8 .

It is convenient to introduce the auxilliary variable u
such that

M 1 BS
Bt 2 Bx

—Z5(x)=0 . (46) (x y )3/2 a3/2

Z'~'t a —8
' (53)

(47)

Let us 6rst consider the time-independent analog,
Hamilton s characteristic function W(x,y, k), which
satisfies the equation

'2
2

1 aP' Z5() k
2 ax

"
2

%'e have accordingly

Z(x —y)=v a, Z t=v'(a —8) .

The action function thus works out to

S{x,y, t) = —,
' v(a+ 38) . (55)

W(x,y, k) =k(x —y)+ —8,z
(4&)

where

A solution with the appropriate symmetry between x
and y is

This reduces to the free-particle result S=(x y) l—2t
when 8=0 {x,y &0 or x,y ~0).

For purposes of comparison, we recount the action
function for the Coulomb problem

S(A, ,p„v) =v[sinh(A, —p)cosh(A, +p)+3(A, —ILt)], (56)

8 —=8(x)—8(y), 8(&)—:
0 if z~0. (49)

in terms of the variables A, ,p, , v determined by the impli-
cit relations

The solution (48) fails, however, at the singular points
x =0 and y=0. This is to be expected in any event
since a classical 5-function potential behaves as a black
hole.

Zx =4v sinh k, Zy =4v sinh p,
Z t =2v [slnh( A, —ts )cosh( A, +p ) —( A, —p ) ]

where x and y are defined in (24).
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