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The existence of anomalous SafFman-Taylor fingers when a localized disturbance is applied at
their tip has been demonstrated by several recent experiments. %'e show that they form a well-

defined family with strong similarities with crystalline dendrites. They are narrower and more
stable than normal fingers, their tip is parabolic, and its radius of curvature p is proportional to
the capillary length lo. For very large velocities, saturation occurs when p becomes of the order of
the plate spacing. Using localized disturbance and periodic forcing we characterize the
amplification of waves on their lateral fronts and we then discuss some implications for dendritic
crystalline growth.

I. INTRODUCTION

Anomalous fingers form a new family of solutions in
the classical Saffman-Taylor problem. In order to make
clear the speciAcity of anomalous Angers we must recall
t'he main characteristics of normal Angers. Since the ear-
ly work of Sahan and Taylor, ' these have been studied
by many authors experimentally, numerically, and
theoretically. Recent reviews about usual fingers can be
found in SafFman, Homsy, i and Bensimon et al. 4

The motion of a Quid between two horizontal narrow-
ly spaced solid plates is usually described by the two-
dimensional velocity field averaged through the thick-
ness of the cell. It is a potential Aeld given by the Darcy
law,

where )u is the dynamical viscosity of the fiuid and b the
spacing of the plates. If the Quid is incompressible the
pressure satisAes Laplace's law hp =0.

If two fluids of very difFerent viscosities move together
in a Hele-Shaw cell, their interface is unstable when the
less viscous Quid forces the other to recede. When sur-
face tension is negligible, all the wavelengths are unsta-
ble. The stability analysis of a moving plane front in the
presence of interfacial tension T was done by Chuoke et
a/. They consider a spatially periodic disturbance of
wave vector k along the front and study its rate of
ampliAcation co. In the case where a Quid of negligible
viscosity (e.g. , a gas) moves into a viscous fiuid (e.g., oil),
the dispersion relation can be written

where X„=@V/Tis the capillary number. The first
destabilization of the interface occurs at a wavelength of
the order of /, =2m jk„where k, is the wave vector of
largest amplification rate given by (2),

k, =2
v'31, '

where l~ is the capillary-length scale of the problem
traditionally chosen to be

Experiments on this instability are concerned not only
with its onset but also with its nonlinear growth. As the
pressure is a Laplacian Aeld, the choice of the boundary
conditions in the plane of the cell is determinant for
growth of the instability at large amplitudes. Saffman
and Taylor' in their original experiment used a long
channel of width 8' with closed lateral walls. We will
refer to this as the linear geometry. More recently, Ba-
taille introduced an axisymmetric geometry where the
air is injected at the center of a cell formed by two circu-
lar plates with opened boundary conditions at the peri-
phery. We will refer to it as the circular geometry.

In the linear geometry the fastest initial Anger screens
ofF the others and forms a steady solution characterized
by the fraction A. of the cell's width that it occupies and
by its velocity U. (We will use this value of U thereafter
in the definition of N«and lo. )

Thc experiments ' ' confirmed by numerical simula-
tions " show that, increasing the capillary number, the
finger tends towards A, =0.5. In other terms, the steady
solution remains in a large range of velocities scaled
uniquely on the width of the channel. However, with in-
creasing velocities the ratio W/lo increases, so that, on
the scale of the capillary length lo, the forward front of
the finger becomes nearly similar to a Aat interface. It is
surprising that this front has a large range of stability.
A new parameter has been introduced, ' '"

2

8 b T b " l
—=12 =12 X = . (4)

Its value measures how "far" the width scale 8' is from
the capillary length scale lo( U). It is the only parameter
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which enters in the selection of the finger width in an
ideal two-dlmcnslonal situation.

In the absence of surface tension, Sa6'man and Taylor'
found a family of analytical solutions of the shape of the
interface given by the equation

W(1 —A, ) 1
ln —1+cos 27''

2'

The curve obtained from Eq. (5) for A, =D. 5 fits the ob-
served finger shape but the selection of the finger has to
be sought in the effect of surface tension. This was
done by Vanden-Broeck, ' using numerical techniques,
and by Combescot et al., ' Shraiman, '" and Hong and
Langer, ' by analytical methods. They showed that only
a discrete set of solutions satisfies the continuity of the
derivative at the tip of the finger (solvability condition).
In this set, A, ~0.5, and it tends towards A, =D.5 when
X„goesto infinity. The stability of these solutions was
investigated by Kcssler and Levine, ' Bensimon, ' and
recently by Tanveer. '

%'e reported in a previous paper' the first observation
of very different fingers. We showed that a local distur-
bance of the tip (we had used either a small bubble or a
thread stretched along the cell) led to fingers with rela-
tive widths k much smaller than 0.5. Our interpretation
was that by disturbing the tip we relax the solvability
condition there, so that the selection of the discrete set
of solutions is removed. The continuum of solutions
given by Eq. (5) becomes possible. Indeed, the narrow
fingers (that hereinafter we will call anomalous fingers)
have the shape predicted by Eq. (5) for small A, . We also
showed that the anomalous fingers obtained at a given
value of the capi11ary number in various cells were
selected for their dimcnsionless radius of curvature at
the tip p/b. In other terms, the fingertip shape is deter-
mined by its velocity and it is only further along the
profile that the finger "feels" the boun. dary conditions
imposed by the lateral walls. There is, for anomalous
fingers, a unique relation between p/b and N„in all
cells. However, this relation remained incompletely in-
vestigated; in particular, the saturation of p/b at larger
X„wasnot fully understood.

Simultaneously Kesslcr et al. ' found that when the
surface tension was taken to be anisotropic a new family
of fingers was obtained where A, decreased continuously
with increasing capillary number. A similar result has
been obtained by Dorsey and Martin.

More recently, Hong and Langer have shown that if
a finite angle was assumed at the tip, narrow fingers of
the type we had observed were selected. Zocchi et al.
have investigated the anomalous fingers obtained with a
thread and shown that the elect of the thread could be
simulated in a two-dimensional model by a local weaken-
ing of the surface tension.

These various works strongly suggest that narrow
fingers form, as we had suggested„a new family of solu-
tions with well-determined properties. They appear with
a large variety of disturbances at the tip, as is shown
also by experiments in the circular configuration. 2

In thc prcscnt article, which Es thc continuation of

Couder et al., ' we address ourselves to three problems.
In otherwise similar experimental conditions we check

that three difterent types of tip disturbances give rise to
the same family of anomalous fingers (Sec. III A).

Wc establish the precise relation p jb versus X„and
give an interpretation of the observed saturation (Sec.
III B).

In order to investigate the stability of anomalous
fingers, we study the impulsional response of their fronts
to a localized disturbance as well as the eft'ect of a
periodic forcing (Sec. III D).

In Sec. IV we mill discuss the strong similarities be-
tween the formation of anomalous fingers and the
growth of crystalline dendrites.

II. EXPERIMENTAL SETUP

Most of the experimental cells were built with glass
plates of thickness 1,5 cm and length 150 cm. Because it
lends itself more easily to mechanical engraving, we also
used a cell made with two Perspex plates of the same di-
mensions. The flexion of the plates, however, limited the
use of this particular cell to low applied pressure and
thus to small velocities of the finger.

We investigated the anomalous fingers in cells of vari-
ous dimensions. We define their aspect ratio as
I = W/b, where W is the width of the channel and b its
thickness. We used mainly cells with I =120,60,40, 20
( W =12, 6, 4, and 2cm and b =0. 1 cm). A few experi-
ments were also done in cells with I =280 ( W =28 cm,
b =0. 1 cm), I =240 (W=12 cm, b =0.05 cm), and
I =120 (W=6 cm, b =0.05 cm). In all the cells the
two glass plates were clamped together with longitudinal
spaccrs on both sides, forming the lateral walls of the
channel. The width was defined to better than
68'=0.05 cm and the thickness to hb =0.005 cm.

The cell was filled with silicon oil, Rhodorsil 47 V
100, which has a surface tension T =20.9&&10 N/m at
25'C and a viscosity @=96.5X10 kg/ms. The less
viscous Quid was nitrogen gas and was injected into the
cell at a tunable pressure.

We used three different techniques to disturb the tip
of the fingers. As we will see, their effect in creating
narrow fingers was similar but the stability of the result-
ing fingers was different.

En one series of experiments we had a thin groove
engraved in the middle of each plate. The grooves had a
triangular profile; their width was approximately 0.08
cm and their depth 0.04 cm. The plates were then
mounted so that the two longitudinal grooves exactly
faced each other along the axis of ihe cell.

In the second series of experiments, we stretched a
thin and regular nylon thread (120 pm in diameter) from
one end of the cell to the other. Ii could be set either
along the axis or at a distance y, from it.

Finally, using a long hypodermic needle, we injected
small air bubbles in the cell ahead of' the moving front.
When one of the growing initial fingers caught up with a
bubble, it moved faster so that, it overcame the others
and established itself in the center of the cell.

The shape of the resulting fingers was analyzed on
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photographs. For systematic measurements videotape
recordings of the experiments were used. The width of
the finger was measured with a precision of 0.05 cm.
The accuracy of the velocity measurements was limited
by the frame repetition rate and was of the order of
AU/U =10

In order to study the stability of the fingers, we dis-
turbed them either by localized perturbations or by
periodic modulation of the velocity. The use of a thread
lent itself easily to the introduction of a localized distur-
bance (such as by having a knot on it). We have also ap-
plied a periodic forcing of the finger by modulating the
applied pressure. The input of nitrogen gas had a buffer
volume VA connected with a cylinder of volume V, =10
cm in which a piston was moved by a motor at regulat-
ed frequency f. The amplitude of the resulting pressure
modulation could be chosen by changing the volume of
the bufFer. The applied pressure was given by a pressure
gauge and recorded as a function of time in order to ob-
tain a measurement of the mean pressure, of the rate of
modulation, and to check that no harmonic frequency
had been created. The resulting modulation of the ve-
locity and destabilization of the 6nger were observed on
videotape recordings.

stant. We found 80 of the order of 4S'. lf the thread is
at the center of the cell, the resulting fingers are slightly
asymmetrical. But the thread can be placed oft'center at
a distance y] from the axis. The tip is then at a distance
yo=y&+Ay from the center line. It is possible to obtain
symmetrical fingers when y, —by=0 (this correction,

III. EXPERIMENTAL RESULTS

A. Finger tips and NInger shapes

As we will see, the overall shape of anomalous fingers
depends only weakly on which type of disturbance has
been applied at the tip of the finger. This is rather
surprising, as the distortion of the tip itself looks very
different in the three cases. In the present section we are
going to describe the distortion of the tip in each case
and its effect on the general shape of the finger.

l. The perturbation by tao grooves or a thread

The efFect of the two opposite grooves is the simplest.
The tip of the finger remains localized between the
grooves and the distortion created by them is small. %'e
showed previously' that the shape of the anomalous
Angers is very mell fitted by the analytical solutions of
Saffman and Taylor in the absence of surface tension
given by Eq. (S). This is particularly true for the fingers
obtained with grooves. They only depart from the
theoretical profile in the region of the tip which is very
slightly sharper [Figs. 1(a) and 2(a)].

The presence of a thread [Fig. 1(b)] has a more com-
plicated efkct. Careful observation shows that the
thread does not actually cross the oil-air interface. It
remains coated with an oil film which is linked by a
meniscus to the oil film left on one of the glass plates.
The thread is therefore at the top of a 1ongitudinal oil
meniscus which forms a linear ridge inside the air finger.
The in-plane proQe shows a Qat part above the thread.
As a result the tip forms itself in either of two symmetri-
cal positions at a distance hy from the thread. Experi-
mentally, hy varies as U '~ so that, in a large range of
velocities, as the proNe is nearly parabolic, the angle 80
of the thread rvith the norlnal to the finger remains con-

FIG. l. Photographs of the 6nger tip with the three
di8erent types of perturbation. (a) Two opposite grooves
etched in the plates. (b) A thin thread stretched along the cell.
(c) A small bubble.
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the spatial homogeneity of the cell for two reasons. Ii is
necessary to establish Eq. (1), where b must be constant,
and it is also necessary to model the capillary effects.
The meniscus between the two Auids has two curvatures.
The strongest is the transverse curvature between the
glass plates, usually assumed to be constant and equal to
2/b. The variations of the Laplace pressure along the
proQe are then considered to be due only to the changes
of the in-plane two-dimensional curvature.

Two grooves engraved in the glass plates create a local
increase of the cell thickness. As a result the transverse
curvature of the meniscus is decreased between the
grooves. An equilibrium of the Laplace pressure in the
vicinity of the grooves is then reached as the in-plane
curvature becomes larger. This zone of larger curvature
will move faster by point effect and will be stable at the
tip of the finger. The introduction of a three-
dimensional disturbance has created a singular region in
the two-dimensional problem.

When a thread is used, the increase of the normal cur-
vature will result in a local decrease of the in-plane cur-
vature which corresponds to the observed fiat [Fig. 1(b)].
The modeling of the effect of these disturbances can be
achieved in two dimensions by assuming a local varia-
tion of the surface tension. Recently, Zocchi et al.
have studied numerically a model where, along an inter-
face line, they assume a local weakening of surface ten-
sion. They obtain anomalous fingers and the disturbed
zone stabilizes either at the tip or on the side of the
finger, two situations which are in agreement with those
observed, respectively, with two grooves or a thread.

FIG. 2. Takeo stable narrow fingers. (a) A 6nger A, =0.22 ob-
tained in a cell 8'= l2 cm and b =0.1 cm, with two grooves.
(b) An asymmetrical 6nger obtained with a laterally displaced
thread. y& ——2 cm, dky=0. 2 cm, yo ——2.2 cm, and A, =0.26, in a
cell W = I2 cm and b =0.1 crn.

however, is not perfect at all velocities, as hy is a func-
tion of U). When the thread is purposefully placed far
from the axis, very asymmetrical fingers can be obtained
[Fig. 2(b)]. Their shape is well fitted by analytical solu-
tions also found by Taylor and Saffman and given by
the equation

IV(1 —A, ) m 3' —Po
ln cos—

2&0 ~ 2(~ —~0)+ In tan —1+

where yo (transverse distance of thc tip to the axis of the
cell) and A, (relative width of the finger) are the two in-
dependent parameters. These solutions were not ob-
served in undisturbed cells.

The effect of the grooves or the thread is duc to the
breaking of the homogeneity of the cell as the thickness
is either increased or decreased along a line. The classi-
cal treatment of the SaCrnan-Taylor instability, in order
to reduce the problem to a two-dimensional one, requires

2. The perturbation ~ith a small bubble

The introduction of a small bubble is a different way
of locally getting around the strict laws of the Hele-
Shaw cell. While the grooves or the thread created local
three dimensionality, the bubble is a topological ex-
pedient. The main point is that the bubble is closed on
itself and its radius of curvature can be much smaller
than the length scale Io. It can thus create artificially a
sharper point to the finger [Fig. 1(c)]. To obtain a stable
situation the bubble has to be pressed against the finger
tip so that it creates a small depression at its extremity.
For very small velocities this is not realized, so that the
bubble is advccted away along one of the finger sides.
For this reason anomalous fingers created by a bubble
are observed in a smaller range of velocities than with
the other techniques. ' The anomalous fingers have the
same shape as those obtained with the grooves, except in
the tip region, where the bubble protrudes in front of the
proNe.

B. Finger selection

in the laboratory experiments the actual control pa-
rameter is the applied air pressure which can be tuned at
will. As observed previously, ' for a given pressure,
anomalous fingers grow faster than normal ones (because
they are sharper). However, the various types of distur-
bance are not of the same eSciency so that fingers dis-
turbed differently will not necessarily have the same ve-
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locity for the same applied pressure.
This would appear to make the study of anomalous

fingers diScult. In fact, we will not study here how the
velocity results from both the applied pressure and the
type of the disturbance. But we show that the same
fingers are observed at the same velocity with a bubble, a
thread, or two grooves (except in the distorted region at
the tip). These fingers form a well-defined family of
solutions that we study by recording their shape as a
function of velocity in cells of diferent aspect ratio.

%e showed' that the shapes of the anomalous Sngers
are well fitted by solutions of Eq. (5). This is, of course,
only true in the regimes where the capillary number is
large enough. In our case, the 6t is excellent in all cases
with A, &0.5. The experimental pro6les only depart from
the theoretical ones in the disturbed region (in particu-
lar, the bubble protrudes in front of the profiles).

We had also shown that at a given velocity the anom-
alous fingers obtained in cells of different aspect ratios
have difFerent widths but the same adimensional radius
of curvature p/b at their tip (Fig. 3 of Ref. 19). Experi-
ment shows that, dynamically, it is this region which
selects the Snger shapes. In order to have a good pre-
cision we do not measure p directly. %e deduce it from
the observed A, . In the profiles defined by Eq. (5), the
parabolic approximation gives

A, W

m(l —A, )
(7)

It might seem paradoxical to choose a characteristic
of the disturbed region to define the finger shape. This
can be justi6ed by Fig. 3, where we superimpose three
finger shapes that would be obtained at the same velocity
in three cells of difkrent width, but same thickness. In
the narrowest cell, of width $V„wechose a solution of
Eq. (5) corresponding to A, =0.23. In a cell with

8 =28'„the 6nger with the same curvature will have a
width A, =0.165. As W increases, A, decreases, and the
rcglon 1n which thc 6ngcr 1s nearly parabo11c grows. Thc
third finger in Fig. 3 is the limiting parabola that would
be obtained for an infinite width (A, ~O for %~00).
Throughout this article we will be concerned with anom-
alous Angers in wide cells; as they correspond to small
values of A, , their extremity is parabohc in a zone which
is much larger than the region disturbed by the grooves,
the thread, or the bubble. The parabolic approximation
is then justified.

%e can now complete our previous work by discuss-

ing the evolution of p/b with N„and its saturation at
large velocities. Our present results are consistent with
those presented in Ref. 19 but more precise for two
reasons. The use of the grooves or the thread rather
than the bubble creates anomalous 6ngers that are stable
at low velocities, and we also have cells of larger aspect
ratio, so fingers of small A, are observed in larger range
of values of N„.

Figure 4 shows the plot of the dimensionless radius of
curvature p/b as a function of the dimensionless capil-
lary length Io/b =(12'„)'~ . The experimental points
were obtained in a cell 8'= l2 cm and 6 =0. 1 cm dis-
turbed by a thread. Two regimes are clearly observed.

~se'~ egal+

~ IW
~~ 4$

~~&l\ eO

FIG. 3. Three superimposed solutions of Eq. (5) which have

been scaled to have the same radius of curvature at the tip.
They correspond to the fingers that will be physically obtained

at the same velocity in cells of same thickness but different

width. — 8 = W[ A =0 23' 8 =28 ] A =0.165'
--, @~00,X~O.

In a large range of velocities, p is proportional to lo,

p=alo (with a=4. 1+0.1) .

At large velocities (small /Olb), a crossover occurs to a
regime where p/b remains constant at a value p,

p=Pb (with P=2.2+0. 1) .

Table I summarizes the results obtained in other cells
with various disturbances. They are consistent with the
previous description. However, the results obtained

10-

FIG. 4. Plot of the dimensionless radius of curvature at the

tip, p/b as a function of the dimensionless capillary length
Io/b =(12K„)', in a celI W= 12 cm and b =O. 1 cm.
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TABLE 1. Values of u, p, and A, ,„obtained in cells of ditfereut dimensions with various perturba-
tions.

Perturbation

thread
thread
thread
thread
thread

W=28, b =0. 1

8 =12, b=0. 1

W=4. 7, b =0. 1

8'= l2, b =0.05
8'=12, b =0.2

4.0+0. 1

4.1+0.1

3.8+0.2
4.0+0.2
4.0+0.3

2.2+0. 1

2.4+0. 1

3.0+1.0
2.4+0. 1

0.22
0.33
0.18
0.30

grooves 8'= l2, b =0. 1 3.5+0.2 2+0. 1 0.20

bubble
bubble
bubble
bubble

8'=12, b =0.2
8'= l2, b =0. 1

8'=6, b =0. 1

8'=4, b =0. 1

3.2+0.2
3,1+0.2
3.5+0.3
3.3+0.3

2.5+0. 1

2.3+0.2
2.4+0. 1

2.5+0. 1

0.30
0.22
0.29
0.35

with cells of small aspect ratio correspond to a less accu-
rate proportionality between p and Io. This can be un-

derstood, as it is only in cells of large aspect ratio that
we can have simultaneously p »b and p && IK The first
condition must be met to avoid saturation, and the
second to have narrow fingers with A, g0. 5 which are
fitted by Eq. (5). The same behavior is observed in all
cells with the three types of disturbance. It appears,
however, that the values of o. slightly depend on the dis-
turbance. The value obtained with a thread is
o. =4.0+0.2, while it is o.=3.5+0.3 for grooves or for a
bubble. This discrepancy is probably due to the neglect
of the asymmetry induced by the thread. The value of p
is poorly measured in the cells of thickness 0.05 cm be-
cause, under strong applied pressure, Aexions of the
plates are no longer negligible. The spacing b widens
and both p and A, tend to increase slightly with velocity.

The 6rst regime where p=cxlo corresponds to a situa-
tion very difkrent from normal fingers. Here the curva-
ture p remains scaled on the unstable length scale of a
front moving at U so that the product p U is constant in
a given cell,

ab T
p U= — =const.

12@

As a result, the finger tip always remains stable. A law
of this type links the radius of curvature and the velocity
of parabolic crystalline dendrites. '

%e interpret the second regime by noting that the
value of p is small, so that the two curvatures of the
meniscus are of the same order of magnitud. The satu-
ration is due to the breaking of the two dimensionality.
We must remember here that Eq. (1) is built on averag-
ing through the cell thickness, which assumes that the
in-plane scale of the Bow is large compared to b. This is
no longer true here. This result is consistent with a pre-
vious observation by Paterson in an experiment using
two miscible fl.uids in the circular geometry. In this
zero-surface-tension limit, where the capillary length has
vanished, he observed a dense structure of fingers with a
6nite width related to the cell thickness and of the order
of 4b.

The crossover between the two types of deterrnina-
tions of p occurs at fixed values of X„when alo=pb.

As a result, in all cells for values of X„&0.18+0.02, the
thickness becomes dominant and iL saturates. We must
underline, therefore, that the observed saturations of the
values of A, of anomalous 6ngers are in no way compara-
ble to the saturation of normal fingers at A, =0.5.

Finally, for the sake of comparison with the classical
results we can plot A, as a function of 1/8. If such a
plot reconciles all the results of classical 6ngers it does
not for anomalous ones (Fig. 5). Before the saturation
there is a common curve which can be obtained by solv-
ing

p =ulo

where p and Io are given by Eqs. (7) and (3). This gives

v'
' 1/2

1+ 4a&8.
In this diagram, the crossover to the saturation occurs

at values of (1/8), dependent upon W/b,

0.5

0.3

0.2-

0.1-

0.0
0

I

10000 20000
I

30000 40000

FIG. 5. Plot of the observed values of A, as a function of
1/8 in four cells. A, 8'=28 cm, b =0. 1 cm; H, W'=12 cm,
b =0.1 cm; 0, %=4 cm, b =0. 1 cm; +, %=2 cm, b =O. l

cm. (The saturations of A, in the two voider cells are not in the

range of values of 1/+ shown here. )
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When p saturates at p =pb, so does A, at a minimum
value (cf. Table I),

' 1/248'
rrpb

C. The destabilization of anomalous Angers

Stability of the normal fingers has been reported ' to7, 8

break down at a value of 1/8 = 5000. Anomalous
fingers can be observed stable up to values of
1/8=450&10. The reason for this larger stability is
that tip splitting, the most dangerous instability for
viscous fingers„ is here totally inhibited. In contrast to
classical fingers, anomalous fingers have a continuous
adaptation of p with the natural unstable wavelength
1, =2m.&31o, so that they are more stable. At larger ve-

1ocity their destabilization is characterized by the forma-
tion of lateral undulations.

In fact, the parameter I/8 does not have the same
meaning for normal and anomalous fingers. Normal
fingers where A, ~0.5 with increasing X„have a radius
of curvature at the tip which remains scaled on 8', so
that I /8 =( W/10)2 is proportional to the square of the
number of unstable wavelength l, in the forward front of
the finger. For anomalous fingers the radius of curva-
ture at the tip follows the evolution of Io (Fig. 3). It is

only the extent of the parabolic region of the finger
which is scaled on W. This parabolic region is the zone
of amplification of secondary 1ateral perturbations that
we are going to study.

The aspect of the destabilization of the anomalous
fingers is very dependent on the type of disturbance
which has been applied at the tip. %e will describe sep-
arately the two types of spontaneous destabilization
which are observed.

(i) Figure 6(a) shows the type of unstable fingers ob-
tained with either the grooves or the thread. In both
cases, when velocity is increased, small-amplitude waves
appear on the sides of the finger. There is no clear onset
to their appearance. These waves have a determined
wavelength but no long-range phase correlation. They
appear as a succession of uncorrelated wave packets
with a mean wavelength I„.There is no spatial phase
correlation between the waves on the two sides of the
finger. This natural destabilization must be generated by
the noise in the tip region. In fact, we do observe that it
occurs at lower values of N„when the glass plates are
dirty, scratched, or when the thread has been voluntarily
roughened by means of sand paper. In the case of the
thread, the most unstable side of the finger is always the
side through which the thread passes. In the range
~here instability occurs spontaneously, the mean lateral
wavelength has a dependence on X„shown in Fig. 7.
%'e find that I„is proportional to p,

I„=(5.6+0.4)p .

Fingers in cells of large aspect ratio become unstable
at a smaller value of X„because the parabolic zone in

FIG. 6. (a) Spontaneous destabilization of anomalous fingers
in a cell of width 8'=28 cm and b =0. 1 cm disturbed by a
thread. As the finger is very narrow (A, =0.18), only the cen-
tral region of the cell is shown on this photograph and the la-
teral walls are far on each side. The scale is in centimeters. (b}
A resonant mode obtained with a bubble in a cell %=12 cm
and b =0.1 crn. The outer envelope of this oscillating syrnme-
trical mode corresponds to a solution of Eq. (5) for A, '=0.36.

I/b

I

1.0

FIG. 7. Dimensionless wavelengths I/O observed on the side
of an anomalous finger as a function of its dimensionless veloc-
ity %„., ( 8'= l2 cm, b =0. 1 cm). H and, II, generated by
a knot; 0 and ———,I„generated by lower amplitude distur-
bances; +, resonant mode I, obtained with a bubble; &, reso-
nant mode I„obtained with a bubble.
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s wavelength stretching along s curved interface. A
phenoIDcnon of this type wss 6rst introduced thcorctl-
cally by Zel'dovich et a/. in their discussion of the sta-
bility of Same fronts. Pelce et al. have shown that the
same stretching was to be expected in the Sa8msn-
Taylor fingers (as well as in the dendrites) and had to be
taken into account in their stability. They consider that
the motion of each maximum of the wave is similar to
that of the Auid particle of the interface. As the anoma-
lous fingers are fitted by the solution of Eq. (5), surface
tension can be neglected everywhere but at the tip. In
this limit the interface is an isobar and s Quid particle
has in the laboratory frame a normal velocity

u„=Ucos8
U =Ucos8'

U 8 8."y

where 8 is the local angle of the normal to the interface
with the axis Ox of the cell.

Experimentally, the wave has this phase velocity and
becomes motionless in the laboratory frame far from the
tip, where 8~m/2. The corresponding velocity in the
finger frame of reference is tangential to the profile,

Q~ = —U s1Il 8
U,'= —U sin6 '

u
' = + U sin8 cos8,

The sdvection along a curved profile creates a spatial
variation of the wavelength /, given by

1 dl 1 d (sin8)
i ds sin8 ds

where s is the curvilinear abscissa. This equation can be
integrated between the knot (where 8o=45') and the side
of the finger (where 8, =90'), and gives

sin8&
i(8, )=l(8, ) . =v 2 i(8, ) .

siii8o

The stretching actually observed in our experiments can
be measured on the successive pro61es of Fig. 8. Be-
tween the thread and the lateral side of the finger, the
observed wavelength is stretched by a factor of the order
of 2.5. This va1ue is larger than that which would be
simply due to the kinematic efFect described above.
But here a wave packet has been generated initially, it
contains components of aH frequencies. Caroli et al.
have calculated the apparent stretching which results
from the shift of the wavelength of maximum
ampliAcation when the wave packet is advected along
the curved finger proAle. A contribution of this type
probably adds up here to the Zel'dovich stretching
efFect. %'e must, however, underline that we are in ex-
perimental conditions which are far from the
infinitesimal amplitudes considered in theories. In our
case the amplitudes are large so that nonlinear effects
also come in. Furthermore, it is usually assumed that
the perturbation wavelengths are small compared to lo-
cal radius of curvature, a condition which is hardly
satisfied here.

Finally we measure l&, the wavelength of the wave
packets created by the knot, far on the side of the finger,

as a function of the velocity of the finger (Fig. 7). For a
given velocity, l& is smaller than /„,the wavelength of
the natural destabilization due to noise. Because it re-
sults from s large amplitude impulse, the evolution of l&

forms in the 1 (N-„) diagram, the lower limit of the
domain of possible waves excited by noise on the Anger
sides. The logarithmic plot of Fig. 10 sho~s that Ik is
proportional to the radius of curvature at the tip p. At
low velocities both p snd lk are proportional to lo; at
large velocities both saturate and become proportional to
b. At all velocities we have

lk =4.2p .

2. Periodic forcing

Periodic forcing gives di8'erent information on the des-
tabilization of the fingers because the Zel'dovich stretch-
ing and the wavelength selection are observed separately.
We limit ourselves here to the results obtained with two
grooves or a thread. As we impose sinusoidal variation
of the applied pressure we modulate the finger velocity U
at a tunable frequency. In the case of two grooves the
waves obtained on both sides of the finger are symmetri-
cal and of limited amplitude. In the. case of a thread
there is s strong asymmetry between the observed waves
on both sides of the finger. The side through which the
thread passes appears to be more unstable than the other
one. The reason is probably that the thread is surround-
ed by a complicated meniscus which changes shape
when velocity is modulated. It creates s finite amplitude
disturbance, periodic in time, localized near the thread.
Because this initial disturbance is localized, its growth
demonstrates best the amplification process along the
profile.

For frequencies larger than a limit f, no effect on the
finger is observed. Just below this threshold a wave
grows near the thread and is rapidly damped further on
[Fig. 11(a)]. For lower frequencies the amplification in-
creases [Fig. 11(b)]. The modulation has a maximum
efficiency at a frequency f, [Fig. 11(c)]. The observed

tn {Ikey'b)

l

n{Nc )

FIG. 10. Logarithmic plot of Ik (D) and p (El) as a function
of the capillary number X„(8'=12 cm, b =0. 1 cm).
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with maximum instability at k, =k /&3.
Each element of the finger proNe translates at velocity

U in the direction Ox. Its normal is at an angle 0 with
Ox. 9 is an increasing function of the curvilinear abscis-
sa s. For each zone of the finger, we may assume that
the unstable range of wave vectors is given by Eq. (11).
(This would be strictly true only if 8 were slowly varying
on the scale of the wavelength, which is not realized
here. )

In the present case the waves are generated with a
6nite amplitude near the thread, where 80=45'. They
can be excited if their wave vector satisfies
k(80}&k (8o). In this model all frequencies smaller
than

U +12m„f (8O) = cosOo sin 6lo
2m

(12)

FIG. 11, Aspect of the wave generated on a finger (case of a
thread) at difFerent forcing frequencies (8'=l2 cm, 6 =0.1

cm). (a) f=f„,(b) f, &f &f, (c) f=f, .

wavelength on the finger side is, in each case„ I =U/f.
The time periodic distortion of the meniscus around the
thread creates at this point a deformation of the profile
with, due to the tangential velocity, a spatial periodicity
1 (80)= U sin80/f [corresponding to a wave vector
k(8O)=2mf /U sin80]. As this deformation is advected
away, it undergoes kinematic stretching due to the varia-
tion of sin&, so that along the linear side of the finger it
will have a periodicity 1(8=ir/2}= U/f. We can obtain
a qualitative description of the involved process in the
following schematic description.

Let us recall that the stability of a plane interface
translating at velocity U in a direction forming an angle
8 with its normal is characterized by an equation of the
type of (2),

b kco=U ~k
~

cos8—
12%„., cosO

the range of unstable wave vectors is

0~k &k with k

will generate a wave near the thread. As it is advected
away from the thread, the wave affects regions of the

profile of increasing values of 8. It undergoes continu-
ous amplification in the region where its wavelength
remains in the unstable range given by relation (11).
Then it is damped when it reaches the abscissas where 8,
is such that f,„(8i) &f.

Figures 11(a)—11(c) show the amplification and damp-

ing of these waves at three di6'erent frequencies. The
overall aspect of the envelopes of the waves are qualita-

tively in agreement with this model. There is strong
amplification in the parabolic region of the finger, then

damping. The higher the excitation frequency, the
shorter the zone on which the wave is amplified. Let us

remark that similar experiments carried out in cells of
smaller aspect ratio show smaller amplification as the
parabolic zone is smaller. To calculate the exact ampli-

tude of the wave, it would be necessary to integrate the
growth rate along the proNe, starting from the thread.

To get s quantitative estimation of the global
ampli6cation we record the eC'ect of modulations at vari-
ous frequencies on a finger of a given velocity U and
measure the wave amplitude at three distances 10p, 20p,
and 40p from the tip (Fig. 12}. A well-defined maximum
is observed at a value f„which corresponds to a wave-
length I&=5.6p very close to the mean wavelength I„
created by noise of low amplitude. At large distances
from the tip, the amplitude of the shorter wavelength
drops, due to their damping by surface tension.

In the experimental conditions of Fig. 12, Eq. (10) can
give an estimation of the maximum unstable frequency
near the thread, f (45')=7 Hz. Indeed, no wave is ob-
served at a frequency larger than 8 Hz. The most
amplified frequency at the thread would be f, (45')
=f (45')/&3=4. 1 Hz, while the wave of larger ampli-
tude corresponds in Fig. 12 to f, =4. 1 Hz. The quality
of the agreement between a pough theory and the experi-
ment is surprising, but it is worth noting that the orders
of magnitude are correct.

The measured amplitudes at low frequencies shown in
Fig. 12 are imprecise because the lateral waves corre-
spond in this case to the superposition of harmonics.
Even though we apply a sinusoidal modulation to the
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A (mm) ~
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0
0

FIG. 12. Amplitude of the forced wave as a function of the
excitation frequency (case of a thread and side of the thread),
at various distances on the side of the thread. 8'=12 cm,
b =0. 1 cm, U =5.2 cm/s, and p =0.23 cm. A, and, 10 p
from the tip; H and ———,20 p from the tip; g and ———,40

p from the tip.

pressure, harmonics are present in the resulting modula-
tion of p, as the relation between the fingertip radius and
the pressure is nonlinear. The wave is strictly sinusoidal
when none of its harmonics is in the range of ampliAed
frequencies (f &f I2). When f &&f l2, harmonics
can be near f„sothey are strongly amplified and are
visible on the profile of the wave.

IV. CONCLUSION AND MSCUSSION

The main results of the present article can be summa-
rized as follows.

The anomalous fingers form, in the presence of a lo-
calized perturbation, a well-defined family of solutions of
the Saffman-Taylor problem, stable up to very large ve-
locities.

These Angers are selected by the radius of curvature of
their parabolic tip. This radius is scaled on the capillary
length,

The observed saturation of p at large velocities corre-
sponds to the breakdown of the two dimensionality when

p becomes of the order of the thickness of the cell.
Using localized disturbance and periodic forcing we

have characterized the destabilization of the lateral front
of the fingers. %e have thus sho~n experimentally the
process of wavelength selection and the stretching of the
wave when it is advected along the curved profile.

These results take their full meaning in the following
comparison with crystalline dendrites, proving the direct
analogy between anomalous Angers and dendrites.
Saft'man-Taylor fingers grow in the Laplacian pressure
Aeld. The front of crystallization which forms the den-
drites grows in a temperature field (growth from the
melt) or in a concentration field (growth from solution).
These fields are governed by a dift'usion law. As a result,
the viscous fingers grow in an environment defined by
the boundary conditions imposed by the cell geometry,
while the dendrites grow in an open medium with only a
diffusive length scale.

In the first theoretical approaches of each problem, a
family of solutions was found in the case of zero surface
tension. These were the Saffman-Taylor solutions of Eq.
(5) and the Ivantsov parabolas in the case of crystal
growth. However, something was missing; in the
Sa6man-Taylor case no hint was given about which of
the solutions was actually selected. In the Ivantsov case
only a relation for the product pU was found.

The next step was the introduction of isotropic surface
tension. In the linear SafFman-Taylor experiment, it was
theoretically shown that a discrete set of solutions is
selected. The lower branch of these solutions is stable
and gives rise to the Angers A. =0.5 which are usually ob-
served. This selection is related to the fact that the
linear geometry provides a length scale, 8', the width of
the channel. In the circular geometry where this length
scale does not exist, no stable solution is found. The
same lack of external length scale occurs in crystal
growth; the solutions found with isotropic surface ten-
sion are all unstable by tip splitting. This was actually
experimentally observed by Honjo et al. They grow
crystals between corrugated plates. The resulting noise
is strong enough to destroy the efkct of anisotropy. The
patterns they obtain resemble the viscous fingers in a cir-
cular experiment; the fingers are disordered and dom-
inated by tip-splitting processes.

Finally, anisotropic surface tension, or equivalently,
localized disturbance of the tip, can be introduced in
both problems. It gives rise to anomalous fingers and to
crystalline dendrites. %e have shown that, in the linear
Safman-Taylor geometry, the scale imposed by the la-
teral walls becomes secondary and the Anger is now
determined by its parabolic front and the scale lo. In
both the fingers and the dendrites ' a continuous family
of solutions is observed with a parabolic tip. Their ra-
dius of curvature and their velocity are determined by
the externally applied constraint (pressure or undercool-
ing) and by anisotropy. They are related to each other
by the law

p U=const.

The destabilization of anomalous fingers, as well as
that of dendrites, is characterized by the growth of a la-
teral instability. The unstable part of a finger corre-
sponds to the parabolic region and its extent is related to
the width of the channel. It is only in very wide cells
that the destabilization can be compared to that of den-
drites. In these cases we have shown that the mean
wavelength on the side of the finger is scaled on the ra-
dius of curvature at the tip exactly as it is in dendrites.
In both cases the instability is due to the selective
amplification of noise at the tip.

%e wish here to comment further about the charac-
teristic of the growth of the lateral waves, in more gen-
eral terms, which allow comparison with the growth of
other hydrodynamic instabilities. %'henever an instabili-
ty grows in an infinite medium where Galilean invari-
ance has been broken, Huerre et a/. have shown that
the growth can be described either as a temporal process
(absolute instability) or as a spatial one (convective insta-
bility). The second case occurs when the advection ve-
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locity of the unstable medium is larger than the group
velocity of all ampli6ed waves. There is then no feed-
back process, so that the growth of the instability is spa-
tial and corresponds to the selective ampli6cation of in-
cident noise. Our results obtained with grooves or with
a thread show that the growth of the instability in the
Anger frame of reference is of a convective type. This is
why the selection of the growing wavelength is a broad-
band process due to selective ampli6cation of noise in-
cident at the tip. The same characteristics have been
demonstrated in the experiments of Dougherty et al.
%ith the 5ngers, as well as with the dendrites, very large
rates of growth of the waves are observed. In the case of
dendrites these rates have been calculated numerically
by Kessler and Levine and analytically by Langer ' us-

ing a Wentzel-Kramers-Brillouin method.
We have shown that it is possible to force the instabil-

ity by a time periodic modulation of the constraint. This
perturbation is amplified if it is in the correct range of
frequency. As its initial amplitude is larger than the nat-
ural noise, the external modulation dominates the desta-
bthzation of the finger. The lateral side branching then
becomes strictly periodic. Our experiment strongly sug-

gests that a similar periodic forcing should also be
effective in the case of dendrites. It might then be possi-
ble to observe strictly periodic side branching by modu-
lating the undercooling in the adequate frequency range
(insofar as the thermic relaxation time of the experiment
is not too large).

Finally, it appears that a different regime of destabili-
zation can be observed both in the anomalous Angers
and in the dendrites. It is characterized by periodic
coherent side branching resulting from a pulsating tip.
In the case of fingers it is observed with a bubble at the
tip and can be ascribed to the natural forcing of the
anger tip by the bubble acting as a local oscillator. In
the case of dendrites a similar regime has been observed
by Morris et a/. , Honjo er al. ," and Rolley et al., all
working in concentration diffusive fields. The process
responsible for the periodic resonance of the tip of these
dendrites is still unknown.
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