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Using geometric arguments of nonlinear dynamics we determine parameter regions for which

the resistively shunted Josephson equation is assuredly nonchaotic, with or without an inductive

shunting term, and with any forcing. These results can account for the observed stability and

voltage-to-frequency Melity of the Kamper-Soulen resistively shunted Josephson thermometer, in

the region of low inductive shunting.

I. INTRODUCTION

The aim of this note is to illustrate on a speci6c exam-

ple a general method for proving the "lack of chaos" in

various forced oscillators. %e concentrate on the exam-

ple of the Josephson's equation describing the phase

jump (() across a resistively shunted Josephson junction,
with or without inductive shunting. This equation in di-

mensionless form is given by

P((I+ (1+y cos(() )(()+sin(t) =p ( t ),
where P and y are parameters and p (t) is periodic of
period T=2rr!co. The case of linear damping: y=0
corresponds to the damped pendulum with torque,

PP+P+sinP=p(t) .

There is no loss of generality in assuming special
coefftcients for P and sing; the form (2) can be achieved

by rescaling the dependent function and by rescaling and

translating the time. This equation provides also a phe-

nomenological model for some features of the charge-
density waves. '2 We will prove in particular that Eq. (2)

possesses a globally attracting invariant circle, provided
only that P& —,', with no other assumptions. The exact

statement for Eq. (1) is given in theorem 1 below. The
method used here applies to other systems as well.

Relatioa to previous studies

A number of authors " have used circle maps to de-
scribe the dynamics of (1) and (2). These studies are
based on numerical and experimental evidence suggest-
ing that the dynamics are one dimensional. %e provide
a rigorous foundation for this for a specific range of pa-
rameters.

The result of theorem 1 provides also the 6rst rigorous
step in the direction of establishing the bounds (in pa-
rameter space) on the chaotic behavior of the Josephson
equation (see the recent work by Kautz and Monako ).

To connect our theoretical result with some previous
numerical studies, we rescale Eq. (2) by changing time
t =v'pr, obtaining

p" +Gp'+sing =q (t), '= —,q(r) =p(v'pt ),
dt

where 6 =P'~ .

Our condition P & —,
' is equivalent to 6 ~ 2. Chaos has

been found in Eq. (2) for 6 as high as 1.576, which
shows that 6 g 2 is not too crude an estimate, Accord-
ing to the simulation study in Ref. 9, Eq. (2) reduces to
an invertible one-dimensional (1D) circle map for P
=0.029, assuming a certain form of forcing. Theorem 1

below actually predicts this result rigorously for any
P&0.25 and for any forcing. The estimate P«1 which
was proposed on the empirica basis ' is made precise
here. %e also establish the validity of the last connec-
tion in the diagram drawn in Ref. 5:

physical system~ Eq. (2)—+2D Poincare map

~10 invertible circle map .

In an experimental study' Tao et al. deduce the ex-
istence of chaotic behavior in a resistively shunted junc-
tion circuit for P«1. This result contradicts theorem 1

if P&1/4. A possible resolution of this contradiction
can be the presence of some extraneous effects (e.g., in-
ductive shunting, or external noise) not accounted for in
the authors' model. Finally, note that our result ex-
plains the stability and voltage-to-frequency Melity of
the resistivity shunted Josephson noise thermometer in
the region of low inductive shunting.

II. RKSUI.TS AND DISCUSSION

The first reduction-of-dimension result in the context
of periodically forced oscillations is due to Levinson. '

It is a perturbation theorem stating in effect that for
small periodic forcing of a planar autonomous system
with a stable limit cycle the Poincare map possesses an
attracting invariant circle. In other words, an exponen-
tially stable invariant circle of a map persists under
suf5iciently small perturbations of the map.

Levinson's theorem is not specific as to the allowed
size of perturbations, but rather requires that these be
suSciently small. Theorem 1 below requires more but
also gives more; in particular, the allowed size of pertur-
bations is speci6ed. Levinson's theorem can be applied
to any forced oscillator with weak forcing, provided that
the unperturbed version has a stable limit cycle. ' '
Our theorem is different in that it allows one to specify a
range of parameters for which the invariant circle still
persists.
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To state the main result of this note we write Eq. (1)
as a system

p= —[f—g(P)], 4=({)+ysing,

g= —sjnp+P(t), p(t + T) =P (t), T =2m/co'

and define the Poincare {"stroboscopic") map P as the
period map taking x=(((),g), o into Px=((i), g), I z .
We shall treat the phase space {xI = {(()},1(}I as the
cylinder by ldeIltlfylllg eacll point (Q, lp ) wltll its 277

translates (P+2nn, g+2mn ). Equation (3) is clearly in-

variant under such translations. Thus Poincare map I'
of the plane satisfies P(/+2m, /+2' ) =P(P,f}
+(2m, 2n } and therefore gives rise to the map I' of the
cylinder.

TAeorem 1. For any choice of non-negative parame-
ters p and y satisfying

0&y &1, 0&P&1/4{1—y)

the Poincare map P of the phase cylinder of Eq. (3)
possesses a globally attracting invariant circle C given by
p=f(p)=f(p;p, y,p), with f(/+2')=f(p)+2rr (Fig.
1). Furthermore, f(P } satis6es

p &f(p) —cd(()) ) & p

A. Dynamical consequences of the existence
of the invariant circle

The existence of an attracting smooth invariant circle
for the map I' implies that the observed behavior of the
system will be either periodic (if the rotation number
r=P/q is rational) or quasiperiodic (if r is irration-
al), ' ' and thus certainly nonchaotic.

The significance of the rotation number lies in the fact
that it carries most of the information on the qualitative
behavior of the circle map and thus on the physical sys-
tem. If r =P/q is rational, then every solution will be or
will tend to a p:q phase-locked periodic subharmonic.
In practice, every transient will quickly settle into a
periodic mode. For the irrationa/ rotation number all
solutions starting on the invariant circle are quasiperiod-
ic with two incommensurate basic frequencies co and rm.
Each sgch sohltloll ls of tile for111 f( t ) =f ( rcpt, cot ),
where f (x,y) is a function 2n periodic in both argu-
ments.

Remark 2. The existence of the rotation number for
invertible circle maps and its independence of the initial
point has an important physical consequence. It is not
hard to check that r=(((I)/co, where (, ) denotes the
time average (which therefore exists); consequently, if
there is a globally attracting invariant circle, then the
voltage r~ is independent of the initial state of the sys-
tem, a condition desirable in a measuring device.

where m =minp(t), M =max@ (t), 4((())=p+y sin()}.
The function f (p) is k times dilferentiable with k &c/p,
where c =c(y) is a constant independent of p and p(t).
In particular, smaller p results in smoother invariant cir-
cles.

Remark I. For the particular case of the simple
driven damped pendulum, y =0, the above condition be-
comes simply P & —,'.

B. Parametric dependence; Arnold tongues

Parametric dependence of the rotation number, and
hence of the voltage (e.g., on io if P =io+i, singlet ), is de-
scribed by the "devil's staircase, " with plateaus corre-
sponding to the lock-in modes. To understand the inver-
tible circle maps completely, one has to look at the
dependence on two parameters, one controlling the non-
linearity, the other controlling the tendency to rotate,
such as e and m in the standard example a ~0;
+co+esincI. If we have P(t)=io+i)ain't in Eq. (2},
then io and i, serve as a natural choice of parameters.
The bifurcation diagram with Arnold tongues is shown
in Fig. 2. Several dynamical consequences can be seen
from that diagram.

First, if we fix a sma/I amplitude i „then the relative
measure of the set of values of i o for which ~ is irration-
al is close to 1. The same conclusion is true if we Ax a
large drift io. This implies that most solutions observed
will be quasiperiodic if the drift is large or the amplitude
is small.

Second, fixing amplitude i j and plotting r versus io re-
sults in the devil's staircase with very short plateaus,
resembling a smooth curve, Fig. 2(b). For io large the

FIG. 1. P=f(P) gives the invariant circle; (t = U(P},
/=I. (P) give the boundaries of the strip S; 4(P) =P +y sing. FIG. 2. "Arnold tongues" and the devil's staircase.
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curve approaches a straight line implying a near-Ohmic
I-V characteristic. A detailed explanation and proof of
this fact will appear elsewhere. Proof of theorem 1 relies
on the following simple and general fact.

Theorem 2. If a C' map I" R ~R subject to period-
icity coildltiolls P($+2%,$+2' ) = P((ii, l/l }+(27T, 27r )

satisfies conditions (i) and (ii) below, then it possesses an
invariant curve given by P=f{P) with f (/+2m. )

=f(P)+2m; the corresponding cylinder mapping P has
therefore an invariant circle. This curve is globally at-
tracting in R and is unique.

Conditions Tw. o conditions for theorem 2 follow (see

Fig. 1).
(i) P possesses an invariant bundle of horizontal sec-

tors„ that is, there exists two constants g+ ~ g such that

any tangent vector (go, qo) over any x E8 with the slope

&qo/go & g+ maps under dP„ into the tangent vector

(g„g, ) with g & i), /g, & g+. Here dP, denotes the
derivative matrix of the map I' calculated at the point x.

(ii) P contracts area: there exists a constant c ~ 0
such that

i
det dP„

i
& c & 1 for all x E R2.

C. Heuristic discussion of the sector condition (i)

In physical terms, it is the inertial ejPcts that allow
for the possible chaotic behavior. High damping
moderates such e8'ects; our result makes this vague idea
precise. Small p means large damping, and p& —„' turns

out to provide suSciently strong damping for any forc-
ing p(t). To explain this informally, we note that the
case of p= —,

' corresponds to the critically damped pen-

dulurn. More precisely, for p:—0 the linearization

pg+g+ $=0 at /=0 is critically damped precisely when

p=-, . Condition (i) is thus equiualent to the requirement

that the aboue linearization be ouerdarnped. Geometrical-
ly, the importance of overdamping lies in the fact that
the underdamping causes the "rolling up" shown in Fig.
4(a), where the invariant circle is shown in the case
p» —,', y=O, p=0. This circle consists of the unstable

manifolds of the saddle (top unstable) equilibria of the
pendulum; they are rolled up due to the underdamping,
causing the nonsmoothness (cf. Ref. 5), which is the first

step on the route to chaos. The idea that underdamping
is necessary for chaos has been expressed by Kautz and
Monako. '

In the opposite case of small inertia versus dissipation
(p «1) the driven oscillator follows the forcing prompt-
ly, with inertia playing little role. Formally, we can
drop the second derivative term, obtaining the Stewart-
McCumber model, ' ' ' (1+y cosP)/+sing=p(t); the
corresponding Poincare map taking i}}(0)into $(2irlto) is
now one-dimensional. Identification of P modulo 2m

turns it into an invertible circle map, approximating the
two-dimensional map. Theorem 1 guarantees that there
is no loss of information in this reduction of dimension
as long as p&(1 —y) /4. Since invertible circle maps
are well understood, '7 and since the invariant circle is
globally attracting, we obtain a complete picture of the
full two-dimensional map.

If, however, we take y ~ 1, the smallness of inertia
combines with negatiue dissipation (1+y costi &0) to

produce fast motions, i.e., trajectory "slices" in the
phase plane, which manifest themse1ves in voltage
spikes. Geometrically, these may result in "folds" which
can destroy the one-dimensionality of the invariant cir-
cle. It should be pointed out, however, that the reduc-
tion of dimension can be carried out even if the resulting
1D map is noninvertible and possibly chaotic. In many
cases there is no information loss even in such reduc-
tions of dimension (cf. Refs. 5 and 20}. This reduction
has been carried out rigorously and the symbolic dynam-
ics fully analyzed for noninvertible circle maps arising in
a van der Pol-type equation.

D. Extending the parameter regions of nonchaotic
behavior; Large drift, etc.

One can show that for any given p +0 the value of p
can be extended beyond the value of —,

' with the smooth
circle persisting. The trivial case of @=0 is thus in a
sense the worst for smoothness. In some particular cases
one can give specific bounds on p for which the invari-
ant circle ersists. For instance, if the drift part
p=(1/T} fop(t)dt is large, then p can be large. The
same is true if the oscillatory part po(t)=p(t) —p has
large area under the positive part of its graph, with some
mild extra assumptions. For the case of p (t) =i o

+i, simut, for instance, large io or i, allow for large P.
Specific inequalities will be given elsewhere.

III. PROOFS AND MOTIVATION

A. Proof of theorem 2

As the first step, we observe that conditions (i) and (ii)

imply the following third condition.
(iii) There exists a strip S in R bounded by two curves

C+ ——[(P,Q):P= U(P)], C = [(P, i'):P=L (P) j with

U(P) &L(iI}), U(/+2~)= U(P)+2ir, L(/+2~)=L(P)
+2vr, and with g &L'(P) &g+, g & U'(P) &g+ such
that PS CS. The implication {i) and (ii)~(iii) is proven
in the Appendix at the end of the paper. It is also not
diScult to verify (iii) directly from Eq. (3), although do-
ing so is redundant if (i) and (ii) have been verified.

We will show that the iterates P"S of the strip are
nested and in the limit shrink to a curve which conse-
quently must be invariant under P. To that end we ob-
serve that since the slopes of the tangents to C+ lie be-
tween g and g+ by (iii), the same must hold for all
iterates P"C+(n &0) by (i). In particular, every iterate
P"C+ is a graph of a single-valued function g= U„(il}).
Similarly, P"C is a graph of some f'unction f=L„(P).

As a decreasing sequence of Lipshitz functions bound-
ed below by L, ($), U„(P) has a uniform limit U(P).
Similarly, let L(P)=lim„„L„(P};we have L(P) & U(P)
for all P. We show now that in fact L(P):—U(P); this
would prove then that the invariant strip is actually an
invariant circle.

If for some i' the inequality U(P) y L(P) were to hold,
the area of the annular region 0 & ~}}& 2m, L (P) & f
& U(f) would be positive. But all lilval'iallt set cailllot
have a positive area by the dissipative property (ii). This
completes the proof.
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8. Proof of theorem I

To prove the existence of an invariant circle it sulces
to demonstrate that the map P associated with Eq. (3)
satisfies the two conditions of theorem 2. To verify the
sector condition (i) we observe that the image

(g„g, )=(dP, )(go, go) of a tangent vector (go, go) under
the linearization of I' at x EI is given by

(gi, g, )=(g(2ir/co), ri(2mlt0)}, where (g(t), il(t)) is the
solution of the linearized system

g= —[ri —(1+y cos{L )(j,
j=—cosP g

with (g(0),g(0)) =(go, rio). Here (p(t), lL(t)) solves Eq.
(3) with (P(0),g(0)}=x. To verify the sector condition
(i) it suffices to show that the flow of the linearized
Equation (5) crosses into the sector in Fig. 3 with boun-
daries ri/g=gz, indeed, at the end of the period then
any vector starting in the sector will remain there. Slope
g(t) =ri(t)/g(t) satisfies a Ricatti equation

~ 1 2 1g= ——
g + —(1+y cosP)g —cosP—:R(g, t);

we observe that the ffow of this nonautonomous equa-
tion crosses the fixed interval [(1—y)/2, 2(1+y)j in-
wards for any t; indeed, for g=(1—y)/2,

1'(=R,t
2

'
P 2

(1—y)' —1«0.
4

Similarly, one checks that (&0 for (=2(1+y). Thus
if g(0) =(rto/go)C(g, g+ ) then g(2m/co) =ri, /
g, 6(g,g+). This shows that any vector (g, rL) starting
in the sector remains there, which proves the sector con-
dition (i).

The dissipative property (ii) follows directly from the
fact that the trace of the coefficient matrix A (t) in (5) is
negative

1 1trA(t)= ——(1+y cosP)( ——(1—y) &0,

277/6) —(j — )/detdP=exp trA (t)dt &e &1
0

Remark 3: High inductiue coupling y&1. For y&1
the above argument fails, since we may have positive
divergence 1+y cosP &0. This does not imply, however,
that the dissipative property (ii) fails; even for y &1 it
may still persist, although the argument will have to be
extended. For instance, if p(t) has a large drift com-
ponent, the dissipative condition (i) will hold even for
y «1. The precise estimates and arguments will be dis-
cussed else~here.

To demonstrate the estimate on the curve f(P), we
notice that the deviation b, =lt —4(4 ) satisfies

0 1
b, = —sin{{)+p(t)——(1+y cosP)b, ,

so that for positive deviations b, & 0 we have

15 & 1+M ——(1—y)b,

while for 6 ~0 the lower bound

1
b, & —1+m ——(1—y)b,

holds. These inequalities show that 5 must enter the
desired interval [P(m —1)/(1+y), P(M+1)/(1 —y) j.

We give now an informal explanation of the high
smoothness for large P; the rigorous proof can be ob-
tained by repeating the argument of Moser. ' Assume
that there exists an invariant circle as in theorem 1, and
that the rotation number is rational; the circle map must
have (generically, at least) a sink-saddle pair of periodic
points, which are therefore fixed under some iterate
Q =P" of the Poincare map [Fig. 4(b)j. Choose the ori-
gin of the new coordinate system at the node and let the
x and y axes be tangent to the weak and strong eigen-
directions of the linearized map dQ. We note that the
sink cannot have imaginary eigenvalues, as this would
cause the "roll-up" as in Fig. 4(a). Let 0&it &A, &1 be
the "vertical" and "horizontal" eigenvalues of dQ at the
origin. The invariant circle in the neighborhood of the
origin can be written as y=cx +, with
denoting higher-order terms. From the invariance as-
sumption, Lty =c(M ) + . , we find that
a=lnp/ink, & l.

The crucial point determining the degree of smooth-
ness is the fact that the value of the coeScient c for
x «0 is dift'erent in general from the value for x ~0.
Thus only a derivatives at the origin on the left and on
the right are expected to match. Now, o, =in@/ink is
proportional to 1/P, since the latter gives the order of

FIG. 3. Floor of the linearized equation (5) crosses into the
strip, as follows from the fact that the slope g satisfies the Ri-
catti equation (6) whose one-dimensional Aow crosses into the
segment {g,g+ ).

FIG. 4. (a) Roll up of the invariant curve due to under-
damping. (1) Smoothness of the invariant curve is determined
by a =lnp/1nA, .
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the exponential rate of contraction toward the invariant
circle.

The above reasoning can be made precise; alternative-
ly, a rigorous smoothness argument can be made follow-
ing Moser, ' pp. 82 and 83; the key property of the map
used in both arguments is the domination of contraction
within the circle by the contraction in the transversal
direction.

Remark 4: Higher resonances and smoothness. If the
rotation number is close to an irrational, then the
above-mentioned internal contraction rate k is close to 1,
making the smoothness rate u large. The large drift
component will also result in large o;.
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the top boundary moves down, i.e., gz(P) &f2(ti)), pro-
vided U is chosen large enough. Heuristically, since the
image boundaries still have slopes between g and g+,
and since the area decreases by the factor of c at least, it
is reasonable to state that the height of any annulus
shrinks by c plus a bounded error; this suggests (in anal-
ogy with the contraction mapping principle) that high
lines (U »1) are moved down under P, while low lines
(L »1) are moved up. To make this argument rigorous,
we observe the following.

(a) For the areas A o and A
~

of the annulus and of its
image, condition (ii) implies that A, g cA o.

27K

(b}Ai = I fg2(4) —gi(4)ldll&2~min(gp g[}
Here and befow, maxima and minima are taken over the
interval (0,2n ).

(c) mm(g2 —g, ) & max(g2 —g, ) —2m(g+ —g ). This
follows from condition (i).

(d) max(g2 —g t ) & maxgp —ming t .
Applying (a), (b), (c), and (d) in that order, we obtain

1 1
cAo& A~ &min(g2 —g&)

& max(g2 —g, ) —2m(g+ —g )

& maxg2 —ming, —2n(g+ —g ),

or, using Ao ——2mU,

APPENDIX: PROOF OF THE IMPLICATION
(i) AND (ii) ~(iii)

Both functions U(P } and V(P) can actually be chosen
U(P)=ttt+U, L(P}=P—L, where U and L are

constants. To prove that (i) and (ii) imply (iii), we will

consider an annulus bounded by two circles
ttt=P= f, (P), P=P—+ U:fz(P) which it—s image bound-
ed by the curves g=g, (P) and P=gz(P) and show that

maxg2 &&U+mtng(+277(g+ —g ) (U=—minf2

if U is large enough (g, is independent of U), showing
that the top boundary moves down. The corresponding
argument for the lower boundary g=ttt L is completely—
analogous. The proof of (iii) is complete.

Remark 5. After this work was completed, I received
an unpublished report by Min, Xian, and Jinyan in
which a result similar to that of theorem 1 is obtained.
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