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Computation of transport coef5cients and the dynamical structure factor of Xe
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The importance of the three-body dispersion interaction (Axilrod-Teller potential) in liquid Xe
near its triple point is investigated by numerical simulations. Although large for the heavy rare

gas Xe, its effect on collective dynamical properties such as the dynamical structure factor and

transport coefBcients is very small. When used in conjunction with an accurate pair potential,

good agreement is obtained with experiment for both the pressure and transport coeScients.

I. INTRODUCTION

Pair potentials which accurately reproduce the low-
density thermodynamic and transport properties are now
known for most rare gases so that one can legitimately
address the question of the importance of many-body in-
teractions. It has been known since the work of Barker
and collaborators' and has been emphasized again quite
recently that the use of an accurate pair potential to-
gether with the three-body Axilrod-Teller (AT) triple-
dipole interaction —though valid only for large separa-
tions of the atoms —gives a remarkably faithful repre-
sentation of the cohesive energies of rare-gas crystals at
0 K (Ref. 4) and of the equation of state of the liquid
and solid phases up to pressures of about 20 kbar. At
the same time it has been recognized that short-range
three-body forces (e.g., first-order three-body exchange
interactions) give contributions comparable in magnitude
with the AT interaction and of opposite sign so that
the good agreement with experiment obtained with the
AT potential has either to be considered as fortuitous or
to be attributed to substantial cancellation between aon-
AT many-body interactions.

There is, however, also evidence for situations in
which a pair plus AT potential description does not we11

reproduce expenmental results. These include the equa-
tion of state for rare-gas solids at very high pres-
sures, ' rare-gas cluster stability, " and the static
structure factor of dense Kr gas at small wave vec-
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Most predictions of the effect of the AT potential on
the static and dynamic properties of rare gases stem
from "exact" computer simulations (e.g., Monte Carlo or
molecular-dynamics calculations) and include thermo-
dynamic properties, ' ' pair correlation func-
tion, ' velocity autocorrelation function, * and,
to some extent, density fluctuations in dense gaseous Kr
(Ref. 18), and hquid Ar (Ref. 16). In the present work
we use the molecular-dynamics (MD) method to extend

these investigations to collective dynamical properties
(transport coefficients, dynamical structure factor, and
transverse current autocorrelation function) of Xe near
its triple point, Xe was chosen for its large triple-dipole
interaction and triple point conditions were chosen be-
cause experimental measurements of the transport
coefBcients were available,

In order to a11ow comparison with experiment a realis-
tic pair potential for Xe was used. MD simulations were
performed with this pair potential alone and with an
added AT potential (for the sake of brevity we shall refer
to these systems as two-body and three-body Xe, respec-
tively). The results are compared both at constant-
density-constant-temperature and at constant-pres-
sure-constant-temperature conditions. The comparison
was made as meaningful as possible by performing runs
with identical statistics and particle numbers. As typi-
cally (1-2)X10' time steps are needed to obtain trans-
port coefficients with a precision of 5-10% in the vicini-

ty of the triple point, we restricted our system size to
108 particles to maintain computing time within accept-
able length in the presence of three-body interactions.
Details of the model and the MD simulations are given
in Sec. II. In the following order we discuss the e8'ect of
the AT potential on the thermodynamic properties and
pair correlation function (Sec. III), transport coefficients
(Sec. IV), and dynamical structure factor and transverse
current-current correlation function (Sec. V). A sum-
mary of the results is given in Sec. VI.

II. MODEL AND MD SIMUI.ACTIONS

The MD simulations were performed with either a
pair potential alone or in combination with the AT po-
tential
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TABLE I. Efkct of the Axilrod-Teller potential on internal energy U and compressibility factor Z. AS„81,X2, and AT denote
the pair potentials of Aziz and Slaman (Ref. 21), Lee et al. 4,

'Ref. 23), Barker et al. (Ref. 22}, and the three-body Axilrod-Teller po-
tential, respectively. Each independent run corresponds to 10000 time steps of 10 ' s. Z' ' is the pairwise additive and Z' ' the
nonadditive contribution to Z. The statistical error on T is 0.3 K and on U is 0.002 kJ/mol.

Potential
model

Number of
independent

runs
P

(mol/cm')
U

(kJ/mol) z (2)

A
8
C
D
E
F
Expt. '

AS+ AT
AS
AS

81+AT
81
X2

10
10
20

5

15
5

176.4
175.9
175.6
173.1
174.5
175.3
175

0.0219
0.0219
0.024
0.0219
0.0219
0.024
0.0219

—10.83
—11.65
—12.77
—10.64
—11.47
—12.75

0.23+0.02
—1.34+0.015

0.16%0.015
0.16+0.04

—1.29+0.01
0.16%0.04

-0

-1.526

1.663

1.684

'Reference 33.
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compressibility factor Z =p/pks T (p is the pressure and
ks is the Boltzmann constant) as system A and were
designed to evaluate the efFect of the AT potential at
fixed pressure.

where r;, =r —r; is the separation between atoms i and

j, r;~
——

~ r;~ ~, and v=749. 8X10 ergcm (Ref. 20) for
Xe.

For the pair potential we primarily choose the HFD-8
potential recently proposed by Aziz and Slaman ' (AS),
which is consistent with a large variety of experimental
information on pair interactions, including dilute gas
properties, high-energy scattering data, dimer properties,
etc. In addition, to estimate the inhuence of the pair po-
tential on the thermodynamic and transport properties,
computations were carried out for two pair potentials
proposed earlier by Barker and co-workers, the X2 po-
tential z and the potential of Ref. 23 (which we will call
Bl). The well depths s/k and distances of the potential
minimum, r, are 282.29, 281, snd 276 K and 4.3627,
4.3623, and 4.3655 A for the AS, X2, and 81 potentials,
respectively.

All simulations use 108 particles in a cubic volume
with periodic boundary conditions. The pair potential
was truncated at half the box length ( —1 nm for the
densities considered). For the three-body interactions
only contributions from con6gurstions for which the
sides of the triangles formed by three particles are less
than half the box length were considered to avoid arnbi-

guities arising from the use of periodic boundary condi-
tions. The equations of motion were solved using the
Verlet algorithm and the multiple-time-step method of
Street t et ai. ; the two-body forces were evaluated
every ht =10 ' s, whereas the more slowly varying AT
three-body forces were calculated every 2ht and extrapo-
lated for intermediate times.

%'e considered six systems, labeled A —F in Table I,
which difFer by either the potential model or the density.
The systems at density p=0.0219 mol/cm and tempera-
ture T-175 K correspond to a thermodynamic state
close to the (experimental) triple point of Xe. Systems C
and F at density p =0.024 mol/cm have the same

III. THERMODYNAMIC PROPERTIES
AND PAIR CORRKI.ATION FUNCTION

The internal energy U and compressibility factor Z for
the difFerent systems are compared in Table I. The con-
tribution of the AT term to the internal energy is 7% of
the two-body contribution and positive, indicating that
contributions from triplets of particles forming acute tri-
angles dominate. The effect on the compressibility fac-
tor is more pronounced and most clearly seen by split-
ting it into a part Z' ' involving only the pair potential
U2 (as well as the ideal-gas term) and a part Z' ' involv-

ing the AT potential U3. The two-body contribution Z'
is negative and little affected by the AT potential (cf.
systems A, B, D, E). It is largely canceled by Z' ', the
net pressure being in close agreement with experiment,
but not perfect. Similar good agreement has been shown

by Barker to occur along the 423-K isotherm. Note
that U and Z have been corrected for truncation of the
two- snd three-body potentials. The correction terms
for Z' ' are —0.68 snd —0.63 for states A and D, re-
spectively. The correction for Z' ' has been estimated
using the superposition approximation for the three-
body correlation function' and amounts to 0.096 for
states A and D. Quantum corrections have been
neglected as they are very small for Xe at the tempera-
ture considered.

Further evidence of the inAuence of the AT interac-
tion on the pressure can be seen by comparing systems
A and C or D and F (note that there is little difference
between potentials Bl and X2). The results show that if
the AT potential is turned ofF the density of the system
hss to be increased by as much as 10% in order to main-
tain a 6xed pressure.

From the results of Table I it is apparent that in the
liquid phase the systems of particles interacting by po-
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tentials AS, 81, or X2 have nearly identical thermo-
dynamic properties. This is seen to be true also if the
AT potential is added to either of these pair potentials.

The small infiuence of the AT potential on the pair
correlation function is iBustrated by Fig. 1; this figure
shows that the AT potential increases the pressure
without reinforcing the local structure. This behavior
confirms the possibility of a description of the AT in-
teraction by a mean-field term, as recently suggested by
Egelsta1T.

respectively, and Cz(t) that of the heat flux density.
These time correlation functions are equal to

1
3

C„(r)= g (~ ~(0)~ ~(t)),
a,P=1
(a (P)

3

C„(t)= g ( [o (0)—(tr (0) ) ]
9Vk~ T

x [~"(r)—&~»(r) ) ]), (3b)

IV. TRANSPORT PROPERTIES

In this section we present the results of our computa-
tions of the transport coef6cients and compare them
with experimental results for Xe. The three hydro-
dynamic transport coeScients, shear viscosity g„bulk
viscosity q„, and thermal conductivity k were obtained
from the Cjrreen-Kubo formulas

E C„ (2a)

dt Cq t (2b)

A, = f dt Cj(t) . (2c)

C„(t) and C„(r) are the autocorrelation functions of
the olF-diagonal and diagonal parts of the stress tensor,

3C~(&)=, g (J, (0)J, (&)),
3Vk~ T

where V is the volume of the system.
The stress tensor is given by

U2o'j'=m yu ui' 'y—-— rj'
i j ~rij

[i&j)

U3
pr,, +c.p.

8
(i&j&k)

and the heat flux by

BU2J;=gE;u, +-,' g v, r,,
J I,j

ti&j )

(3c)

(4)
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FIG. 1. E8'ect of the AT potential on the pair distribution
function g{r): Solid line, pair potential of Aziz and Slaman
{AS)+ Axilrod- Teller three-body potential at p =0.0219
mol/cm; triangles, AS potential, p=0.0219 mol/cm; dotted
line, AS potential, p=0.024 mol/cm'. (cr=3.8924 A.. )

+-,'
i,j,k

(i&j +k)

U3
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Br;

The normalized time correlation functions
C (t)/C (0) (a=g„rj„,A, ) for systems A-C are shown
in Figs. 2-4. They correspond to averages over 10 (20
for system C) independent runs of 10000 time steps,
each with difkrent initial conditions.

The most striking observation is that at a given densi-
ty and temperature the e6'ect of the AT potential is ex-
tremely small; the correlation functions for the AS and
AS + AT potentials cannot be distinguished within sta-
tistical error, either in shape or in magnitude (cf. Table
II where the initial values are collected). The decay of
the various correlation functions is quite similar to that
of a Leonard-Jones system near its triple point. ' In
particular, the initial decay of C„ is somewhat faster

U

than that of C„and the amplitude of the "tail" at

longer times slightly larger in C„. However, the range

of the long-time "tails" is essentially the same for both
correlation functions. In view of the statistical error, es-
timated more precisely below, both correlation functions
vanish within the range 2 —3 ps.

m, v;, and E; are the mass, velocity„and total energy of
particle i, respectively,

E, = ,'rnv;+ ,' g-u2(r;,-)+ —,
' g u3(r;, , r;k, r,k) .

[j~i) (i~j~k)
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FIG. 4. Normalized time correlation function Cq(t}/Cq(0) associated with the thermal conductivity. The symbols are as in Fig.

Ci (t=0) increase, whereas C„(t=0) does not change

signi6cantly.
To estimate error bars for the time correlation func-

tions and transport coefBcients we considered two
sources of error: the statistical error on the time corre-
lation functions and the error due to the choice of an
upper time limit in the integrals (2). The former was
evaluated from the variance of the difFerent independent
runs and was found to be fairly independent of the value
of time. Typical error bars based on one standard devia-
tion are given in Table II for the initial values of the
time correlation functions.

The time integrals in expressions (2) were truncated
when the absolute magnitude of the average correlation
functions became smaller than one standard deviation
and the error bars on the transport coeScients are calcu-
lated from the variance of the values obtained for the
different independent runs. These error bars (one stan-
dard deviation) are given in Table II. They amount to
5 —10%. Similar estimates were obtained for a
Lennard-Jones system near triple point. For the densi-
ty p=0.0219 mol/cm the truncation times were smaller
(for Ci ) or of the order (for C„and C„) of the re-

currence time (time for an acoustic wave to travel across
the simulation volume) which, for our 108-particle sys-
tem, was estimated to be -3.2 ps, using the experimen-
tal value for the sound velocity of Xe at 175 K (618
m/s). For the compressed system p=0.024 mol/cm
the truncation times for Cz and C„exceeded the re-

S V

currence time adding error due to size efFects on g, and
In view of this and the truncation of the time in-

tegrals the real uncertainties in the transport coefBcients
are presumably larger than the statistical error bars
given in Table II.

On the basis of the similarity of the time correlation
functions C, (t) for two- and three-body Xe at constant
density we do not expect any significant difFerences for
the transport coefficients. This is readily checked from
Table II. The results are also seen to be independent
(within statistical error) of the form of the pair potential
(AS or Bl).

Upon compressing the AS system the shear viscosity
increases due partly to the 1arger magnitude of the time
correlation function and partly to its slower long-time
decay. The bulk viscosity, on the contrary, is fairly in-
sensitive to compression; although the long-time decay

TABLE II. Values of the transport coeScients and initial values of the associated time correlation functions for the various sys-
tems considered. Note that C„(t=0) and C„(t=0) are equal to the high-frequency shear and bulk moduli, C„and K„, respec-

tively. The acronyms for the potential models are explained in Table I.

System Potential
p C„(&=0) C„(&=0) C, (~=0)

(mol/cm ) (10' mPa) (10' mPa) {10' erg K ' cm

Is

(mPa s)

g t1

(mPa s) (W K.-' m-')

A
8
C
E
Expt. '

AS+ AT
AS
AS
Bl

0.0219
0.0219
0.024
0.0219
0.0219

1.09+0.02
1.08+0.02
1.48+0.02
1.06+0.02

0.82+0.02
0.79+0.02
0.75+0.02
0.77+0.03

1.90+0.05
1.89+0.03
2.54+0.03
1.81+0.03

0.41+0.03
0.40+0.03
0.87+0.06
0.39+0.02

0.45

0.31+0.04
0.30+0.03
0.30+0.03
0.30+0.04

0.208

0.068+0.004
0.064+0.003
0.082+0.004
0.061+0.002

0.0689

'Reference 33.



37 COMPUTATION OF TRANSPORT COEFFICIENTS AND THE. . . 923

KO&

0$-

0.0

M e

~ I ~ I I ggh I 0.0
0.0

Ihse a~
I e

OA OJ5
0.0

0.0
Ae

f I

%0&

k=0.93

OS- 0$" 0$-

0.00,0
0.0 0.0

A A
f ~ OoO

0.0 OA 08 OA 0$ 02 OA

t(10 "s) t(10 "s) t(10 "s)

FIG. 5. Normalized intermediate scattering function F(k, t)/E(k, 0). The symbols are as in Fig. 1. The values of k (in A ) are
those for the density p=0.0219 mol/cm'. The corresponding values for the system at p=0.024 mol/cm' are k=0.32, 0,45, 0.96,
1.61, 1.93, and 2.51 A, respectively.

of Cz becomes slower the corresponding increase in g„
is compensated by a faster initial decay of the correla-
tion function. Near constancy of g„with density has
also been observed in a recent study of supercooled soft
spheres in the region outside formation of a glassy
state. The thermal conductivity increases with density
mainly due to the increase of Ci (r=0).

The calculated transport coetlicients are compared

with experimental results by Malbrunot et al. in Table
II for the density p=0.0219 molicm3. At first sight it
would appear that the calculated shear viscosity is too
small. However, from previous simulations with the
Lennard-Jones potential we know that a 108-particle sys-
tem underestimates the shear viscosity by approximately
10% (compared to the infinite-particle limit) near the tri-
ple point due to a faster long-time decay of the corre-
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oFIG. 6. Transverse current autocorrelation function. The symbols are as in Fig. 1. The values of k (in A ) are those for the

density p=0.0219 mol/cm . The corresponding values for the system at p=0.024 mol/cm are k=0.32, 0.45, 0.96, 1.61, 1.93, and
2.51 A, respectively.
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for the density p=0.0219 mol/cm'. The corresponding values for the system at p=0.024 mol/cm' are k=0.32, 0.45, 0.96, 1.61,o ),

1.93„and 2.51 A, respectively.

sponding time correlation functions. If we correct our
simulation value of q, by this amount, satisfactory
agreement is obtained with experiment.

The discrepancy observed for the bulk viscosity is
much more pronounced and can hardly be explained by
the combined uncertainties on both simulations snd ex-
periment. The latter may, however, be quite large (Mal-
brunot et al. claim a maximum error of 25%) as a re-
suit of the fact that the bulk viscosity is measured only
indirectly via the acoustic attenuation coefficient and re-
quires prior knowledge of the shear viscosity, heat con-
duct1v1ty, arid spec1flc heats. Moreover, the va11at1on of
g„with density is quite rapid in the vicinity of the triple
point. Finally we note that the thermal conductivity is
in good agreement with experiment.

V. DYNAMICAL STRUCTURE FACTOR
AND TRANSVERSE CURRENT AUTOCORRKLATION

FUNCTION

Further understanding of the influence of the AT po-
tential on collective dynamical e8'ects can be gained
from the intermediate scattering function

1 ik [r,.ioj —r.it)]F kt= — e

whose Fourier transform

$(k, to) = f F(k, t)e' 'dt
2% Qo

is the dynamical structure factor measured in neutron
scattering experiments and from the transverse current
autocorrelation function

C Ik t)=—'(x * * '""" ''"")
I,)

the Fourier transform of which we denote Cr(k, cu), U;" is
the component of the velocity of the ith particle perpen-
dicular to k.

The wave vectors which have been studied, compatible
with the periodic boundary conditions of the system,
were k=0.31, 0.44, 0.93, 1.56, 1.87, and 2.43 A ' for
density p=0.0219 mol/cm and k=0.32, 0.45, 0.96, 1.61,
1.93, and 2.51 A ' for p=0.024 mol/cm .

The normalized intermediate scattering function
F(k, t)/F(k, t=0) and the Fourier transform CT(k, co) of
the transverse current autocorrelation function for the
AS and AS + AT potentials at density p =0.0219
mol/cm are compared in Figs. 5 and 6. The differences
are small and statistically significant only for F(k, t) for
the two lowest k values considered: At these wave vec-
tars F(k, t) is slightly narrower for the three-body sys-
tem, giving rise to a somewhat lower value of $(k, co) at
low frequency (cf. Fig. 7). We also remark that for small
k the initial value of F(k, t) which is equal to the static
structure factor $(k) is reduced by the AT potential (cf.
Table III). This is compatible with a smaller value of
the compressibility [k~0 limit of $(k)]. However,
these di6'erences appear more distinctly if we do a com-
parison at constant pressure. In F{k,t) they manifest
themselves, for the AS potential, by a smaller damping
of sound waves at small k, which induces a somewhat
more pronounced high-frequency "shoulder" in $(k, co)
(cf. Fig. 7). These features are consistent with the higher
density of the AS system. From CT(k, co) we further
conclude that for this higher density the propagation of
shear modes persists to much larger wavelengths. A
propagating mode is still observed for the lowest k vec-
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TABLE III. Initial value of the intermediate scattering
function: I'(k, t =0)=S{k). Note that systems A and 8 have

density p=0.0219 mol/cm and system C, p=0.024 mol/cm .

1.21
1.25

1.71
1.77

3.64
3.75

7.27
7.50

9.47
9.76

0.059+0.004

0.060+0.003

0.098+0,002

1.43+0.05

1.63+0.03

0.64%0.01

System 8
AS

0.068+0.003

0.06620.002

0.098+0.002

1,41+0.06

1.60+0.05

0.64+0.01

System C
AS

0.032+0.001

0.035+0.001

0.067+0.001

1.50+0.05

1.52+0.05

0.61%0.01

tor considered, whereas for the triple point density this
value is close to the one at which shear modes disappear.

%e have investigated by Ml3 simulations the influence
of the AT three-body potential on the collective proper-
ties, especially the transport coefBcients of Xe near the
triple point. Our principal finding is that for fixed densi-
ty and temperature the AT potential primarily affects
the thermodynamic properties of the system (pressure,
compressibility) giving good agreement with experiment
and affects only in a very minor way the collective
dynamical properties which we have considered. In par-
ticular, the transport coeScients, shear, bulk viscosities,
and thermal conductivity, near triple point are found to
be insensitive (within statistical error) to the presence of
the AT potential and also to the precise form chosen for
the two-body potential. These findings corroborate the
mean-field picture of many-body forces recently put for-
ward by EgelstaK The AT potential does not seem to
appreciably affect fluctuations in the system and conse-
quently will not alter the values for the transport
coeScients.

The preceding comparisons pertain to a system of 108
particles. Due to the small contribution of the three-
body forces to the transport coefKicients, possible finite-
size corrections will affect primarily the contribution
from the two-body forces. These corrections have been
published previously. 29 3'34' ~ From the work of
Hoheisel and collaborators on the Leonard-Jones system
near triple point ' it would appear that only the shear
viscosity is significantly affected by a 108-particle system
(10%, as mentioned in Sec. IV). After correction for
this finite-size effect, the shear viscosity is in satisfactory

agreement with experiment. The thermal conductivity,
which is rather insensitive to the particle number, also
agrees well with experiment. However, a discrepancy
seems to occur for the bulk viscosity, the origin of which
is not yet clearly understood.

The efffect of the AT potential on S(k, co) is also small
and statistically significant only at low frequency and
low wave vectors. Unfortunately, in the absence of neu-
tron scattering measurements of S(k,co) in Xe near the
triple point we have no estimate of the global contribu-
tion of many-body forces to S(k, co). Egelstaf and co-
workers, '

by comparing neutron scattering data of
S(k, ru) for room-temperature Kr gas at about twice the
critical density with simulation results using the best
available pair potential found a marked effect of many-
bod forces on S(k,co) in the range 0.6 A 'gk ~1.3
A . Unless the role of the AT potential is much
enhanced for this thermodynamic state, the present
study would indicate that this effect cannot be explained
by the AT potential only. Computer simulations recent-
ly undertaken for Kr gas confirm this result.

When comparing the properties of two- and three-
body Xe at constant pressure we come up against the
difhculty that the thermodynamic state corresponding to
the two-body potential is in a metastable region due to
the rather large increase in density (10% of the triple
point density) which is required to reproduce the pres-
sure of the three-body system. As a consequence, a
direct comparison of the properties of the two states be-
longing to different phases may not be very meaningful.
This di%culty arises, of course, due to our proximity to
the triple point. In any case, the compressed system (AS
potential) is shown to have a larger shear viscosity and
thermal conductivity. Also, sound waves are less
damped and propagating shear waves persist to larger
wavelengths.

Note that at the density 0.0219 mol/cm the pure
two-body system is also metastable (negative pressure).
However, the difference in pressure between the two-
and three-body systems does not seem to entail
significant differences in the collective dynamical proper-
ties.

%e finally remark that the present study occurs in the
framework of the weakly polarizable rare gases. For
strongly polarizable systems, such as water, the effect of
the three-body forces on collective dynamics has been
shown to be much more important.
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