
PHYSICAL REVIEWS A VOLUME 37, NUMBER 3

Mean first-passage times and colored noise

FEBRUARY 1, 1988

Ronald F. Fox
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

(Received 22 June 1987; revised manuscript received 10 August 1987)

Recent work regarding stochastic motion in a bistable potential is critiqued. Emphasis is placed
on mean 6rst-passage time analysis and the effects of colored noise. Controversy has arisen re-

garding general theory, particular calculations, and numerical simulations. Each of these aspects
of the problem is addressed in this paper.

I. INTRODUCTION

(f (t)f (s) ) = exp
Do /t —sf (2)

The systematic term W(x) may be regarded as the nega-
tive gradient of the bistable potential, U(x)= ——,'ax
+—,'bx . The noise correlation exhibits a colored noise
with correlation time ~ and vnth an exponential decay.

As stochastic analysis of physical problems has
broadened in recent years, appreciation of the need for
more realism in models has grown. One very important
property which has attracted a great deal of attention
has been the correlation time of the noise driving the
stochastic process. ' Historically, "white" noise has been
chosen since it represents a sharp separation of time
scales in the dynamics. The correlation time for white
noise is zero, and this represents the observed feature
that the time scale for the driving noise correlations is
much shorter than the time scale for the relaxation of
the driven process. Usually, two or three orders of mag-
nitude difFerence in time scales makes the white-noise
model very accurate. However, an increasing number of
problems have arisen in which it is more realistic to
model the driving noise with "colored" noise, i.e., noise
with a nonzero correlation time. This reflects a not so
sharp separation of time scales, and a greater precision
in the analysis of stochastic processes.

In this paper, recent literature regarding the mean
first-passage time (MFPT) for barrier crossing for a one-
dimensional motion in a bistable potential will be cri-
tiqued. Controversy and confusion have arisen with
respect to general theory, particular calculations, and
numerical simulations. Having ourselves contributed to
this literature, and to the confusion, we seek to bring
clarity to a portion of this literature with this critique.

The simple problem underlying this discussion is de-
scribed by the stochastic differential equation

—x = W(x)+f (t),d
(1)

dt

III whIch $Y(x)=ax —bx' aIld f (t) ls a stochastIc foIce
with zero mean and correlation function,

In the limit v~0, this noise becomes white, with corre-
lation, 2D05(t —s). The potential has a local maximum
at x =0, and two minima at 2&a/b. The problem is to
compute the MFPT to cross from one minimum to the
other.

Denote the MFPT by T. For white noise, the result
for T is well known and is given by

Controversy has arisen regarding the correct expression
for the colored-noise modification of this formula. We
6nd several alternative suggestions in the literature, pu-
tatively valid for weakly colored noise,

' 1/2
1+2a~
1 —av

a'"P 4fD,
(4)

T = exp (I +2aI. )
4bDo

1+2av.
1 —at

r

a
exp ( I+Za~)

0

a 3T= exp + a I. —

Equation (4) follows from the analysis of Hanggi, Mar-
cheson, and Grigolini;I Eq. (5) follows from the analysis
of Hanggi, Mroczkowski, Moss, and McClintock; Eq.
(6) follows from our earlier analysis;2 and Eq. (7) follows
from the analysis of Masoliver, %'est, and Lindenberg.
The controversy has been characterized as a debate re-
garding the form of the exponential ~ dependence of T.
In (5) and (6) the r dependence includes D0 whereas in
(7) it does not. Moreover, in (4) and (6) there is a nonex-
ponential r-dependent prefactor, whereas in (5) and (7)
there is not. Equation (5) follows from an ansatz, called
Hanggi's ansatz, ' the validity of which has been ques-
tioned. Numerical simulations have been questioned.
In this paper we show that Eq. (4) is the correct, smail-v
expression, i.e., there is no linear v. dependence in the
exponential's argument; that application of Hanggi's an-
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satz may require additional conditions for validity in the
weak limit, although it is known to work well at steady
state; that Eqs. (6) and (7) are the result of computation-
al errors; ' and that thei'e is a strong need for addition-
al, accurate numerical analysis with emphasis on the
small-~ behavior. Each of these points is developed in
Sec. II. In Sec. III we show how our earlier general
theory supports the conclusion that there cannot be any
linear ~ dependence in the exponential factor for T.

II. CALCUI. ATION OF THE MFPT

in which D(x) is given particular forms depending on
the theory. The ~-expansion form for D (x) is

D(x)=DO[1+v W'(x)],

in which W'(x ) denotes the x derivative of W (x ). This
expression was used to obtain (4). The Hanggi-ansatz
form for D(x) is

D (x)=Dii[1+r(3b (x I ) —a)] (10)

in which (x ) denotes the steady-state value of x,
which is a/b. This expression was used to obtain (5).
Fox's functional-calculus approach yields

D (x ) =Do[1 rW'(x )]—
which was used to produce (6). Masoliver et al. used
an expression which for small r is equivalent with (11) to
obtain (7). Below, we show that both (6) and (7) are in-
correct results starting from (11), and that expression (4)
is the correct consequence of (11).

At first sight, it might appear that for small r expres-
sions (9) and (11) are identical to first order in r because
(1—s~) '= I+sr+0(v ). However, this view over-
looks the fact that IV'{x) in [1—r8"(x)] ' is x depen-
dent. Any algebraic identities must apply to the entire x
domain [in this case where W(x) =ax bx, the x-
domaln Is ( —ce, oo )].

For details regarding the general treatment of MFPT
calculations, the reader is referred to Ref. 2. In essence„
one begins with Kolomogorov's backward equation
wlllcll ls equivalent w1th (8). Tllls ultimately leads to tllc
MFPT equation for T,

8 82
W(x) T(x)+D (x) T(x)= —1,

I)X Bx

which is equivalent to Eq. (68) of Ref. 2. If we consider
the MFPT for gettjng from the negative minimum at
—&a/b to the positive minimum, then the solution to
(13) can be written

For small w it is possible to characterize the colored-
noise problem by an effective Fokker-Planck equation,
from which the MFPT may be calculated. There are
several versions of the effective Fokker-Planck equation
for weakly colored noise. They all have the form

8 8 2—P (x, I ) = — [8'(x )P (x, I)]+ [D ( x)P ( xt )],x clx

(8)

T( &—a/II )= f dy f dz
f(y) D(z)

in which l((x) is defined by

(13)

p(x) =exp f dx
W(x)
D(x)

Performing the integrals in (13) is done in two stages.
The y integration may be simplified because 1/P(y) is
sharply peaked about y =0. A Gaussian approximation
gives the highly accurate approximation '

o tp{z)
D(z)

(15)

The remaining integral is the source of subsequent con-
fusion in the hterature. Hanggi er al. applied the
method of steepest descent to its evaluation and obtained
(4). As we will ultimately see below, this result is indeed
correct, and the method is also valid. Nevertheless,
Hanggi et a/. later introduced the Hanggi ansatz (10)
which permits easy evaluation of (15) yielding (5) in-
stead. This was said to be in agreement with numerical
simulations and is clearly not in agreement with (4}. Fox
then evaluated (15} using (11). When he applied the
method of steepest descent, he also got (4). However,
the work of Hanggi et al. " suggested that this result was
wrong, so Fox proceeded to evaluate (15) exactly, using
parabolic cylinder functions. To be precise, he pulled
the D(z) denominator in (15) out of the integral because
it is slowly varying rvith z, and evaluated the resulting

expression,

T( —&II/b ) =
' 1/2

IrD (0) 1+2ar
2a Do

X f dz exp f'dy

X [1—v W'(y)]

in which D(0)=DO/(1 —a~). The integral, called I,
may be evaluated in closed form for W(x)=ax bx . —
The result is

2DOI=—
2 b —4abw

2DO

n! b —4ab~

' 3n/2

X ir exp( —,'x ) V(3n, x ),

where x =[(a —a r)/2DO][2DOI(b 4ab~) j' . The-
asymptotic expansion for the parabolic cylinder func-
tion V(m, x) is
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V(m, x)~ &2/m exp{—,'x )x

(m —
—,
' )(m —T3)

X 1+ + 0 t

2x
(18)

I= 'd-p 'dy '1-~y
—00 0 D0

0 1
zexp — U 2 +2XS z

00 +0

0
dz exp(as —Pz —yz ),2 4 6 (19)

in which (d /dx) U (x)= —W(x), and

a=- (1—ar), P—= (1 4ar), y =—— . (20)
a b $ 2~

0 0 0

Applying the method of steepest descent to the last ex-
pression in (19) produces the result

' 1/2

8 P2 4 P2 4 a8a+ — -4p — + ——
3y 9y2 3y

At this stage of the argument, the error was made of
keeping only the m =0 term. Doing so in (17) converts
(16} into (5), in tantalizing agreement with the result of
Hanggi's ansatz. However, if all values of m ( =3n) are
kept in (17), one in fact again obtains (4). This is an ex-
ample of a correct theory having produced an incorrect
conclusion through a faulty calculation.

It is instructive to explore this situation in some de-
tail. The integral in (16) may be expressed as

1/2

1+32P ay
3 y p2

3 ay 9 ay
2 p' 8 p'

'3
27 Ay
16 p'

and have had to keep terms up to order (ay/p ) in or-
der not to omit contributions that turn out to be of first
order in r Tw.o features of the result are noteworthy:
(1} the amplitude contains {1+2ar) rather than
(1—a~) '~2, and (2) the argument of the exponential
contains no linear r term because of a cancellation. The
second feature is no accident, as we shall see later. Ap-
plying the parabolic cylinder function approach' to the
last expression in (19) produces the result

' 1/4 ' 3n/2
1

{ )g
11 1

Pc 2 2P

1 Q a
Xn exp — V 3n,42 '

2p

(24)

(2S)

This result is exact. Further evaluation requires approx-
imate treatment of the parabolic cyhnder functions
V( 3n, a/3/2p) They .have the asymptotic expansion

T

1 Q'

2P

(3n —
—,
' }(3n —

—,
'

)
X 1+ +

2x

1 aP 1 4P 4a
+exp —— +—a — +——

3 y 3 9y2 3y

1P 4P 4a+ +9y 9y2 3y
p3

27 y'

in which x —=a/v'2p in agreement with its meaning in
(17) and (18) above. The factor (3n ——,')(3n ——,') is use-

fully rewritten as 9n (n —1)+3n +—,'. In order to get a
valid expression to first order in ~ it is necessary to in-
clude the contributions which arise from the ( 1/
2x }[9n(n —1)+3n+ —,'] terms. Insertion of (25) into
(24) leads to

If ~e now expand the amplitude and the argument of
the exponential to first order in v., ere obtain

a 1 u
Ipc =—3/m/2a exp —— y4P 8

mD0

a ( I+2a~)
1a 1a

exp

9 a 2 3ay 3P
64 5y 8 2+4 2

Expanding everything to first order in w yields

mD0

a (1+2aw)
Q

2

exp +O(r )
0

To get this result, we have used

(22)

EX

Ipc —— m/2aexp +O(v )

3 &Do
1 — ax+ — {1 —2a—r )

2 4
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In addition to imposing the small-~ limit on our result,
each of the earlier studies also involved the small Do
regime such that bDD/a, which is dimensionless, is
much less than 1 (in Ref. 2 it was 0.05 and 0.1 for two
cases). So we may drop this term in (27) as well. Now
notice that

=+2D0/a (1 ar)—+0(r ),
which agrees, to first order in v, with the result of
steepest descents in (22), i.e.,

=1—as+0(r ) . (29}
1+2ar

Thus, we find that the method of steepest descent is val-
id and accurate, and that proper use of the parabolic
cylinder function approach requires the inclusion of
V(3n, a/&2P) for all n, and requires inclusion of the
second term in the asymptotic expansion in order to get
a clear indication that the amplitude factor is
(1+2ar) '~ and not merely (1—a~)

These results, which confirm Eq. (4), cannot be in
agreement with Eq. (5), the result of Hanggi's ansatz.
%'e have shown elsewhere that Hanggi's ansatz is ex-
tremely natural in the steady-state situation, provided
that D0 is not too large. In particular, we showed that
the Hanggi ansatz sits in the functional-calculus treat-
ment of stochastic differential equations in an especially
transparent way. Hanggi' has argued that the ansatz
enjoys a wider domain of validity than this, an issue that
remains to be settled. All of this underscores the impor-
tance of reliable numerical simulations for this problem
since Eqs. (5) and (6) were originally championed be-
cause of their agreement with putatively accurate nu-
merical simulations. We have addressed the problem of
colored-noise and white-noise numerical simulation algo-
rithms elsewhere, " and will apply our conclusions re-
garding those to this problem in the near future.

Equation (7) is the result of a difFerent type of error.
First of all, there is no necessity to factor out the slowly
varying denominator D (z) in (15) and then to proceed
with either the method of steepest descent or with the
parabolic cylinder functions. In fact, the parabolic
cylinder function approach produces the exact result

J= d (3+8 )
0 2 4 6

1 1

2 2P

1/4 ' 3n/2

( y)ll
o n!

'(3n + j. j/2

V(3n, x)+B 1
V(3n +1,x) m exp( —,'x'), (30)

where once again x —=a/&2P. The method of steepest
descent yields an equation for the maximum which is cu-
bic, rather than quadratic as it was in the case of (19}.
Nevertheless, both approaches produce Eq. (4) when car-
ried through to 6rst order in ~.

Now suppose we write

T(0) =— exp
28

for r=0, and want T(r) for r & 0. On the basis of all of
the preceding analysis we may conclude that

T(r) =—', aT(0)
87

because in (4) we may write

III. GENERAL CONCLUSIONS

We have seen that colored noise produces a change in
the MFPT as compared with the result for white noise.
This change, for small ~, occurs in the nonexponential
prefactor of the MFPT and there is no linear ~ correc-
tion to the argument of the exponential factor. This is
no accident. For small v, an efkctive Fokker-Planck
equation exists, and it leads to Eq. (15). In the first part
of this section we will show that the structure of (15)
guarantees these features of the form of the MFPT. Nu-
merical simulations permit exploration of the conse-
quences of large v values as well. An alternative theoret-
ical analysis is required for this case and the last part of
this section will be devoted to its presentation.

For small z we scrutinize the integral in (15) and
write

1+2u~
1 —o.z

(33}

In Ref. 5, (32) was used to conclude (erroneously) that

T(r)=T(0)exp( ', ar) . —

Obviously, one must look at aH higher-order derivatives
of T(r) to decide that the result is (34},which it is not.

0= f dz exp—00 Z
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wherein we have used U(0)=0 and W(0) =0. We have
seen in Sec. II that the exponential factor in the MFPT
arises from the integrand of the last expression in (35)
evaluated at the z value for which it is maximal. Denote
this z value by zo when ~=0, and by z when ~ ~ 0, but
small. Writing the integrand in the form

exp — [U (z' }+—,
' r W (z' )]D(z') Do

(38)

U'(zo)+~W(zo)W'(zo)=0 .

The exponential factors of the MFPT are, respectively,

=exp — (U+ ,'rW —}—lnD
1

DQ

the equations for z* and zo are

U'(z')+r W(z') W'(z" )+, D'(z*)=01

D (z')

(36)

(37)

1 1
exp — U(zo )

We know that zo= —&alb and that z* —zo=O(z).
The difference between [D(z')] ' and [D(zo)] ' is
merely a prefactor change. The exponential factor in
(38) can be expressed as a Taylor series expansion in
(z zo)

exp — [U(z' )+—,'r W (z')]
Do

=exp — ( [U(zo)+ —,'wW (zo)]+(z' —zo)[U'(zo)+rW(zo)W'(zo)]
Do

+—(z —zo) IU (zo) +T W( z)oW (zo)+1[W (zo)] ]+ ' ' )

=exp — (U(zo)+(z' —zo)[ W(zo)+rW(zo)W (zo)]
Do

+-,'(z' —zo)'I U"(zo)+~[ W'(zo)]'I+ ' ) (40)

dt
x = W(t)+e,

—e= ——e+ —rt(t),d 1 1

dt

(41}

(42}

in which rt(t) is a stochastic force with zero mean and
white-noise correlation function,

W= —U' and W(zo)=0 which follows from
(37). But the linear ~ term is the (z' —zo) term which
has the coefficient W(zo) =—0.

In this way we see that the exponential's argument
will have r corrections beginning with order r . Howev-
er, the calculation of such corrections using the effective
Fokker-Planck equation is invalid since the Fokker-
Planck equation is good only to order v, not z . For
higher-order ~ corrections, no e8'ective Fokker-Planck
equation is possibles and we need another approach.

Another approach for larger v is in fact available.
Merely replace the one-dimensional description given by
(1) and (2) by the two-dimensional description of coupled
equations,

Do
[ (e(t)e(s) ) I = exp

[t —s
i

Do
Ps(e) = 2m

1 ex
exp 2ao

The coupled equations constitute a two-dimensional
Markovian process for which a bona fide Fokker-Planck
equation exists. We may find it easily, using van
Kampen's lemma' for the purpose. We get

[(W+~)P]+ —+ —, P, (46)
B e D B

Bt Bx BE[V 7' B'E

in which ( ) denotes averaging with respect to rl and

I denotes averaging over the distribution of initial
values of e. Since the process is stationary, the distribu-
tion for initial values of e is equal to the steady-state dis-
tribution which is

{rt(t}rt(s})=2Do5(t —s) .

This implies that

(43) in which P =P(x, e, t) To get the .MFPT we need
Kolmogorov's backward equation which is the adjoint
of (46) given by
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—Q =(W+e) Q —— Q+ — Q,B B e B D B

Bt Bx r BE' (47)
It is useful to rewrite Eq. (56) in the form

0= Wrc' ++2Dor[ —,'C', +(m+1)C' +, ]—mC
in which Q =Q(x, e, r). It is straightforward to show
that the difFerential operator

Qs(x, e)= g b„(x)H„(e/+2DO/r), (48)

has Hermite polynomials as eigenfunctions with eigen-
values given by n/r for non-negative integers n Ex.plic-
itly, we may write

m/2 y n~
n=0

(58)

Knowing this, it is readily seen that to zeroth order in ~,
i.e., to order r, Eqs. (53) and (57) imply

(57)

Study of Eqs. (53) and (57) shows that the system has
systematic solutions of the form

Co+DoCo' (59)
in which Qs is the steady-state solution to (47), and H„
is the nth Hermite polynomial. The analysis of the
MFPT given in Ref. 2 is readily generalized to two di-
mensions. The analogue to Eq. (12) is

W(x) T(x,e)+e T(x,e)

T(x„e)= g C„(x)H„(e/+2DO/r) .
g=o

Insertion into (49) yields the equation

WC„'H„+eC„'H„— C„H„—
n=o

(51)

in which the prime denotes the x derivative and in
which we have used the eigenfunction properties of the
H„'s. Now, we do not want the MFPT for initial start-
ing values of both x and e, but only for initial x values.
Thus, we should average (50) over the distribution (45), '

T(x)—= I deI's(e)T(x, e)

=Co(x) . (52)

Moreover, multiplying (51) by Ps(g)H (e/+2DO/r)
and integrating produces the system of coupled equa-
tions

—1=WC,'+ +2D, /rC', ,

0= WC', ++2DO/r( —,'Co+2C2 ) ——C), (54)

0= WC', ++2D, /r(-,'C;+3C; ) ——C, , (55)

e B D BT(x, e) +— T (x,e) = —1, (49)r BE

in which T(x, e) denotes the MFPT as a function of
starting position (x,e). Clearly, in parallel with (48) we
may also write

One may be tempted to expand (m rW') —' but while
it is well defined as is, for all values of x G( —oo, O), each
term of its expansion is divergent. This reflects the fact
the smallness of ~ alone does not make v 8" small for all
x. %e addressed this point before in some detail. Us-
ing (60) together with (53) and keeping terms to order

in (60), while leaving (m —rW') ' as is, gives

CI =-(1—r W') '+2Dor —,
' Co' (61)

and

—1=Wco+(I —rW') 'Doco', (62)

which is precisely (12) with D(x) in (12) given by (11).
Thus, we have discovered a systematic procedure for ob-
taining r corrections to (59), the r=0 equation for the
MFPT. However, the next order in v produces the
equation

—1= WCO+Do(1 —rW') 'Co'+Do Wr(1 —rW')

+Dor(2 —r W') '(1 —r W') Co"', (63}

a fourth-order difFerential equation for Co. This is no
longer readily tractable by analysis. It does, however,
formally reflect the breakdown of the efFective Fokker-
Planck picture, which was valid for Eq. (62), and is still
only a second-order difFerential equation. The main
difBculty resides in determining the appropriate bound-
ary conditions for (63}. The domain of e integration in
(52) is related to this question.

which is precisely (12) for r=O [Th.is follows from (57)
because C, = ,'+2—Dorco which is 0(r ). ] We may
rewrite (57) in still another useful way by taking its x
derivative and rearranging terms to get

C' =(m —7W')

X (
Wr" ++2Dor[ —,'C", +(m + l)C" +) ]I .

0= Wc' ++2DO/r[ —,'C', +(m +1)C' +, ]——C
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